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Diffeomorphic Matching and Dynamic Deformable Surfaces

• Diffeomorphic matching in biomedical image processing

• Reproducing Kernel Hilbert Spaces (RKHS)

• Geometric surface matching distances

• Variational formulation of optimal diffeomorphic matching

• Discretization: Dirac measures and diffeomorphic point matching

• Numerical results: Matching snapshots of the mitral valve
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Diffeomorphic Matching in Biomedical Image Processing



Department of Mathematics, University of Houston
Institut für Mathematik, Universität Augsburg lsrmnROMUNHS0

Optimal Diffeomorphic Matching of 3D Curves and Surfaces

Cardiovascular diseases often affect the mitral valve. Biomedical image processing

provides the cardiologist with information about the degree of malfunctioning.

Valve anatomy of the human heart (left) and anatomy of the mitral valve (right)
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Optimal Matching of Biomedical 3D Movies

Biomedical Data: Given a 3D movie of a deformable anatomical shape S(t) ⊂ R
3
,

t ∈ I := [0,T], biomedical techniques enable the extraction of snapshots Sj := S(tj)

at specific time frames tj , 0 ≤ j ≤ q.

Mathematical Task: Find a family F(·, t) ∈ Diff(R3) , t ∈ I, of time dependent

R
3-diffeomorphisms

F(S0; t0) = S0 , F(S0; tj) = Ŝj , 1 ≤ j ≤ q ,

which map the initial shape S0 onto shapes Ŝj at the time frames tj such that

for all 1 ≤ j ≤ q the shapes Ŝj are as close to Sj as possible.
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Matching of Dynamic Deformable Surfaces: Previous Work

• Matching of two snapshots S0 and S1,

• Concepts based on diffeomorphic matching developed by Dupuis, Glaunès,

Grenander, Miller, Mumford, Trouvè, Younes et al.,

• F(·, t) = Fvt
, t ∈ I, generated by time dependent flow vt

∂tF(·, t) = vt(F(·, t)) , t ∈ I ,

F(·, 0) = Id ,

• Rigid constraint F(S0, t1) = S1 replaced by soft constraint using suitably

chosen geometric surface matching distances,

• Solution of the resulting optimization problem within a variational framework.
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Generalization to Arbitrarily Many Intermediary Snapshots

Given q + 1 snapshots Sj,0 ≤ j ≤ q, at time instants tj ∈ [0,1], 0 =: t0 < t1 < · · · < tq := 1,

find a time dependent family of diffeomorphisms F(·, t) ∈ Diff(R3), t ∈ [0, 1], such that

q∑

j=1

dist(F(S0, tj),Sj) → min ,

where dist(·, ·) is a geometric surface matching distance, and F(·, t) = Fvt
, t ∈ [0,1], is

generated by a time dependent flow vt according to

∂tF(·, t) = vt(F(·, t)) , t ∈ I ,

F(·, 0) = Id .
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Reproducing Kernel Hilbert Spaces
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Reproducing Kernel Hilbert Spaces I

Let H be a Hilbert space of functions on R
d with inner product (·, ·)H and norm ‖·‖H.

A function K : R
d
×R

d → C is said to be a reproducing kernel of H, if the following

two conditions hold true:

(RK)1 For every x ∈ R
d, we have Kx ∈ H, where Kx : R

d → C is given by

Kx(y) = K(y,x) , y ∈ R
d

.

(RK)2 For every x ∈ R
d and every f ∈ H there holds

f(x) = (f ,Kx)H , x ∈ R
d

.

The kernel K is called Hermitian (positive definite), if for any finite set of points

{y1, · · · ,yn} ⊂ R
d and any γ i ∈ C, 1 ≤ i ≤ n, there holds

n∑

i,j=1

γ̄jγi K(yj,yi) ∈ R (∈ R
+
) .

