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Motivation

Our study is inspired by the recent papers:

• Dinaburg, E., Li, D., Sinai, Ya.G.: A new boundary problem for the
two dimensional Navier-Stokes system. J. Stat. Phys. 135,
737–750 (2009)

• Dinaburg, E., Li, D., Sinai, Ya.G.: Navier-Stokes system on the flat
cylinder and unit square with slip boundary conditions. Commun.
Contemp. Math. 12, 325–349 (2010)

Extending the classical works on the incompressible Navier-Stokes (NS)
equations on the flat two-dimensional torus, they show how to obtain, by
mainly elementary methods, deep results on the regularity of the
solutions to the plane NS system with suitable boundary conditions.



Remarks

• The main point in their approach is a formulation of the NS system
as an infinite set of coupled ordinary differential equations (ODE’s)
for the Fourier modes, so that they can apply the techniques
available for such dynamical systems.

• The problem with the classical Dirichlet (no slip) boundary
conditions is that the eigenfunctions of the Stokes operator (i.e. the
linear part of the NS evolution) satisfying such conditions are not
explicitely known, and we cannot write a manageable ODE’s system.



Our plan

To study the case of Dirichlet (no slip) boundary conditions using the
“vorticity production method”

• Batchelor, G.K.: An introduction to fluid dynamics. Cambridge
Mathematical Library. Cambridge University Press, second
paperback edition, Cambridge (1999)

• Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid
Mech. 57, 785–796 (1973)

• Benfatto, G., Pulvirenti, M.: Generation of vorticity near the
boundary in planar Navier-Stokes flows. Comm. Math. Phys. 96,
59–95 (1984)



Our geometry: the flat cylinder C
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Incompressible NS system on C
∂tu+ (u · ∇)u = ∆u−∇p
∇ · u = 0
u|t=0 = u(0)

(1)

• u = (u1, u2) is the velocity field, p is the pressure, the viscosity is
taken equal to 1.

• Dirichlet (no-slip) boundary conditions: u
∣∣
∂C = 0:
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Vorticity

• x = (x1, x2) ∈ (−π, π]× [0, π] (coordinates on C).

• ∇⊥ := (−∂x2 , ∂x1) (“twisted gradient”).

• The vorticity is defined as

ω := ∇⊥ · u = ∂x1u2 − ∂x2u1.

Lemma
If u ∈ C1(C; R2) is solenoidal, i.e. ∇ · u = 0, satisfies the boundary
conditions u

∣∣
∂C = 0, then

∫
C dxω(x) = 0, and u can be represented as

u = ∇⊥∆−1
N ω,

where ∆N is the Laplacian on C with zero Neumann boundary conditions.

Remark: The result extends to the case ω ∈ L2(C), except that
solenoidality holds in the usual L2-sense (orthogonality to the gradients).



The vorticity production method

Assuming sufficient smoothness, by taking the curl of both sides of the
NS system (1), 

∂tω + u · ∇ω = ∆ω,∫
C dxω = 0,
∂x1∆−1

N ω|∂C = 0,
ω|t=0 = ∇⊥ · u(0).

(2)

Remark: Since u = ∇⊥∆−1
N ω then u1

∣∣
∂C = ∂x2∆−1

N ω
∣∣
∂C = 0.

Equations (2) should be completed by the balance equation for the
component along x1 of the total momentum of the fluid, in absence of
external forces, i.e.

d
dt

∫
C
dxu1(x, t) =

∫
T
dx1

[
ω(x1, 0, t)− ω(x1, π, t)

]
. (3)



Remark: The pressure disappears, but the Dirichlet boundary conditions
are replaced by the linear non-local condition ∂x1∆−1

N ω|∂C = 0, which is
difficult to handle.

Consider instead the formal problem,
∂tω + u · ∇ω = ∆Nω + fδ∂C ,∫
C dxω = 0,
∂x1∆−1

N ω|∂C = 0,
ω|t=0 = ∇⊥ · u(0),

(4)

where the vorticity production at the boundary fδ∂C is given by

fδ∂C(x, t) = f1(x1, t)δ(x2) + f2(x1, t)δ(x2 − π),

and the functions f1(x1, t), f2(x1, t) should be determined such that
(4)2-(4)3 and (3) are satisfied.



