Hyperbolic Phase Transitions

R.M. Colombo

Brescia University

Non Convex Evolution Problems 30.11–03.12.2010

Outline

Introduction

Hyperbolic Phase Transitions in Fluids

Hyperbolic Phase Transitions in Vehicular Traffic

Hyperbolic Phase Transitions in Crowd Dynamics

Introduction

1D Hyperbolic Conservation Laws

$$\boxed{\partial_t u + \partial_x f(u) = 0}$$

$$t \in [0, +\infty[$$
 $x \in \mathbb{R}$ $u \in \Omega, \ \Omega \subseteq \mathbb{R}^n$
 $f \colon \Omega \mapsto \mathbb{R}^n \text{ smooth}$

Introduction - The Riemann Problem

Riemann Problem

$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u^l, & x < 0 \\ u^r, & x > 0 \end{cases} \end{cases}$$

Introduction – The Riemann Problem

$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u', x < 0 \\ u', x > 0 \end{cases} \end{cases}$$

Introduction – The Riemann Problem

Conservation of Mass $\partial_t \tau - \partial_x v = 0$

Conservation of Momentum $\partial_t v + \partial_x p(\tau) = 0$

Pressure Law $p = k \tau^{-\gamma}$

Conservation of Mass

$$\partial_t \tau - \partial_x \mathbf{v} = \mathbf{0}$$

Conservation of Momentum $\partial_{\tau} v + \partial_{x} p(\tau) = 0$

$$\partial_t \mathbf{v} + \partial_{\mathbf{x}} \mathbf{p}(\tau) = 0$$

$$p = k \, \tau^{-\gamma}$$

$$u = \left[\begin{array}{c} \tau \\ v \end{array} \right]$$

$$f(u) = \left[\begin{array}{c} -v \\ p(\tau) \end{array} \right]$$

Conservation of Mass

Conservation of Momentum

$$u = \left[\begin{array}{c} \tau \\ \mathsf{v} \end{array} \right]$$

$$\partial_t \tau - \partial_x v = 0$$

$$\partial_t \mathbf{v} + \partial_{\mathbf{x}} \mathbf{p}(\tau) = \mathbf{0}$$

$$p = k \tau^{-\gamma}$$

$$f(u) = \left| \begin{array}{c} -v \\ p(\tau) \end{array} \right|$$

$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u', x < 0 \\ u', x > 0 \end{cases} \end{cases}$$

Conservation of Mass

Conservation of Momentum $\partial_{\tau} v + \partial_{x} p(\tau) = 0$

$$u = \left[\begin{array}{c} \tau \\ \mathbf{v} \end{array} \right]$$

$$\partial_t \tau - \partial_x \mathbf{v} = \mathbf{0}$$

$$\partial_t \mathbf{v} + \partial_{\mathbf{x}} \mathbf{p}(\tau) = 0$$

$$p = k \tau^{-\gamma}$$

$$f(u) = \left[\begin{array}{c} -v \\ p(\tau) \end{array} \right]$$

Conservation of Mass

Conservation of Momentum $\partial_{\tau} v + \partial_{x} p(\tau) = 0$

$$u = \left[\begin{array}{c} \tau \\ v \end{array} \right]$$

$$\partial_t \tau - \partial_x \mathbf{v} = \mathbf{0}$$

$$\partial_t \mathbf{v} + \partial_{\mathbf{x}} \mathbf{p}(\tau) = 0$$

$$p = k \tau^{-\gamma}$$

$$f(u) = \left[\begin{array}{c} -v \\ p(\tau) \end{array} \right]$$

Conservation of Mass

Conservation of Momentum $\partial_{\tau} v + \partial_{x} p(\tau) = 0$

$$u = \left[\begin{array}{c} \tau \\ \mathbf{v} \end{array} \right]$$

$$\partial_t \tau - \partial_x \mathbf{v} = \mathbf{0}$$

$$\partial_t \mathbf{v} + \partial_{\mathbf{x}} \mathbf{p}(\tau) = 0$$

$$p = k \tau^{-\gamma}$$

$$f(u) = \left[\begin{array}{c} -v \\ p(\tau) \end{array} \right]$$

Fluids – Admissible Phase Boundaries

```
Phase boundary = jump discontinuity with side states in different phases
```

```
\Psi-phase boundary = phase boundary such that \Psi(left state, right state) = 0
```