The Hilbert space H is said to be a Reproducing Kernel Hilbert space (RKHS), if

there exists a reproducing kernel on H.
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Reproducing Kernel Hilbert Spaces II

Proposition 2 [Aronszajn] For any positive definite kernel K : R
d
×R

d
→ C there exists

a uniquely determined RKHS H of functions on R
d with reproducing kernel K.

Any RKHS H with a positive definite kernel K is a Hilbert space of functions on R
d

for which pointwise evaluations are continuous linear functionals.

A kernel K is said to be translation invariant, if for all a ∈ R
d

K(x − a,y − a) = K(x,y) , x,y ∈ R
d

.

Proposition 3 [Bochner] A kernel K : R
d
×R

d
→ C is a continuous positive definite

translation invariant kernel, iff there exists a finite positive Borel measure µ on R
d

such that

K(x,y) =

∫

Rd

exp(i(x − y)·z) dµ(z) , x,y ∈ R
d

.
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Reproducing Kernel Hilbert Spaces III

A function K : R
d
×R

d → C is called radial, if there exists a function r on R
+

such that

K(x,y) = r(|x − y|) , x,y ∈ R
d

.

Proposition 4 [Schönberg] A radial function K with a continuous function r is a con-

tinuous positive definite translation invariant kernel, iff there exists a positive Borel

measure µ on R
+

such that

r(t) =

∫

R
+

exp(−st2) dµ(s) , t ∈ R
+

.

Proposition 5 [Schönberg] Let H be an RKHS of vector valued functions on R
d

with Gaussian kernel K, i.e., r(t) = (2π)−d/2exp(−t2
/(2σ2)). If f ∈ H with Jacobian

Df ∈ R
d×d, then there holds

‖Df‖F ≤
d

σ
‖f‖H .
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Geometric Surface Matching Distances
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Geometric Matching Distances: Hausdorff Distance

The Hausdorff distance between two bounded subsets S,S′ ∈ R
3 is given by

DH(S,S′) := max
(
h(S,S′),h(S′

,S)
)

,

where the Hausdorff disparity h(S,S′) is defined by means of

h(S,S′) := max
(

min |x − x′|
)

.

x ∈ S x′ ∈ S′

Remark: The Hausdorff distance is not smooth. Instead, we use

D̃H(S,S′) := hsm(S,S′) + hsm(S′
,S) ,

where hsm(S,S′) refers to a smoothed Hausdorff disparity.
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Geometric Matching Distances: Borel Measure Distance

• We denote by BM(R3) the linear space of bounded Borel measures on R
3

equipped with the inner product

〈µ,µ
′〉Γ :=

∫

R3

∫

R3

Γ(x,x′) dµ(x) dµ
′(x′) ,

where Γ(·, ·) is a smooth, symmetric, and translation-invariant bounded positive

definite kernel on R
3
×R

3.

• We identify a bounded Borel subset S ⊂ R
3 with a measure µS ∈ BM(R3)

induced on S by the Lebesgue measure of R
3.

• The distance between bounded Borel subsets S,S′ ∈ R
3 is defined by means of

D2

Γ(S,S′) := ‖µS − µS′‖2

Γ .
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Variational Formulation of the Optimal Matching Problem
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Variational Formulation of the Optimal Matching Problem

Let D(I;V) be the space of all disparity functionals D : L2(I;V) → R
+

of the form

D(v) = Φ(Fv(·, t1), · · · .Fv(·, tq)) ,

where Φ : Diff(R3)q → R
+

is a continuous function, and let E : L2(I;V) → R
+

be the

energy functional

E(v) =
1

2

1∫

0

‖vt‖
2
V dt .

Optimization Problem: For D ∈ D(I;V), find v∗ ∈ L2(I;V) such that

(OP)1 J(v∗) = inf J(v) , J(v) := E(v) + λD(v) ,

v ∈ L2
(I;V)

subject to
(OP)2 ∂tF(·, t) = vt(F(·, t)) , t ∈ I ,

F(·,0) = Id .
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Existence of a Minimizing Diffeomorphic Flow

Theorem 1. Assume that the embedding V ⊂ Ws,2(R3), s > 5/2, is continuous. Then,

the optimal diffeomorphic matching problem (OP)1, (OP)2 has a solution v∗ ∈ L2(I;V).

