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Basics

isotropic, isothermal, isobaric solid binary solution, free
from imperfections, in a bdd domain Ω ⊂ RN , N ≤ 3
A and B atoms
molar volume independent of atom concentrations
ρ (relative) concentration of B atoms

F(ρ) =

∫
Ω

(α
2
|∇ρ|2 + f (ρ)

)
dx

α > 0 gradient energy coefficient
f nonconvex potential (minima correspond to pure phases),
e.g.,

f (ρ) = ρ2(ρ− 1)2
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Cahn-Hilliard equations

GOAL
modeling phase separation due to cooling processes

mass flux

J = −κ∇
(
δF
δρ

+ νρt

)
κ > 0 mobility, ν ≥ 0 viscosity (A. Novick-Cohen 1988)
mass conservation

ρt +∇ · J = 0

C-H equation

ρt − κ∆(−α∆ρ+ νρt + f ′(ρ)) = 0
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Time relaxation of the mass flux: motivation

oxides or glasses rapidly quenched
instability in the early stage of the spinodal
decompositionF

local non-equilibrium phenomena
atomic diffusion flux relaxation (P.Galenko et al.)

εJt + J = −κ∇(−α∆ρ+ νρt + f ′(ρ))
ρt +∇ · J = 0

ε ∈ (0,1] relaxation time
good agreement of numerical simulations with
experimental observations (e.g. P.Galenko & V.Lebedev,
Phys. Letters A 2008)

F phase transformation in which both phases have an
equivalent symmetry, but they differ in composition
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Differences and similarities

C-H equation with inertial term

ερtt + ρt − κ∆(−α∆ρ+ νρt + f ′(ρ)) = 0

ε = 0 and/or ν > 0: the solutions get smoother than the
initial data for positive times
ε > 0 and ν = 0: there are no regularization effects
the equation always describes a dissipative phenomenon
(energy decreases as time increases)

Remark

Formally we have (u = (−∆)−1ρ)

εutt + ut − κα∆2u + ν∆ut + f ′(∆u) = 0

5 / 25



Some mathematical references on ε > 0

1D case

A.Debussche, Asymptot. Anal. 1991
Zheng S. & A.Milani, JDE 2005, Nonlin. Anal. 2004
S.Gatti, M.G., A.Miranville & V.Pata, JMAA 2005
A.Bonfoh, M.G. & A.Miranville, NoDEA 2010

3D case

S.Gatti, M.G., A.Miranville & V.Pata, M3AS 2005
M.B.Kania, Colloq. Math. 2007, TMNA 2008
A.Segatti, M3AS 2007 (ν = 0)
M.G. & M. Pierre, M3AS 2010 (ν = 0, numerical analysis)
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N = 2, 3 : the non-viscous case (ν = 0)

ερtt + ρt −∆(−∆ρ+ f ′(ρ)) = 0, in Ω× (0,∞)

ρ = ∆ρ = 0, on ∂Ω× (0,∞)

ρ(0) = ρ0, ρt (0) = ρ1, in Ω

κ = α = 1
f ∈ C2(R) s.t. f ′(0) = 0
|f ′(y)| ≤ c(1 + |y |p) (for simplicity: p ∈ [0,5] if N = 3)
f ′′(y) ≥ −λ for some λ > 0

lim inf
|y |→∞

f ′(y)

y
> −λ1 (λ1: 1st eigenval. −∆ + hom. Dir. b.c.)

Remark
Other b.c. can be considered (e.g., no-flux or periodic b.c.)
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Existence of an energy solution

A = −∆ : D(A) = H1
0 (Ω) ∩ H2(Ω)→ L2(Ω)

D(Ak/2) ≈ Hk (Ω) for any k ∈ Z

Energy

Eε(ρ0, ρ1) =
1
2

[
ε‖A−1/2ρ1‖2 + ‖A1/2ρ0‖2

]
+ f (ρ0)

Theorem

Let (ρ0, ρ1) ∈ D(A1/2)×D(A−1/2). Then, ∃ a function
ρ ∈ L∞loc(0,∞;D(A1/2)) ∩W 1,∞

loc (0,∞;D(A−1/2)) s.t.