The precise meaning of equation (4)1 is given by its mild integral version,

ω(x, t) =
∫
C
dy et∆N (x, y)ω(y, 0)

−
∫ t

0

ds
∫
C
dy e(t−s)∆N (x, y)(u · ∇ω)(y, s)

+
∫ t

0

ds
∫

T
dy1 e(t−s)∆N (x, (y1, 0)) f1(y1, s)

+
∫ t

0

ds
∫

T
dy1 e(t−s)∆N (x, (y1, π)) f2(y1, s), (5)

where et∆N (x, y) is the heat kernel on C with Neumann boundary
conditions and ω(·, 0) = ∇⊥ · u(0).

Remark: In general, the vorticity does not satisfy homogeneous Neumann
boundary conditions in the classical sense.



Evolution equation for the Fourier modes
We consider the Fourier version of the integral equation (5), formally
obtained by taking the Fourier components of both sides of (5) in the
basis of the eigenfunctions of ∆N ,

vk(x) = eik1x1 cos(k2x2), k = (k1, k2), k1 ∈ Z, k2 ∈ Z+.

We get an infinite set of integral equations for the Fourier components
ωk1,k2(t), k1 ∈ Z, k2 ≥ 0,

ωk1,k2(t) = e−k
2tωk1,k2(0) +

∫ t

0

ds e−k
2(t−s)

{
f±,k1(s)−Nk1,k2 [ω(s)]

}
with + [resp. −] sign for k2 even [resp. odd]

• ωk1,k2(t) =
1

2π2

∫
C
dxω(x, t) e−ik1x1 cos(k2x2),

• Nk1,k2 [ω(t)] =
1

2π2

∫
C
dxu(x, t) · ∇ω(x, t) e−ik1x1 cos(k2x2),

• f±,k1(t) =
1

2π2

∫
T
dx1

[
f1(x1, t)± f2(x1, t)

]
eik1x1 .



Boundary conditions and constrains

Imposing the conditions,

d
dt

∫
C

dxω(x, t) = 0,

d
dt

∫
C
dxu1(x, t) =

∫
T
dx1

[
ω(x1, 0, t)− ω(x1, π, t)

]
,

we get
f+,0(t) ≡ f−,0(t) ≡ 0.

Instead, the boundary condition ∂x1∆−1
N ω

∣∣
∂C = 0 gives the constrains,

∑
k2,±

ωk1,k2(t)
k2

= 0, ∀ k1 6= 0 (6)

(here
∑
s,+ as = a0 + 2

∑
i≥1 a2i,

∑
s,− as = 2

∑
i≥1 a2i−1).



Equations for f±,k1
(t)

By plugging the evolution equation into the constraints (6) we obtain a
Volterra integral equation of the first kind for f±,k1(t),

∑
k2,±

1
k2

∫ t

0

ds e−k
2(t−s) f±,k1(s) = g±,k1 [t;ω], k1 6= 0,

where

g±,k1 [t;ω] =
∑
k2,±

1
k2

{
−e−k

2tωk1,k2(0) +
∫ t

0

ds e−k
2(t−s)Nk1,k2 [ω(s)]

}
.



The fundamental system



ωk1,k2(t) = e−k
2tωk1,k2(0)

+
∫ t

0

ds e−k
2(t−s)

{
f±,k1(s)−Nk1,k2 [ω(s)]

}
,

∑
k2,±

1
k2

∫ t

0

ds e−k
2(t−s) f±,k1(s) = g±,k1 [t;ω], (k1 6= 0),

(7)

and ω0,0(t) = f+,0(t) = f−,0(t) = 0.



