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Introduction

1D Hyperbolic Conservation Laws

Oru+ Oy f(u) =0

t € [0, 4+o0[ xeR ue QCR”

f: Q— R" smooth
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Introduction — The Riemann Problem

Riemann
Problem

atu+axf(u) = 0
u', x<0
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Introduction — The Riemann Problem

) Wave Well
Riemann
+ Front = Posedness
Problem )
Tracking (and all the rest)

8tu+axf(u) = O
u', x<0
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Introduction — The Riemann Problem

Physics Analysis
1 {
) Wave Well
Riemann
+ Front = Posedness
Problem )
Tracking (and all the rest)

8tu+axf(u) = 0
u', x<0
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Fluids — The p-system (Lagrangian)

Conservation of Mass ot —0,wv=0
Conservation of Momentum  9,v + d,p(7) =0

Pressure Law p=kt™7
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Fluids — The p-system (Lagrangian)

Conservation of Mass ot —0,wv=0

Conservation of Momentum  9,v + d,p(7) =0

Pressure Law p=kt™7
T —v
p— f p—
p

Oru+ Oy f(u) =0
u', x<0

u(0,x) = u x>0
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Fluids — The p-system (Lagrangian)

Conservation of Mass ot —0,wv=0

Conservation of Momentum  9,v + d,p(7) =0

Pressure Law p=kt™7
T —v
u= f(u) =
v s
h =,
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Fluids — Admissible Phase Boundaries

Phase boundary = jump discontinuity with side
states in different phases

W—phase boundary = phase boundary such that
W (left state, right state) =0

W is the kinetic relation
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Fluids — Riemann Problem with Phase Transitions

Oru+ Oy f(u) =0

A Lax solution to u', x <0 consists of a
U(O, X) =

u", x>0

a Lax 1-wave, a constant state, a Lax 2—wave
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Fluids — Riemann Problem with Phase Transitions

Oru+ Oy f(u) =0

A W-solution to u', x <0 consists of a
U(O, X) = r
u", x>0

a Lax 1-wave, a constant state, a Lax 2—wave if possible;

otherwise:
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Fluids — Riemann Problem with Phase Transitions

Oru+ Oy f(u) =0
A W-solution to {u’, x <0 consists of a
U(O, X) = r
u", x>0
a Lax 1-wave, a constant state, a Lax 2—wave if possible;
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Fluids — Riemann Problem with Phase Transitions

Oru+ Oy f(u) =0
A W-solution to {u’, x <0 consists of a
U(O, X) = r
u", x>0
a Lax 1-wave, a constant state, a Lax 2—wave if possible;

otherwise:

if u' and u" are in different phases = a Lax 1-wave, a
W—phase boundary and a Lax 2—wave

if u' and u" are in the same phase = a Lax 1-wave, a
W—phase boundary, a constant state, a W—phase boundary and
a Lax 2—wave

RMColombo



Fluids — For and Against

+ Existence, Uniqueness, Continuous Dep., Stability
-+ Natural: Euler Equations + Equation of State

+ Elastodynamics, Deflagrations, Detonations, . ..
— Several space dimensions?

— Which W7 (talk by Zimmer!)

Abeyaratne, Knowles: Archive for Rational Mechanics and Analysis, 1991
Colombo, Corli: SIAM Journal of Mathematical Analysis, 1999
LeFloch: Archive for Rational Mechanics and Analysis, 1993
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Fluids — Other Hyperbolic Approach

0T — 0w =0
Oyv + Oyp(1,\) = D2 v
DN = g (p(7, A) — peq) AN(A — 1) + b= 82\

A vapour fraction in the fluid
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Fluids — Other Hyperbolic Approach

0T — 0w =0
Oy + Oxp(1,A) =0
0:A =0 with A = 0,1 or p = peq

A vapour fraction in the fluid

Corli, Fan: SIAM Journal Applied Mathematics, 2004
Amadori, Corli: SIAM Journal of Mathematical Analysis, 2008
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Traffic Flow
Lighthill-Whitham and Richards model