ερtt + ρt + A(Aρ+ f ′(ρ)) = 0, in (0,∞)
ρ(0) = ρ0, ρt (0) = ρ1

sup
t≥0
Eε(ρ(t), ρt (t)) +

1
2

∫ ∞
0
‖A−1/2ρt (τ)‖2dτ ≤ C
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The case N = 2

M.G., G.Schimperna & S.Zelik (CPDE 2009)

uniqueness of energy solutions
energy identity
semigroup on D(A1/2)×D(A−1/2) with global attractor
convergence to single equilibria (f real analytic)
semigroup on D(A3/2)×D(A1/2) with (smooth) global
attractor
existence of exponential attractors
existence (and uniqueness) of weak sols. (no dissipative
estimates)
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N = 2: energy solutions

Theorem
If p ∈ [0,3], then the energy solution ρ is unique and satisfies
the energy identity

d
dt Eε(ρ(t), ρt (t)) + 1

2‖A
−1/2ρt (t)‖2 = 0

and

ρ ∈ C0
loc([0,∞);D(A1/2)) ∩ C1

loc([0,∞);D(A−1/2))

Thus we can define a s-continuous semigroup Σε(t) on
D(A1/2)×D(A−1/2) which possesses the global attractor Aen

ε
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N = 2: uniqueness of energy solutions

[adaptation from V.I.Sedenko, Dokl. Akad. Nauk. SSSR ’91]

Let vn be the (unique) Galerkin-solution to (ε = 1)

A−1vn
tt + A−1vn

t + Avn + Pnf ′(vn) = 0

with
vn(0) = Pnρ0, vn

t (0) = Pnρ1

set ρn = Pnρ and observe that θn = ρn − vn solves

A−1θn
tt + A−1θn

t + Aθn + Pn[f ′(ρn)− f ′(vn)] = Pn[f ′(ρ)− f ′(ρn)]

with
θn(0) = 0, θn

t (0) = 0
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N = 2: uniqueness of energy solutions

Multiplying by A−1θn
t we get

d
dt

[
‖A−1θn

t ‖2 + ‖θn‖2
]

+ 2‖θn‖2

= 2(Pn[f ′(ρ)− f ′(ρn)],A−1θn
t )− 2(Pn[f ′(ρn)− f ′(vn)],A−1θn

t )

observe now that

(Pn[f ′(ρ)− f ′(ρn)],A−1θn
t ) ≤ C‖A−1/2[f ′(ρ)− f ′(ρn)]‖

≤ C‖ρ− ρn‖ ≤ C0n−1/2
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N = 2: uniqueness of energy solutions

Hence we deduce

d
dt

[
‖A−1θn

t ‖2 + ‖θn‖2
]
≤ C0n−1/2 + C‖f ′(ρn)− f ′(vn)]‖‖A−1θn

t ‖

we now recall (H.Brézis & T.Gallouet, Nonlinear Analysis 1980)

‖w‖L∞(Ω) ≤ C
(

1 +
√

ln(1 + ‖w‖H2(Ω))
)

∀w ∈ H2(Ω) s.t . ‖w‖H1(Ω) ≤ 1

so that

‖f ′(ρn)− f ′(vn)]‖
≤ C(1 + ‖ρn‖2L∞ + ‖vn‖2L∞)‖θn‖
≤ C (1 + ln(1 + ‖ρn‖H2) + ln(1 + ‖vn‖H2)) ‖θn‖ ≤ C1 ln n‖θn‖
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N = 2: uniqueness of energy solutions

Thus we have

d
dt

[
‖A−1θn

t ‖2 + ‖θn‖2
]
≤ C0n−1/2 + C1 ln n‖A−1θn

t ‖‖θn‖

and the Gronwall’s Lemma yields

‖A−1θn
t (t)‖2 + ‖θn(t)‖2 ≤ Cn−1/2nt/C1

choose, e.g., t∗ = C1
4 and we have, as n→∞,

‖A−1θn
t (t)‖2 + ‖θn(t)‖2 → 0, ∀ t ∈ [0, t∗]

this entails the uniqueness on [0, t∗], the argument can be
repeated to reach any given final time T > 0
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N = 2: quasi-strong solutions

f ∈ C3,1
loc (R) s.t. f ′(0) = 0

|f ′′′(y)| ≤ c(1 + |y |)
∃ ξ > 0 s.t. f ′(y)y ≥ −ξ, ∀ y ∈ R

Theorem

If (ρ0, ρ1) ∈ D(A3/2)×D(A1/2), then the unique energy solution
ρ is s.t.