Proof. Let {vn}N be a minimizing sequence. Due to the boundedness of {vn}N, there

exist N
′ ⊂ N and v∗ ∈ L2(I;V) such that

lim inf ‖vn‖L2
(I;V)

≤ ‖v∗‖L2
(I;V)

.

n → ∞

Denoting by Fn(·, t),F∗(·, t) ∈ Diff(R3), t ∈ I, the unique flows solving (OP)2 w.r.t. vn
,v∗,

the main part of the proof is to show that

Fn(·, t) → F∗(·, t) (n → ∞) , t ∈ I ,

uniformly on bounded subsets of R
3. This implies D(vn) → D(v∗) (n → ∞), and hence,

lim inf J(vn) ≤ lim D(vn) + lim inf E(vn) ≤ D(v∗) + E(v∗) = J(v∗) ,

n → ∞ n → ∞ n → ∞

which allows to conclude.
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Necessary Optimality Conditions

Theorem 2. In addition to the assumptions of Theorem 1 suppose that the functional

Φ : C(R3)q → R has Gâteaux derivatives ∂jΦ ∈ M(R3), 1 ≤ j ≤ q.

If v∗
∈ L2(I;V) is a solution of (OP)1, (OP)2, then there exists a family p∗ = p∗

t, t ∈ I, of

vector valued Borel measures on I×R
3 satisfying the jump process

(OP)3 − ∂tp
∗

t − bv∗,tp
∗

t = 0 , t ∈ (tj−1, tj) ,

p∗

t+

q
= 0 , p∗

t−
j

= p∗

t+

j
+ λ∂jΦ(F∗(·, tj)) , 1 ≤ j ≤ q .

(OP)4 p∗

t + ρt,v∗ = 0 , t ∈ I ,

Here, bv,t is a Borel function of Dvvt(F
v(·, t)), and ρt,v is a vector valued Borel

measure with density Kvt.
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Discretization: Dirac Measures

and Diffeomorphic Point Matching
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Discretization: Dirac Measures and Diffeomorphic Point Matching

• We discretize the snapshots Sj,0 ≤ j ≤ q, and the dynamically deformed surfaces

Ŝj = Fv(S0, tj) by point sets

Xj = {x
j
1, · · · ,x

j
Nj
} , X̂j = Fv(X0, tj) = {Fv(x0

1, t1), · · · ,Fv(x0
N0

, tj)} .

• We denote by xn(t) = Fv(x0
n, tj) , xn(0) = x0

n,1 ≤ n ≤ N0, the trajectories emanating

from x0
n, i.e., the solutions of the initial value problems

d

dt
xn(t) = vt(xn(t)) , t ∈ [0,1] , xn(0) = x0

n .

• We approximate the Borel measures associated with Sj and Ŝj by weighted sums

of Dirac measures

µSj
=

Nj∑

m=1

bj
m δ

x
j
m

, µŜj
=

N0∑

n=1

an δxn(tj)
, 1 ≤ j ≤ q .
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Discretization: Dirac Measures and Diffeomorphic Point Matching

• Setting x(t) = (x1(t), · · · ,xN0
(t))T, t ∈ (0, 1), the disparity cost funtional reads

D(v) =

q∑

j=1

λj Dj(x(tj)) , Dj(x(tj)) := ‖µSj
− µŜj

‖2
K

σj
,

where K
σj
, 1 ≤ j ≤ q, are appropriately chosen radial Gaussian kernels.

• We approximate the flow vt by a linear combination of Kxn(t),1 ≤ n ≤ N0,

vt(x) =

N0∑

n=1

K
σ0

(xn(t),x) αn(t) , x ∈ R
3

.

