- 12 If α and β are closed differential forms, prove that $\alpha \wedge \beta$ is closed. If, in addition, β is exact, prove that $\alpha \wedge \beta$ is exact.
- 13 Consider the 1-form $\alpha = (x^2 + 7y) dx + (-x + y \sin y^2) dy$ on \mathbb{R}^2 . Compute its integral over the following 1-cycle z.

- 14 Let $\alpha = (2x + y \cos xy) dx + (x \cos xy) dy$ on \mathbb{R}^2 . Show that α is closed. Show that α is exact by finding a function $f: \mathbb{R}^2 \to \mathbb{R}$ with $\alpha = df$. What would the integral of α over the cycle of Exercise 13 be?
- 15 Let

$$\alpha = \frac{1}{2\pi} \frac{x \, dy - y \, dx}{x^2 + y^2} \, .$$

Prove that α is a closed 1-form on $\mathbb{R}^2 - \{0\}$. Compute the integral of α over the unit circle S^1 . How does this result show that α is not exact? How does this show that $\delta i(\alpha)$ is not exact, where $i: S^1 \to \mathbb{R}^2$ is the canonical imbedding?

- 16 (a) Prove that every closed 1-form on S^2 is exact.
 - (b) Let

$$\sigma = \frac{r_1 dr_2 \wedge dr_3 - r_2 dr_1 \wedge dr_3 + r_3 dr_1 \wedge dr_2}{(r_1^2 + r_2^2 + r_3^2)^{3/2}}$$

in $\mathbb{R}^3 - \{0\}$. Prove that σ is closed.

- (c) Evaluate $\int_{S^2} \sigma$. How does this show that σ is not exact?
- (d) Let

$$\alpha = \frac{r_1 dr_1 + r_2 dr_2 + \dots + r_n dr_n}{(r_1^2 + r_2^2 + \dots + r_n^2)^{n/2}}$$

in $\mathbb{R}^n - \{0\}$. Find $*\alpha$, and prove that $*\alpha$ is closed.

- (e) Evaluate $\int_{\Omega^{n-1}} *\alpha$. Is $*\alpha$ exact?
- 17 Using de Rham cohomology, prove that the torus T^2 is not diffeomorphic with the 2-sphere S^2 .

18 (a) Prove that every closed 1-form in the open shell

$$1 < \left(\sum_{i=1}^{3} r_i^2\right)^{1/2} < 2$$

in R3 is exact.

- (b) Find a 2-form in the above shell that is closed but not exact.
- (c) Prove that the above shell is not diffeomorphic with the open unit ball in \mathbb{R}^3 .
- 19 Let f and g be C[∞] maps of M into N which are C[∞] homotopic; that is, there exists a C[∞] map F of M × (-ε, 1 + ε) into N, for some ε > 0, such that F(m,0) = f(m) and F(m,1) = g(m) for every m ∈ M. Prove that the induced homomorphisms f* and g* of Hⁿ_{de R}(N) into Hⁿ_{de R}(M) are equal for each integer p. (Hint: You will need to prove that the two injections i₀(m) = (m,0) and i₁(m) = (m,1) of M into M × (-ε, 1 + ε) induce the same homomorphisms on de Rham cohomology. To prove this, find suitable homotopy operators. The outline of the proof of the Poincaré lemma 4.18 should be helpful.)
- 20 (a) Let $f: M^n \to \mathbb{R}^{n+1}$ be an immersion, and let M^n be given the induced Riemannian structure; that is, for $m \in M$ and $u, v \in M_m$,

 $\langle u,v\rangle_m = \langle df(u), df(v)\rangle_{f(m)}.$

Suppose that M is oriented, and that \vec{n} is the oriented unit normal field along $f(M^n)$. (This means that \vec{n} , $df(v_1), \ldots, df(v_n)$ is to be an oriented orthonormal basis of the tangent space to Euclidean space at f(m) whenever v_1, \ldots, v_n is an oriented orthonormal basis of M_m .) Show that the volume form on M is given by

$$\omega = \delta f(i(\vec{n})(dr_1 \wedge \cdots \wedge dr_{n+1})).$$

(b) Let D be an open set in the xy plane, and let $\varphi: D \to \mathbb{R}^3$ be a smooth map of the form

$$\varphi(x,y) = (x,y,f(x,y)).$$

Thus φ determines an imbedded surface in \mathbb{R}^3 . Give D and \mathbb{R}^3 the standard orientations. Use part (a) to prove that the induced volume form on D is given by

$$\omega = \left(\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1}\right) dx \wedge dy.$$