Geometria 1. Gruppo A-K. Anno Accademico 1999-2000.

Soluzione degli esercizi assegnati il 12/10/99.

Esercizio 1. Sia $V = \mathbb{R}^3$. Sono dati i sottospazi

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}; \quad U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}.$$

Determinare $U\cap W,\, U+W.$ Determinare $\underline{v}\in V,\, \underline{u}_1,\, \underline{u}_2\in U,\, \underline{w}_1,\, \underline{w}_2\in W$ tali che

$$\underline{v} = \underline{u}_1 + \underline{w}_1$$
, $\underline{v} = \underline{u}_2 + \underline{w}_2$ e $\underline{u}_1 \neq \underline{u}_2$ oppure $\underline{w}_1 \neq \underline{w}_2$

Soluzione. In classe abbiamo verificato che $U \cap W = \mathbb{R}(1, -2, 3)$ risolvendo il sistema

$$\begin{cases} x + 2y + z = 0 \\ x - y - z = 0 \end{cases}$$

Abbiamo anche verificato che $U+W=\mathbb{R}^3$. Infatti U+W è uguale a tutte le somme del tipo $\underline{u}+\underline{w}$ con $\underline{u}\in U$ e $\underline{w}\in W$. Dato che $U=<(1,0,1)\,,\,(0,-1,1)>$ e $W=<(2,-1,0)\,,\,(1,0,-1)>$ ne segue che U+W è uguale a tutte le combinazioni lineari dei vettori $(1,0,1)\,,\,(0,-1,1)\,,\,(2,-1,0)\,,\,(1,0,-1)$. In formule

$$U + W = \langle (1,0,1), (0,-1,1), (2,-1,0), (1,0,-1) \rangle$$
.

Dato che siamo in \mathbb{R}^3 il massimo numero di vettori linearmente indipendenti fra questi 4 vettori è 3. Inoltre ci sono effettivamente tre vettori linearmente indipendenti perché $(1,0,1) \notin W$ e quindi (1,0,1) non è combinazione lineare di (2,-1,0), (1,0,-1) (e quindi (1,0,1), (2,-1,0), (1,0,-1) sono linearmente indipendenti). Questo vuol dire che (1,0,1), (2,-1,0), (1,0,-1) costituiscono una base di \mathbb{R}^3 ed è allora chiaro che U+W=<(1,0,1), (0,-1,1), (2,-1,0), (1,0,-1)>=<(1,0,1), (2,-1,0), $(1,0,-1)>=\mathbb{R}^3$. Tutto questo è stato spiegato a lezione.

Passiamo all'ultima parte dell'esercizio. Sappiamo che $U+V=\mathbb{R}^3$. Se fosse $U\cap W=\{\underline{0}\}$ allora (vedi la lezione di oggi oppure la Proposizione qui sotto enunciata) l'esercizio non avrebbe soluzione. Si ha invece $U\cap W=\mathbb{R}(1,-2,3)$; intuitivamente dobbiamo allora inventarci qualcosa con questo vettore $(1,-2,3)\in U\cap W$. Consideriamo

$$\underline{v} = ((2, -1, 0) + (1, -2, 3)) + (1, 0, 1)$$
 e cioè $\underline{v} = (4, -3, 4)$.

Dato che $(1,0,1)\in U,\ (2,-1,0)\in W$ e $(1,-2,3)\in W\cap U\subset W$ ne segue che \underline{v} è espresso come somma di un vettore in W, il vettore $\underline{w}_1=(2,-1,0)+(1,-2,3)=(3,-3,3)$, e di un vettore in U, il vettore $\underline{u}_1=(1,0,1)$. D'altra parte la somma è associativa e quindi

$$\underline{v} = (2, -1, 0) + ((1, -2, 3) + (1, 0, 1))$$

Sia $\underline{w}_2 = (2, -1, 0)$ e $\underline{u}_2 = (1, -2, 3)) + (1, 0, 1)$. Allora è chiaro che $\underline{w}_2 = (2, -1, 0) \in W$ mentre $\underline{u}_2 = (1, -2, 3)) + (1, 0, 1) = (2, -2, 4) \in U$ (dal momento che $(1, -2, 3) \in W \cap U$ e $(1, 0, 1) \in U$). In definita con la nostra scelta di vettori $\underline{v}, \underline{u}_1, \underline{u}_2, \underline{w}_1, \underline{w}_2$ si ha che

$$\underline{v}=\underline{w}_1+\underline{u}_1\;;\;\underline{v}=\underline{w}_2+\underline{u}_2\;;\;\underline{w}_i\in W\;,\underline{u}_i\in U,\,i=1,2,\,\underline{w}_1\neq\underline{w}_2\;\;\mathrm{e}\;\;\underline{u}_1\neq\underline{u}_2$$

e la soluzione è completa.

Supponiamo, in generale, che V=U+W. Se $U\cap W=\{\underline{0}\}$, e cioè $V=U\oplus W$, allora ogni vettore $\underline{v}\in V$ si esprime in maniera unica come somma $\underline{v}=\underline{u}+\underline{w}$ per opportuni $\underline{u}\in U$ e $\underline{v}\in V$. Questo è stato dimostrato a lezione. Di fatto è anche vero il viceversa. Esprimiamo tutto ciò nella

Proposizione. Sia V = U + W. Allora $V = U \oplus W$ se e soltanto se ogni vettore di V si esprime in maniera unica come somma di un vettore in U e di un vettore in W.