 Ψ is the kinetic relation

Fluids - Riemann Problem with Phase Transitions

A Lax solution to
$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u', x < 0 \\ u'', x > 0 \end{cases}$$
 consists of a

a Lax 1-wave, a constant state, a Lax 2-wave

Fluids - Riemann Problem with Phase Transitions

A
$$\Psi$$
-solution to
$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u^l, & x < 0 \\ u^r, & x > 0 \end{cases}$$
 consists of a

a Lax 1-wave, a constant state, a Lax 2-wave if possible;

otherwise:

Fluids – Riemann Problem with Phase Transitions

A
$$\Psi$$
-solution to
$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0, x) = \begin{cases} u', x < 0 \text{ consists of a} \\ u'', x > 0 \end{cases}$$

a Lax 1-wave, a constant state, a Lax 2-wave if possible;

otherwise:

if u' and u' are in different phases \Rightarrow a Lax 1–wave, a Ψ –phase boundary and a Lax 2–wave

Fluids - Riemann Problem with Phase Transitions

A
$$\Psi$$
-solution to
$$\begin{cases} \partial_t u + \partial_x f(u) = 0 \\ u(0,x) = \begin{cases} u', & x < 0 \\ u'', & x > 0 \end{cases}$$
 consists of a

a Lax 1-wave, a constant state, a Lax 2-wave if possible;

otherwise:

if u^l and u^r are in different phases \Rightarrow a Lax 1–wave, a Ψ –phase boundary and a Lax 2–wave

if u' and u' are in the same phase \Rightarrow a Lax 1-wave, a Ψ -phase boundary, a constant state, a Ψ -phase boundary and a Lax 2-wave

Fluids – For and Against

- + Existence, Uniqueness, Continuous Dep., Stability
- + Natural: Euler Equations + Equation of State
- + Elastodynamics, Deflagrations, Detonations, . . .
- Several space dimensions?
- Which Ψ ? (talk by Zimmer!)

Abeyaratne, Knowles: Archive for Rational Mechanics and Analysis, 1991 Colombo, Corli: SIAM Journal of Mathematical Analysis, 1999 LeFloch: Archive for Rational Mechanics and Analysis, 1993

Fluids - Other Hyperbolic Approach

$$\begin{cases} \partial_t \tau - \partial_x v = 0 \\ \partial_v v + \partial_x p(\tau, \lambda) = \varepsilon \partial_{xx}^2 v \\ \partial_t \lambda = \frac{a}{\varepsilon} \left(p(\tau, \lambda) - p_{eq} \right) \lambda (\lambda - 1) + b \varepsilon \partial_{xx}^2 \lambda \end{cases}$$

 λ vapour fraction in the fluid

Fluids - Other Hyperbolic Approach

$$\begin{cases} \partial_t \tau - \partial_x v = 0 \\ \partial_v v + \partial_x p(\tau, \lambda) = 0 \\ \partial_t \lambda = 0 & \text{with } \lambda = 0, 1 \text{ or } p = p_{eq} \end{cases}$$

 λ vapour fraction in the fluid

Corli, Fan: SIAM Journal Applied Mathematics, 2004 Amadori, Corli: SIAM Journal of Mathematical Analysis, 2008

Traffic Flow

Lighthill-Whitham and Richards model

- Cars are conserved
- ▶ The car speed is a function of the car density $\rho \in [0, R]$

$$\partial_t \rho + \partial_x \left[\rho \cdot \mathbf{v}(\rho) \right] = 0$$

Traffic Flow

Lighthill-Whitham and Richards model

- Cars are conserved
- ▶ The car speed is a function of the car density $\rho \in [0, R]$

$$\partial_t \rho + \partial_x \left[\rho \cdot \mathbf{v}(\rho) \right] = 0$$

Traffic Flow

Lighthill-Whitham and Richards model

- Cars are conserved
- ▶ The car speed is a function of the car density $\rho \in [0, R]$

$$\partial_t \rho + \partial_x \left[\rho \cdot \mathbf{v}(\rho) \right] = 0$$

Kerner, in Traffic and Granular Flow '99

Free phase:
$$(\rho, q) \in \mathcal{F}$$
 Congested phase: $(\rho, q) \in \mathcal{C}$
$$\partial_t \rho + \partial_x [\rho \cdot v] = 0 \qquad \begin{cases} \partial_t \rho + \partial_x [\rho \cdot v] = 0 \\ \partial_t q + \partial_x [(q - q_*) \cdot v] = 0 \end{cases}$$
 $v = v_c(\rho, q)$