It follows that

‖vt‖
2
V =

N0∑

n=1

N0∑

n′
=1

K
σ0

(xn(t),xn′(t)) α

T
n (t)αn(t) , t ∈ [0,1] .
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The Discrete Optimization Problem

Setting α(t) = (α1(t), · · · , αN0
(t))T ∈ R

dN0
, t ∈ (0,1), and

A(x(t)) :=
(
K

σ0
(xn(t),xn′(t))Id

)N0

n,n′
=1

∈ R
dN0×dN0

,

the discrete optimization problem reads:

Discrete Optimization Problem: Find α∗ ∈ L2(I; RdN0) and x∗(t) such that

(DOP)1 J(α∗) = inf J(α) , J(α) :=
1

2

1∫

0

α(t)TA(x(t))α(t) dt +

q∑

j=1

λjDj(x(tj)) ,

α

subject to

(DOP)2
d

dt
x∗(t) = A(x∗(t)) α

∗(t) , t ∈ I ,

x∗(0) = x0
.
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Existence of a Solution and Necessary Optimality Conditions

Theorem 3. The discrete optimization problem (DOP)1, (DOP)2 has a solution

α∗ = α∗(t), t ∈ I. If x∗ = x∗(t), t ∈ I, is the associated trajectory, there exists a function

p∗ = p∗(t), t ∈ I, which solves the final time problem

(DOP)3 −
d

dt
p∗(t) = B(x∗(t),α∗(t))T

(
p∗(t) +

1

2
α

∗(t)
)

, t ∈ (tj−1, tj) ,

p∗(t+

q ) = 0 , p∗(t−j ) = p∗(t+

j ) + λj ∇Dj(x
∗(tj)) , 1 ≤ j ≤ q ,

(DOP)4 A(x∗(t))(α∗(t) + p∗(t)) = 0 , t ∈ I ,

where the matrix B(x∗(t), α∗(t)) ∈ R
dN0×dN0 is given by

B(x∗(t), α∗(t)) = ∇x(A(x∗(t),α∗(t))) .
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Fully Discrete Optimization Problem
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Fully Discrete Optimal Diffeomorphic Matching Problem I

For the discretization in time of the optimality system (DOP)2 − (DOP)4 we introduce

∆I :=

q⋃

j=1

∆Ij
, ∆Ij

:= {tj−1 =: tLj−1
< tLj−1+1

< · · · < tLj := tj} ,

where ∆Ij
, 1 ≤ j ≤ q, are subpartitions of Ij := [tj−1, tj].

Setting ∆tℓ := tℓ+1
− tℓ,0 =: L0 ≤ ℓ ≤ L := Lq,, the discretized optimality system reads

(DOC)1
xℓ+1

− xℓ

∆tℓ
= A(xℓ

α
ℓ

, L0 ≤ ℓ ≤ L ,

x0 = x(0)

,

(DOC)2
p(ℓ−1)

+

− pℓ
−

∆tℓ−1
= B(xℓ

,α
ℓ)T(pℓ

−

+ α
ℓ
/2) , ℓ = Lj, · · · ,Lj−1 + 1 ,

pL+

q = 0 , p
L−

j = p
L+

j + λj∇Dj(x
Lj) , 1 ≤ j ≤ q ,

(DOC)3 A(xℓ)(αℓ + pℓ
+

) , L0 ≤ ℓ ≤ L− 1 .
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Fully Discrete Optimal Diffeomorphic Matching Problem II

Theorem 4. Let J∆I
be the discrete objective functional

J∆I
(α) =

1

2

L−1∑

ℓ=0

∆tℓ (αℓ)TA(xℓ)αℓ +

q∑

j=1

λjDj(x
Lj) .

The discrete optimality system (DOC)1 − (DOC)3 represents the first order necessary

optimality conditions for the discrete optimization problem

min J∆I
(α) ,

α
subject to

xℓ+1
− xℓ

∆tℓ
= A(xℓ)αℓ

, L0 ≤ ℓ ≤ L − 1 ,

x0 = x(0)

.