Dim. In una direzione l'abbiamo dimostrato. Dimostriamo il viceversa e cioè che "se ogni vettore di V si esprime in maniera unica come somma di un vettore in U e di un vettore in W" allora $U \cap W = \{\underline{0}\}$. Per assurdo esiste $f \neq \underline{0} \in U \cap W$. Possiamo sicuramente scrivere

$$\underline{f} = \underline{u}_1 + \underline{w}_1 \text{ con } \underline{u}_1 = \underline{f}, \, \underline{w}_1 = \underline{0}$$

Il vettore $\underline{u}_1 \in U$ (perché appartiene a $U \cap W$) e certamente $\underline{w}_1 \in W$. D'altra parte potremo anche scrivere

$$f = \underline{u}_2 + \underline{w}_2 \text{ con } \underline{u}_2 = \underline{0}, \underline{w}_2 = f.$$

Si ha $\underline{u}_2 \in U$, $\underline{w}_2 \in U \cap W \subset W$. Dato che siamo sotto l'ipotesi che $\underline{f} \neq \underline{0}$ ne segue che $\underline{u}_1 \neq \underline{u}_2$, $\underline{w}_1 \neq \underline{w}_2$. Ma questo è assurdo perché avevamo supposto che "ogni vettore di V si esprime in maniera unica come somma di un vettore in U e di un vettore in W". QED

Esercizio 2. Sia $V = M_{3\times 3}(\mathbb{R})$. Sia $S_{3\times 3}(\mathbb{R}) = \{A \in M_{3\times 3}(\mathbb{R}) | A = A^t\}$ e sia $A_{3\times 3}(\mathbb{R}) = \{A \in M_{3\times 3}(\mathbb{R}) | A = -A^t\}$. Dimostrare che $M_{3\times 3}(\mathbb{R}) = S_{3\times 3}(\mathbb{R}) \oplus A_{3\times 3}(\mathbb{R})$.

Soluzione. Vediamo innanzitutto che $S_{3\times3}(\mathbb{R})+A_{3\times3}(\mathbb{R})=S_{3\times3}(\mathbb{R})\oplus A_{3\times3}(\mathbb{R})$. Per definizione di somma diretta questo vuol dire semplicemente che $S_{3\times3}(\mathbb{R})\cap A_{3\times3}(\mathbb{R})=\{\underline{0}\}$. Ma se $B\in S_{3\times3}(\mathbb{R})\cap A_{3\times3}(\mathbb{R})$ ne segue che $B=B^t$ $e-B=B^t$; ma allora B=-B e quindi B è la matrice nulla: $B=\underline{0}$. Avete visto l' 8/10 che dim $S_{3\times3}(\mathbb{R})=6$ e dim $A_{3\times3}(\mathbb{R})=3$. Più in generale avete visto che

$$\dim S_{n \times n}(\mathbb{R}) = n + \frac{n(n-1)}{2} \qquad \dim A_{n \times n}(\mathbb{R}) = \frac{n(n-1)}{2}.$$

Ma allora da quanto sopra e dalla formula di Grassmann segue che dim $(S_{3\times3}(\mathbb{R})\oplus A_{3\times3}(\mathbb{R}))=9=\dim M_{3\times3}(\mathbb{R})$. Questo implica che $(S_{3\times3}(\mathbb{R})\oplus A_{3\times3}(\mathbb{R}))=M_{3\times3}(\mathbb{R})$ e la soluzione è completa. Lo stesso identico ragionamento (insieme alle citate formule per le dimensioni di $S_{n\times n}(\mathbb{R})$ e $A_{n\times n}(\mathbb{R})$) dimostra che $M_{n\times n}(\mathbb{R})=S_{n\times n}(\mathbb{R})\oplus A_{n\times n}(\mathbb{R})$.

Esercizio 3. Risolvere gli esecizi 4, 5, 6 pag. 65 del Sernesi.

Soluzione. Il 4 ed il 6 sono risolti nel libro di testo (pag. 447). Risolviamo il 5. È chiaro che U ha dimensione uguale a 2 (i due vettori che generano U sono non-proporzionali e quindi linearmente indipendenti). Analogamente dim W=2. Notiamo anche che $U=\{(k+h\sqrt{5},0,-(h+k\sqrt{5}),0)\ ,\ h,k\in\mathbb{R}\}$ e che $W=\{(0,-2\alpha+\beta,0,3\alpha+\beta)\ ,\ \alpha,\beta\in\mathbb{R}\}$. Ma allora tutti i vettori che sono in U hanno sempre la seconda e quarta coordinata uguali a zero. Mentre tutti i vettori che sono in W hanno sempre la prima e terza coordinata uguali a zero. Ciò implica che i vettori che sono in U e in W hanno la seconda, quarta e prima, terza coordinata uguali a zero. In altre parole hanno tutte le coordinate uguali a zero. Ne segue che $U \cap W = \{\underline{0}\}$. Dalla formula di Grassmann segue che $\mathbb{R}^4 = U \oplus W$ (pensateci).