Main results

Theorem
Let ωk1,k2(0) satisfy

ω0,0(0) = 0,
∑
k2,±

ωk1,k2(0)
k2

= 0, ∀ k1 6= 0,

and the inequalities

|ωk1,k2(0)| ≤ D0

|k|α
(
1 + |k1|β

) ∀ k1 ∈ Z, k2 ≥ 0, k 6= (0, 0), (8)

with 1 < α < 2, β ≥ 0, and some D0 > 0.
Then there exist real numbers D1, ν > 0 (depending on D0, α, β), and a
unique continuous solution {ωk1,k2(t); k1 ∈ Z, k2 ≥ 0} to the system (7)
which satisfies for all t ≥ 0 the inequalities

|ωk1,k2(t)| ≤ D1 e−ν(1+|k1|)t

|k|α
(
1 + |k1|β

) ∀ k1 ∈ Z, k2 ≥ 0, k 6= (0, 0). (9)



Moreover, for each t0 > 0 there is a constant D̃1 = D̃1(D0, t0, α, β) such
that

|ωk1,k2(t)| ≤ D̃1 e−ν(1+|k1|)t/2

k2
∀ t ≥ t0. (10)

Finally, the velocity field u(x, t) := ∇⊥∆−1
N ω(x, t) associated to the

vorticity

ω(x, t) =
∑
k1∈Z

ωk1,0(t) eik1x1 +2
∑
k1∈Z

∑
k2≥1

ωk1,k2(t) eik1x1 cos(k2x2) (11)

is a weak solution to the original NS system.

That is: for each T > 0, u ∈ L2([0, T ];V ), where V is the space of
solenoidal vector fields in H1

0 (C)2, and

d
dt

∫
C
dxu · Φ +

2∑
i=1

∫
C
dx [∂xiu · ∂xiΦ + ui(∂xiu) · Φ] = 0 ∀Φ ∈ V.



Comments

• The decay estimate (9) guarantees continuity of ω(x, t) and C∞

regularity with respect to the periodic variable x1 for any t > 0, up
to the border ∂C.

• The stronger estimate (10) only implies that ∂x2ω(·, t) is in L2(C)
for any t > 0. In fact, the vorticity possesses higher regularity:

Corollary
For each t > 0 the velocity field u(x, t) := ∇⊥∆−1

N ω(x, t) is continuous
and twice differentiable in x1, x2 up to the boundary ∂C.

Remark: If α > 3
2 and α+ β > 2 then u(0) ∈W 2,2(C), whence u(x, t) is

a classical solution of the NS system, see e.g. [Ladyzhenskaya, 1969].



• We cannot expect a better decay with respect to k2 since the
vorticity does not satisfy Neumann boundary conditions in the
classical sense.

• However, the recent paper:

Dinaburg, E., Li, D., Sinai, Ya.G.: Navier-Stokes system on the unit
square with no slip boundary condition. J. Stat. Phys. 141,
342–358 (2010)

indicates that a decay faster than an inverse square for the vorticity
modes is still not guaranteed by choosing a basis of functions which
satisfy the full boundary conditions.



Concluding remarks

• We proved that a kind of asymmetric regularization of the solutions
takes place. If the vorticity modes at time t = 0 decay slower than
an inverse square, then for any t > 0 they decay exponentially fast
in the periodic direction, but only as an inverse square in the other
direction.

• A similar picture for the decay of the Fourier modes was first shown
to hold for a plane NS problem with different boundary conditions in

Dinaburg, E., Li, D., Sinai, Ya.G.: A new boundary problem for the
two dimensional Navier-Stokes system. J. Stat. Phys. 135,
737–750 (2009)

• Our results thus corroborate the opinion of those authors that an
exponential decay of Fourier modes is exceptional: for a generic NS
boundary value problems in a bounded plane region, the decay is
only power-like, with a power depending on the geometry of the
domain.



Future work:
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Now ∆N has eigenvalues/eigenfunctions {λk,j ; vk,j(r, θ)}, j, k ∈ Z+,
where

λk,j = −
[
µ

(k)
j

]2
R2

, vk,j(r, θ) := eikθJk

(
µ

(k)
j

r

R

)
,

where Jk is the Bessel function of order k and µ
(k)
j are the positive roots

of J ′k(x) = 0.