Free phase:
$$(\rho, q) \in \mathcal{F}$$
 Congested phase: $(\rho, q) \in \mathcal{C}$
$$\partial_t \rho + \partial_x [\rho \cdot v] = 0 \qquad \begin{cases} \partial_t \rho + \partial_x [\rho \cdot v] = 0 \\ \partial_t q + \partial_x [(q - q_*) \cdot v] = 0 \end{cases}$$
 $v = v_c(\rho, q)$

The initial data is in a single phase \Rightarrow the solution will always remain in the same phase

 \mathcal{F} and \mathcal{C} invariant domains

Free phase:
$$(\rho, q) \in \mathcal{F}$$

$$\partial_t \rho + \partial_x [\rho \cdot v] = 0$$

$$v = v_f(\rho)$$

Congested phase:
$$(\rho, q) \in \mathcal{C}$$

$$\begin{cases}
\partial_t \rho + \partial_x [\rho \cdot v] = 0 \\
\partial_t q + \partial_x [(q - q_*) \cdot v] = 0
\end{cases}$$

$$v = v_c(\rho, q)$$

Free phase:
$$(\rho, q) \in \mathcal{F}$$

$$\partial_t \rho + \partial_x [\rho \cdot v] = 0$$

$$v = v_f(\rho)$$

Free phase:
$$(\rho, q) \in \mathcal{F}$$

$$\partial_t \rho + \partial_x [\rho \cdot v] = 0$$

$$v = v_f(\rho)$$

Congested phase:
$$(\rho, q) \in \mathcal{C}$$

$$\begin{cases}
\partial_t \rho + \partial_x \left[\rho \cdot v \right] = 0 \\
\partial_t q + \partial_x \left[(q - q_*) \cdot v \right] = 0
\end{cases}$$
 $v = v_c(\rho, q)$

Riemann Problem: u^{I} and u^{r} in the same phase $\downarrow \downarrow$ Lax solution in that phase

Free phase:
$$(\rho, q) \in \mathcal{F}$$

$$\partial_t \rho + \partial_x [\rho \cdot v] = 0$$

$$v = v_f(\rho)$$

Congested phase:
$$(\rho, q) \in \mathcal{C}$$

$$\begin{cases}
\partial_t \rho + \partial_x \left[\rho \cdot v \right] = 0 \\
\partial_t q + \partial_x \left[(q - q_*) \cdot v \right] = 0
\end{cases}$$
 $v = v_c(\rho, q)$

Riemann Problem: u^{I} and u^{r} in different phases ψ solution with phase boundary

Free phase:
$$(\rho, q) \in \mathcal{F}$$

$$\partial_t \rho + \partial_x [\rho \cdot v] = 0$$

$$v = v_f(\rho)$$

Congested phase:
$$(\rho, q) \in \mathcal{C}$$

$$\begin{cases}
\partial_t \rho + \partial_x \left[\rho \cdot v \right] = 0 \\
\partial_t q + \partial_x \left[(q - q_*) \cdot v \right] = 0
\end{cases}$$
 $v = v_c(\rho, q)$

Colombo: SIAM Journal Applied Mathematics, 2002 Colombo, Goatin, Priuli: Nonlinear Analysis, 2007

Colombo, Goatin, Piccoli: J. Hyperbolic Differential Equations, 2010

LWR model:
$$\partial_t \rho + \partial_x (\rho \, v) = 0$$
 with $v = v(\rho)$

LWR model:
$$\partial_t \rho + \partial_x (\rho \, v) = 0$$
 with

$$v(\rho, w) = w \psi(\rho)$$
 where
$$\begin{cases} w = \text{maximal speed} \\ \psi = \text{decreasing} \end{cases}$$