» Cars are conserved

» The car speed is a function of the car density p € [0, R]
dep+ 0k [p-v(p)] =0

pU
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Traffic Flow
Lighthill-Whitham and Richards model

» Cars are conserved

» The car speed is a function of the car density p € [0, R]
dep+ 0k [p-v(p)] =0

¥
free flow ,’/ congested flow
e CEOGE!
g (vehicles /) 4

6 : 20\ 4'0 i ()IO ~ (vehicles
(free) p[ km ]
max

Kerner, in Traffic and Granular Flow '99
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C

Op+ Ox[p-v]=0
atq"i_ax [(q—q*)v} =0

v = v¢(p) v =vc(p,q)

O+ 0x[p-v]=0
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C

Op+ Ox[p-v]=0

7] Oxlp-v]=0
0+ Oxlp- V] 0:q+0x [(—q.) - v] =0

v = ve(p) v =ve(p, q)
The initial data is the solution will always
in a single phase remain in the same phase
\

JF and C invariant domains
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Phase Transitions in Traffic Flow — 1
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C
Op+ Ox[p-v]=0

7] Oxlp-v]=0
0+ Oxlp- V] 0:q+0x [(—q.) - v] =0

v = v¢(p) v =v(p, q)
pPU 4 free flow ," congested flow
q (vehicles /) !
25004+ b

20\ 40 60
(free)
max
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C
Op+ Ox[p-v]=0
O:q+ 0 [(g—q.)-v] =0
v = v¢(p) v =vce(p,q)

O+ 0x[p-v]=0

PUF
Riemann Problem:
u' and u” in the same phase

4

Lax solution in that phase
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C
Op+ Ox[p-v]=0
0:q+ 0 [(g—q.)-v] =0
v = v¢(p) v =ve(p,q)

O+ 0x[p-v]=0

PUF
Riemann Problem:
u' and u" in different phases

4

solution with phase boundary
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Phase Transitions in Traffic Flow — 1

Free phase: (p,q) € F Congested phase: (p,q) € C

Op+ Ox[p-v]=0

0 O lp-v]l=0
0+ Oxlp- V] 0:q+ 0 [(g—q.)-v] =0

v = v¢(p) v =ve(p,q)
pU ]:' . 4 free flow ," congested flow
‘ q (vehicles ) !
2501

20\ 40 60
(free)
max

Colombo: SIAM Journal Applied Mathematics, 2002
Colombo, Goatin, Priuli: Nonlinear Analysis, 2007

ehicl
p (ke

Colombo, Goatin, Piccoli: J. Hyperbolic Differential Equations, 2010
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Phase Transitions in Traffic Flow — I1

LWR model: d;p+ 0x(pv) =0 with v =v(p)
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Phase Transitions in Traffic Flow — I1

LWR model: 0;p+ Ox(pv) =0  with

w = maximal speed
v(p,w) =wv(p)  where { Y = decreasing
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Phase Transitions in Traffic Flow — I1

LWR model: 0;p+ Ox(pv) =0  with

o w = maximal speed
v(p,w) =wi(p) where {w _ decreasing

Oep+ Ok (pv(p,w)) =0

1. w individual feature = { Ow + v(p,w)Oxw =0
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Phase Transitions in Traffic Flow — I1

LWR model: 0;p+ Ox(pv) =0  with

o w = maximal speed
v(p,w) =wi(p) where {w _ decreasing

1. w individual feature = { Ow + v(p,w)Oxw =0

2. Vinax maximal speed = v(p, w) = min {Vmax, w, v(p)}

8tp+8 (pV( )):O with v — min Y
{@(,0 W) + O« (pWV(p W)) =0 thv = {VmaX= 1//(/))}
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Phase Transitions in Traffic Flow — I1

dep+ Ok (pv(p,w)) =0 N y
{3t(p w)+ 0k (pwv(p,w) =0 " { Vinax w () }

p | pvip,w)
PW] f(u)_[pwv(p,w)]
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Phase Transitions in Traffic Flow — I1