ρ ∈ C0
loc([0,∞);D(A3/2)) ∩ C1

loc([0,∞);D(A1/2))

Corollary

∃ semigroup Sε(t) on D(A3/2)×D(A1/2)
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N = 2 : global attractor for quasi-strong solutions

Theorem

Sε(t) has the global attractor Aε bdd in H4 × H2

Remark
Trajectories originated from Aε are strong solutions

Remark
Clearly we have Aε ⊆ Aen

ε , but is it true that

Aε ≡ Aen
ε ?
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N = 2: exponential attractors

Theorem(
D(A3/2)×D(A1/2),Sε(t)

)
possesses an exponential attractor

Eε which is bdd in H4 × H2. More precisely, Eε is a compact
invariant set with finite fractal dimension s.t., ∀ bdd set
B ⊂ D(A3/2)×D(A1/2), ∃CB > 0 and kB > 0 s.t.

dist(Sε(t)B,Eε) ≤ CBe−kB t

where

dist(B1,B2) = sup
b1∈B2

inf
b2∈B2

‖b1 − b2‖D(A3/2)×D(A1/2)

Remark
Aε ⊂ Eε has finite fractal dimension
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N = 2 : weak solutions

Theorem

If (ρ0, ρ1) ∈ D(A)× L2(Ω), then the unique energy solution ρ is
s.t.

ρ ∈ C0
loc([0,∞);D(A)) ∩ C1

loc([0,∞); L2(Ω))

thus a semigroup can be defined on D(A)× L2(Ω); however, is
it dissipative?
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The case N = 3

M.G., G.Schimperna, A.Segatti & S.Zelik (JEE 2009)

(ρ0, ρ1) ∈ D(A)× L2(Ω): existence and uniqueness for ε
small (no growth assumptions on f )
construction of a dynamical system with a (smooth) global
attractor for weak solutions (ε small)
existence of exponential attractors

open problem: no uniqueness for energy solution
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Trajectory attractors and their smoothness

M.G., G.Schimperna & S.Zelik (Nonlinearity 2010)

existence of the trajectory attractor Atr
ε (N = 3,

supercritical nonlinearities)
any complete bdd trajectory is a (unique) strong solution
backward in time
energy solutions are exponentially asymptotically smooth
(ε small enough if N = 3)
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Backward regularity

Set

X ε
0 =

{
(u, v) ∈ D(A1/2)×

√
εD(A−1/2) : u ∈ Lp+4(Ω)

}
where p ≥ 0 is the growth exponent of f (3), then denote by

Kε ⊂ L∞(R;X ε
0 )

the set of all complete energy solutions obtained as a limit of a
Galerkin scheme

Theorem
If (u,ut ) ∈ Kε, then ∃T = Tu s.t.
(u,ut ) ∈ Cb((−∞,T ]; D(A2)× D(A)) and is unique and
uniformly bdd
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Backward regularity

main idea

using the dissipative integral∫ ∞
−∞
‖ut (τ)‖2D(A−1/2)

dτ <∞

we construct a smooth function uσ using stationary states
(which are smooth)
uσ is close to u on (−∞,T ] for some T
u is smooth on (−∞,T ] for some T

consequences

N = 2 : Aε ≡ Aen
ε

N = 3 : the trajectory attractor consists of strong solutions
(ε small enough)
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Exponential attraction of energy solutions

N = 3

Theorem
∃ε0 > 0 s.t. ∀ε ∈ (0, ε0], ∃ a family {Mε} of exponential
attractors for weak solutions andMε exponentially attracts any
energy solution (u,ut ) w.r.t. X ε

0 -metric

N = 2

Theorem
∃ a family {Mε} of exponential attractors for quasi-strong
solutions andMε exponentially attracts any energy solution
(u,ut ) w.r.t. X ε

0 -metric

Theorem
∃ absorbing set in the space of weak solutions
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Past history effects

Pioneering work by A. Novick-Cohen (since 1994)

ρt =

∫ ∞
0

kε(s)∆µ(t − s)ds, µ = −∆ρ+ νρt + f ′(ρ)

taking kε(s) = ε−1e−s/ε equation can be reduced to the
previous differential form
M.Conti & G.Mola, M2AS 2009 (3D, ν > 0, standard b.c.)
M.Conti & M.Coti Zelati, Nonlin. Anal. 2010 (2D, ν = 0,
standard b.c.)
C.Cavaterra, C.G.Gal & M.G., Asymptot. Anal. 2010 (3D,
ν > 0, dynamic b.c.)
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Some open issues

singularly perturbed CH eq.

N = 3: uniqueness of energy solutions
singular potentials for small ε
spatially nonlocal potentials

CH eq. with past history effects (ν = 0)

2D : asymptotic behavior of energy sols for any ε
3D : well-posedness and analysis of the dynamical system
for small ε?
robustness w.r.t. ε
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