LWR model:
$$\partial_t \rho + \partial_x (\rho \, v) = 0$$
 with

$$v(\rho, w) = w \psi(\rho)$$
 where
$$\begin{cases} w = \text{maximal speed} \\ \psi = \text{decreasing} \end{cases}$$

1.
$$w$$
 individual feature $\Rightarrow \begin{cases} \partial_t \rho + \partial_x (\rho v(\rho, w)) = 0 \\ \partial_t w + v(\rho, w) \partial_x w = 0 \end{cases}$

LWR model:
$$\partial_t \rho + \partial_x (\rho \, v) = 0$$
 with

$$v(\rho, w) = w \psi(\rho)$$
 where
$$\begin{cases} w = \text{maximal speed} \\ \psi = \text{decreasing} \end{cases}$$

- 1. w individual feature $\Rightarrow \begin{cases} \partial_t \rho + \partial_x (\rho \, v(\rho, w)) = 0 \\ \partial_t w + v(\rho, w) \partial_x w = 0 \end{cases}$
- 2. V_{max} maximal speed $\Rightarrow v(\rho, w) = \min \{V_{\text{max}}, w, v(\rho)\}$

LWR model: $\partial_t \rho + \partial_x (\rho \, v) = 0$ with

$$v(\rho, w) = w \psi(\rho)$$
 where
$$\begin{cases} w = \text{maximal speed} \\ \psi = \text{decreasing} \end{cases}$$

- 1. w individual feature $\Rightarrow \begin{cases} \partial_t \rho + \partial_x (\rho \, v(\rho, w)) = 0 \\ \partial_t w + v(\rho, w) \, \partial_x w = 0 \end{cases}$
- 2. V_{max} maximal speed $\Rightarrow v(\rho, w) = \min\{V_{\text{max}}, w, v(\rho)\}$

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho \, v(\rho, w) \right) = 0 \\ \partial_t (\rho \, w) + \partial_x \left(\rho \, w \, v(\rho, w) \right) = 0 \end{cases} \text{ with } \mathbf{v} = \min \left\{ \mathbf{V}_{\mathsf{max}}, \mathbf{w} \, \psi(\rho) \right\}$$

$$\begin{cases} \partial_{t}\rho + \partial_{x} (\rho v(\rho, w)) = 0 \\ \partial_{t}(\rho w) + \partial_{x} (\rho w v(\rho, w)) = 0 \end{cases} v = \min \{V_{\text{max}}, w \psi(\rho)\}$$

$$u = \begin{bmatrix} \rho \\ \rho w \end{bmatrix} \qquad f(u) = \begin{bmatrix} \rho v(\rho, w) \\ \rho w v(\rho, w) \end{bmatrix}$$

Phase Transitions in Traffic Flow - II

$$\begin{cases} \partial_{t}\rho + \partial_{x} \left(\rho \, v(\rho, w)\right) = 0 \\ \partial_{t}(\rho \, w) + \partial_{x} \left(\rho \, w \, v(\rho, w)\right) = 0 \end{cases} \quad v = \min \left\{ V_{\text{max}}, w \, \psi(\rho) \right\}$$

$$u = \begin{bmatrix} \rho \\ \rho \, w \end{bmatrix} \qquad f(u) = \begin{bmatrix} \rho \, v(\rho, w) \\ \rho \, w \, v(\rho, w) \end{bmatrix} \quad \boxed{f \text{ is } \mathbf{C}^{0,1}}$$

Phase Transitions in Traffic Flow - II

$$\begin{cases} \partial_{t}\rho + \partial_{x} \left(\rho \, v(\rho, w)\right) = 0 \\ \partial_{t}(\rho \, w) + \partial_{x} \left(\rho \, w \, v(\rho, w)\right) = 0 \end{cases} \quad v = \min \left\{ V_{\text{max}}, w \, \psi(\rho) \right\}$$

$$u = \begin{bmatrix} \rho \\ \rho \, w \end{bmatrix} \qquad f(u) = \begin{bmatrix} \rho \, v(\rho, w) \\ \rho \, w \, v(\rho, w) \end{bmatrix} \qquad \boxed{f \text{ is } \mathbf{C}^{0,1}}$$

$$\mathcal{F} = \text{ free phase}$$

$$= \left\{ (\rho, \rho w) \colon v = V_{\text{max}} \right\}$$

$$\mathcal{C} = \text{ congested phase}$$

$$= \left\{ (\rho, \rho w) \colon v < V_{\text{max}} \right\}$$

Colombo, Marcellini, Rascle: SIAM Journal Applied Mathematics, 2010 Blandin, Work, Goatin, Piccoli, Bayen: SIAM Journal Applied Mathematics, to appear