dep+ Ok (pv(p,w)) =0 N y
{3t(p w)+ 0k (pwv(p,w) =0 " { Vinax w () }

=] e

pw
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Phase Transitions in Traffic Flow — I1

dep+ Ok (pv(p,w)) =0 — y
{3t(p w)+ 0k (pwv(p,w) =0 " { Vinax w () }

PIECE P

pw pwv(p,w)

pv

F = free phase
= {(p,pW) V= Vmax} ¢

C = congested phase
= {(p,pw): v < Vmax} “

R 7

Colombo, Marcellini, Rascle: SIAM Journal Applied Mathematics, 2010
Blandin, Work, Goatin, Piccoli, Bayen: SIAM Journal Applied
Mathematics, to appear
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Phase Transition — How to select them?

| Mass Conservation |

and
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Crowd Dynamics
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Crowd Dynamics

-

| Pedestrians conserved || + ‘ v = v(p)‘ = ‘8tp + O(pv) = 0‘
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Crowd Dynamics
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Crowd Dynamics

-

| Pedestrians conserved || + ‘ v = v(p)‘ = ‘8tp + O(pv) = 0‘

panic

Panic <= overcompression <
states
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Crowd Dynamics

-

’ Pedestrians conserved \

v=v(p)

=

‘8tp—|—8x(pv):0‘

Panic <= overcompression <

panic
states

transition
to panic

RMColombo



Crowd Dynamics

-
| Pedestrians conserved || + ‘ v= v(p)‘ = ‘8tp + 0x(pv) = 0‘
: i panic transition
Panic < overcompression < .
states to panic

1. Introduce overcompressed (panic) states.

2. Modify the speed law.
3. Modify the evolution
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Crowd Dynamics

1. Introduce overcompressed (panic) states.
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Crowd Dynamics

1. Introduce overcompressed (panic) states.

Extend p € [0, R] to p € [0, R,]

Panic & p € |R, R.]
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.

Extend the speed law — new fundamental diagram

v Y

0] R R. ¢ 0] R R. o
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
3. Modify the evolution
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
3. Modify the evolution

dep+ i (pv(p)) =

0
_ ) x <
p(O,X) - { P X >

o O

r
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
3. Modify the evolution

Orp + O (p V(p)) =

0
) o x <0
p(O,X) - { P x > 0

r

Pu 0

Pr
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Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
3. Modify the evolution

p1 < pr, prsmall, p, — py small‘

P
Pr

oy

14 Pr

P

RMColombo



Crowd Dynamics
1. Introduce overcompressed (panic) states.
2. Modify the speed law.
3. Modify the evolution

dep+ 0« (pv(p)) =0
NonClassical Shocks ) ox <0
p(O,X) - pr X > 0

o1 < pr. pi LARGE, p, — p LARGE |

P

Pl
Pr
Pr

‘ 2] Dr 14 P

I
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Crowd Dynamics — Panic Lowers Exit Efficiency

Pedestrian Flow

Y

Riemann Problems

Wave Front Tracking

RMColombo



Crowd Dynamics — Panic Lowers Exit Efficiency

Pedestrian Flow

Y
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Crowd Dynamics — Braess' paradox

An obstacle may improve the outflow!

trf

,//
Si | M

Colombo, Rosini: M2AS, 2005
Colombo, Rosini: Nonlinear Analysis RWA, 2008
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1D Pedestrian Flow — Experimental confirmation

U

0 R R. »

Colombo, Rosini: M2AS, 2005
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1D Pedestrian Flow — Experimental confirmation

Experimental data:

/
05 /

0.0

Helbing, Johansson, Al-Abideen: Physical Review E, 2007

RMColombo



	Introduction
	Hyperbolic Phase Transitions in Fluids
	Hyperbolic Phase Transitions in Vehicular Traffic
	Hyperbolic Phase Transitions in Crowd Dynamics