Corollary. Let (x∗
,p∗

, α
∗) with x∗ = {xℓ

∗
}
L

ℓ=0
etc. satisfy (DOC)1− (DOC)3. Then, we have

0 = ∇J∆I
(α∗) = {gℓ

}
L−1

ℓ=0
, gℓ = A(xℓ

∗
)(αℓ

∗
+ pℓ

∗
) .
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Matching Algorithm: Continuation in the Regularization Parameter

Role of the regularization parameters: For simplicity, we assume λj = λ > 0, 1 ≤ j ≤ q.

The regularization parameter provides a balance between the matching quality and

the regularizing kinetic energy. The larger λ, the more emphasis is on the matching

quality.

Problem: The gradient method does not converge for large λ, in particular, if the ini-

tial iterate is not close to a local minimum.

Remedy: Continuation in the regularization parameter. This results in an inner/outer

iteration with outer iterations in λ and inner iterations featuring the gradient

method with Armijo line search. A termination criterion for the outer iterations is

Dj := κ

( N0∑

n=1

(dj
n)2

)1/2

< ϑ , dj
n := min |xn(tj) − xm(tj)| ,

1 ≤ m ≤ Nj

where ϑ > 0 is a given threshold and 0 < κ ≤ 1 (e.g., κ = 0.9).
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Matching Algorithm: Inner/Outer Iterative Scheme

Step 1: Initialization

Choose thresholds θ > 0,ϑ > 0, as well as γ > 1 for continuation and 0 < κ ≤ 1.

Step 2: Initialization of the outer iteration

Choose initial value λ0 and set ν := 0.

Step 3: Initialization of the inner iteration

Compute α
(0)

ν by an appropriate initialization and set µ := 0.

Step 4: Gradient method with Armijo line search

Step 4.1: Set µ := µ+1 and compute α
(µ)

ν by gradient descent with Armijo line search.

Step 4.2: If the termination criterion |∇J(α
(µ)

ν )| < θ|∇J(α
(0)

ν )| is satisfied, go to Step 5.
Otherwise, go to Step 4.1.

Step 5: Termination of the outer iteration

If the termination criterion Dj < ϑ,1 ≤ j ≤ q, is satisfied, stop the algorithm.
Otherwise, set ν := ν + 1, α

(0)

ν := α
(µ)

ν−1, λν := γλν−1, and go to Step 4.
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Numerical Results:

Matching Mitral Annulus Snapshots



Department of Mathematics, University of Houston
Institut für Mathematik, Universität Augsburg lsrmnROMUNHS0

Diffeomorphic Matching of Multiple Annulus Snapshots
 

 

ref intermediary target trajectories

Matching Multiple Snapshots of the Mitral Annulus at t = 1,3,5,7,10
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Diffeomorphic Matching of Multiple Annulus Snapshots: Hausdorff Matching
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Diffeomorphic Matching of Multiple Annulus Snapshots: Hausdorff Matching
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Diffeomorphic Matching of Multiple Annulus Snapshots: Measure Matching
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Diffeomorphic Matching of Multiple Annulus Snapshots: Measure Matching
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Numerical Results:

Matching Anterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Anterior Leaflet Snapshots
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Matching four snapshots of the anterior leaflet at instants 0,1,5,10
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Diffeomorphic Matching of Multiple Anterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Anterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Anterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Anterior Leaflet Snapshots
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Numerical Results:

Matching Posterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Posterior Leaflet Snapshots
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Matching four snapshots of the posterior leaflet at instants 0,1,5,10
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Diffeomorphic Matching of Multiple Posterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Posterior Leaflet Snapshots
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Matching the posterior leaflet boundary: Instants 0,1 (l.) and 1,5,10 (r.)
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Diffeomorphic Matching of Multiple Posterior Leaflet Snapshots
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Diffeomorphic Matching of Multiple Posterior Leaflet Snapshots
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