Sketch of the proof

Recall the system is

ωk1,k2(t) = e−k
2tωk1,k2(0)

+
∫ t

0

ds e−k
2(t−s)

{
f±,k1(s)−Nk1,k2 [ω(s)]

}
,

∑
k2,±

1
k2

∫ t

0

ds e−k
2(t−s) f±,k1(s) = g±,k1 [t;ω], (k1 6= 0),

and ω0,0(t) = f+,0(t) = f−,0(t) = 0.



Step 1. (Preliminary lemma for f±,k1)

The Volterra equation of the first kind for the unknown function a(t),

∑
k2,±

1
k2

∫ t

0

ds e−k
2(t−s) a(s) = b(t), k1 6= 0,

b(t) a bounded differentiable function, b(0) = 0, has solution

a(t) =
∫ t

0

dsG±k1(t− s) b′(s) +
∫ t

0

dsH±k1(t− s) b(s).

Here, denoting by Γ(·) the Euler Gamma function, G±k1 is given by

G±k1(t) :=
2
π
k1

[
tanh

(π
2
k1

)]±1
[
δ(t) +

e−k
2
1t

√
t

4∑
n=1

d±(k1)n

Γ(n/2)
t(n−1)/2

]
,

and H±k1(t) is a continuous function such that, for each 0 < γ < 1,

H±k1(t) ≤ Bγ |k1|3 exp
[
−(1− γ) k2

1t
]
,

with Bγ a positive constant.



Step 2. (Local solutions)

Introduce the norm

‖ω‖α,β,t := sup
s∈[0,t]

sup
k1∈Z

sup
k2≥0

|ωk1,k2(s)| e(1+|k1|)s/4 |k|α
(
1 + |k1|β

)
,

so that the hypothesis on the initial datum read

ω0,0(0) = 0, ‖ω‖α,β,0 ≤ D0,
∑
k2,±

ωk1,k2(0)
k2

= 0, ∀ k1 6= 0.

Then (fixed point theorem):

• There exist T0 = T0(D0, α, β) and D2 = D2(D0, α, β) such that
there is a unique continuous solution {ωk1,k2(t); k1 ∈ Z, k2 ≥ 0},
t ∈ [0, T0], which satisfies ‖ω‖α,β,t ≤ D2.

• If D0 is sufficiently small, the corresponding solution is global in
time and ‖ω‖α,β,t ≤ D2 is valid for any t ≥ 0.



Step 3. (A priori bounds)

Local solutions with the weaker norm,

‖ω‖α,t := sup
s∈[0,t]

sup
k1∈Z

sup
k2≥0

|ωk1,k2(s)| |k|α (1 < α < 2).

do exist and the corresponding velocity field u(x, t) := ∇⊥∆−1
N ω(x, t),

t ∈ [0, T0], is a weak solution to the NS system.
This implies a priori bounds on the energy U and enstrophy E :

U(t) ≤ U(0) e−t E(t) ≤ E0 e−σt ∀ t ∈ [0, T0],

where

U(t) :=
∑

(k1,k2)∈Z×Z+
k 6=(0,0)

∣∣ωk1,k2(t)
∣∣2

k2
, E(t) :=

∑
(k1,k2)∈Z×Z+

∣∣ωk1,k2(t)
∣∣2

(E0, σ > 0 are constants depending on E(0), U(0)).



Step 4. (Global solutions)

• By the a priori bounds, any local solution {ωk1,k2(t)}, t ∈ [0, T ],
such that ‖ω‖α,T <∞ extends uniquely to a global solution.

• Moreover, if

|ω|α,t := sup
k1∈Z

sup
k2≥0

|ωk1,k2(t)| |k|α

then |ω|α,t → 0 exponentially fast as t→ +∞.

• Using |ω|α,t → 0, the theorem on local existence of solutions with
the stronger norms ‖ω‖α,β,t can be applied with β = 0 to time
intervals [t, t+ T̄ ] for a suitable T̄ . From this one easily get the
main estimate,

|ωk1,k2(t)| ≤ D1 e−ν(1+|k1|)t

|k|α
(
1 + |k1|β

) ,
with an appropriate choice of D1, ν > 0.