Phase Transition – How to select them?

Mass Conservation

and

Consistency

Phase Transition – How to select them?

Phase Transition – How to select them?

Panic

Panic ← overcompression

$$\boxed{ \text{Pedestrians conserved} } + \boxed{ v = v(\rho) } \Rightarrow \boxed{ \partial_t \rho + \partial_x (\rho \, v) = 0 }$$

$$\frac{\mathsf{Panic}}{\mathsf{e}} \Leftarrow \mathsf{overcompression} \Leftarrow \frac{\mathsf{panic}}{\mathsf{states}}$$

$$\begin{array}{ll} \mathsf{Panic} \Leftarrow \mathsf{overcompression} \Leftarrow & \begin{array}{l} \mathsf{panic} \\ \mathsf{states} \end{array} \Leftarrow & \begin{array}{l} \mathsf{transition} \\ \mathsf{to} \; \mathsf{panic} \end{array}$$

$$\begin{array}{ll} \mathsf{Panic} \Leftarrow \mathsf{overcompression} \Leftarrow & \begin{array}{l} \mathsf{panic} \\ \mathsf{states} \end{array} \Leftarrow & \begin{array}{l} \mathsf{transition} \\ \mathsf{to} \; \mathsf{panic} \end{array}$$

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

1. Introduce overcompressed (panic) states.

1. Introduce overcompressed (panic) states.

Extend
$$\rho \in [0, R]$$
 to $\rho \in [0, R_*]$
Panic $\Leftrightarrow \rho \in]R, R_*]$

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.

Extend the speed law \rightarrow new fundamental diagram

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

$$\begin{cases} \partial_t \rho + \partial_x (\rho v(\rho)) = 0 \\ \rho(0, x) = \begin{cases} \rho_I & x < 0 \\ \rho_r & x > 0 \end{cases} \end{cases}$$

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

$$\begin{cases} \partial_t \rho + \partial_x (\rho v(\rho)) = 0 \\ \rho(0, x) = \begin{cases} \rho_I & x < 0 \\ \rho_r & x > 0 \end{cases} \end{cases}$$

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

$$\begin{cases} \partial_t \rho + \partial_x (\rho v(\rho)) = 0 \\ \rho(0, x) = \begin{cases} \rho_l & x < 0 \\ \rho_r & x > 0 \end{cases} \end{cases}$$

 $\rho_{I} < \rho_{r}, \ \rho_{I} \ \text{small}, \ \rho_{r} - \rho_{I} \ \text{small}$

- 1. Introduce overcompressed (panic) states.
- 2. Modify the speed law.
- 3. Modify the evolution

NonClassical Shocks
$$\begin{cases} \partial_t \rho + \partial_x (\rho \, v(\rho)) = 0 \\ \rho(0, x) = \begin{cases} \rho_l & x < 0 \\ \rho_r & x > 0 \end{cases} \end{cases}$$

 $ho_l <
ho_r$, ho_l LARGE, $ho_r -
ho_l$ LARGE

Crowd Dynamics - Panic Lowers Exit Efficiency

Crowd Dynamics - Panic Lowers Exit Efficiency

Crowd Dynamics – Braess' paradox

An obstacle may improve the outflow!

Colombo, Rosini: M2AS, 2005 Colombo, Rosini: Nonlinear Analysis RWA, 2008

1D Pedestrian Flow – Experimental confirmation

Colombo, Rosini: M2AS, 2005

1D Pedestrian Flow – Experimental confirmation

Experimental data:

Helbing, Johansson, Al-Abideen: Physical Review E, 2007