Corso di Laurea in Fisica. Geometria. a.a. 2009-10. Prof. P. Piazza

Soluzione per gli esercizi di preparazione all'esame ed all'esonero

Soluzione Esercizio 1. Il vettore $f \wedge g$ è un vettore che è ortogonale sia ad f che a g. Dalla definizione di prodotto vettoriale otteniamo immediatamente le coordinate di $\underline{f} \wedge \underline{g}$ che sono (-1,1,1). I vettori $\lambda(-1,1,1),\,\lambda \in \mathbb{R},$ sono allora tutti ortogonali sia ad \bar{f} che a g. Basta allora determinare i λ tali che $|(-\lambda, \lambda, \lambda)| = 2$ e cioè tali che $\sqrt{(-\lambda)^2 + (\lambda)^2 + (\lambda)^2} = 2$. Si trova $\sqrt{3\lambda^2} = 2$, $3\lambda^2 = 4$, $\lambda = \pm 2/\sqrt{3}$. Conclusione: i vettori cercati sono $\{2/\sqrt{3}(-1,1,1), -2/\sqrt{3}(-1,1,1)\}.$

Risposte per l'esercizio 2.

- (i) $\underline{v}=(-1,-2,-1), \underline{w}=(1,2,1).$ (ii) Il vettore \underline{v}_1 è (-1,-2,-1) e la sua proiezione ortogonale su \underline{f} è (3/5,-6/5,0).

Soluzione esercizio 3. È una verifica diretta.

Soluzione esercizio 4. Calcolando il polinomio caratteristico si scopre che F_A ammette gli autovalori reali $\lambda_1=1,\,\lambda_2=0$ con molteplicità algebrica rispettivamente 2 e 2. Si ha poi

$$V_1 = \{ \underline{x} \in \mathbb{R}^4 \mid \left\{ \begin{array}{l} x_1 - x_4 = 0 \\ x_2 - x_3 = 0 \end{array} \right\}, \quad V_0 = \{ \underline{x} \in \mathbb{R}^4 \mid \left\{ \begin{array}{l} x_1 + x_4 = 0 \\ x_2 + x_3 = 0 \end{array} \right\}.$$

Questi autospazi hanno entrambi dimensione 2. Per il criterio di diagonalizzabilità 1 ne segue che F_{A} è diagonalizzabile.

Passiamo a 4.2: per quanto appena visto, la matrice associata ad F_A in una base di autovettori è uguale alla matrice diagonale

Dato che

$$V_1 = \text{Span}((1,0,0,1),(0,1,1,0)), \quad V_0 = \text{Span}((1,0,0,-1),(0,1,-1,0)),$$

vediamo che una base di autovettori è data da

$$\underline{v}_1 = (1,0,0,1), \ \underline{v}_2 = (0,1,1,0), \ \underline{v}_3 = (1,0,0,-1), \ \underline{v}_4 = (0,1,-1,0)$$

Sia B la matrice che ha come colonne le coordinate degli autovettori nella base canonica:

$$B = \left| \begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{array} \right|$$

Sappiamo, dalla teoria, che

$$\Delta = B^{-1}AB$$

 $^{{}^{1}{\}rm (i)}\;{\rm radici}\;{\rm del}\;{\rm polinomio}\;{\rm caratteristico}\;{\rm reali;}\;{\rm (ii)}\;{\rm molteplicit\`a}\;{\rm algebrica} = {\rm molteplicit\`a}\;{\rm geometrica}.$

Dato che Δ è diagonale abbiamo risposto a **4.2**.

Consideriamo ora 4.3: sappiamo che $\Delta=B^{-1}AB$ e ne segue quindi, moltiplicando a destra per B e a sinistra per B^{-1} che $A=B\Delta B^{-1}$ e quindi, in definitiva,

$$A^{1224} = (B\Delta B^{-1})^{1224} = B\Delta^{1223}B^{-1} = B\Delta B^{-1} = A$$

dove abbiamo ovviamente utilizzato ripetutamente il fatto che $BB^{-1} = B^{-1}B = I$ ed il fatto che, in questo caso particolare, $\Delta^k = \Delta \ \forall k \in \mathbb{N}$.

Soluzione esercizio 5. Abbiamo dimostrato a lezione che due matrici simili hanno lo stesso polinomio caratteristico; ciò implica, ovviamente, che se due matrici hanno polinomi caratteristici diversi, allora non sono simili. Ne segue, calcolando tali polinomi caratteristici, che le uniche matrici che possono essere simili sono A_2 e A_4 . Si ha $P_{A_2}(\lambda) = P_{A_4}(\lambda) = \lambda^2 - 5\lambda + 6$ che ha radici distinte $\lambda_1 = 2$, $\lambda_2 = 3$. Quindi A_2 è simile alla matrice diagonale Δ con

$$\Delta = \left| \begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right| \,;$$

 A_4 è anche simile alla matrice Δ e quindi A_2 è simile ad A_4 , come volevasi.

Soluzione esercizio 6. Omessa (facile conseguenza dell'oss. 13.6)

Soluzione esercizio 7. Dalle ipotesi fatte segue subito che $V_1(F) + V_0(F) = V_1(F) \oplus V_0(F) = V$. Infatti: la prima uguaglianza, $V_1(F) + V_0(F) = V_1(F) \oplus V_0(F)$, è un fatto generale (vedi esercizio precedente) . La seconda segue subito dalle due ipotesi e dal fatto che dim $(U \oplus U') = \dim U + \dim U'$ (che è una conseguenza della formula di Grassmann). Ma allora $\forall \underline{w} \in V$ esiste un'unica decomposizione $\underline{w}_1 + \underline{w}_2$ con $\underline{w}_1 \in V_1(F)$, $\underline{w}_2 \in V_0(F)$ e dalla linearità e dalla definizione di autospazio si ha

$$F(\underline{w}) \equiv F(\underline{w}_1 + \underline{w}_2) = F(\underline{w}_1) + F(\underline{w}_2) = 1\underline{w}_1 + 0\underline{w}_2 = \underline{w}_1 + \underline{0} = \underline{w}_1 \ .$$

Ma allora F è la proiezione su $V_1(F)$ parallelamente a $V_0(F)$ che è quello che dovevamo dimostrare.

Analogamente se:

- (i) le radici di $P_F(T)$ sono 1 e (-1) con $m_a(1) = k$ e $m_a(-1) = n k$.
- (ii) $m_g(1) = m_a(1), m_g(-1) = m_a(-1)$

allora $V = V_1(F) \oplus V_{(-1)}(F)$ e quindi, utilizzando la linearità e la definizione di autospazio vediamo che F è la simmetria rispetto a $V_1(F)$ parallelamente a $V_{(-1)}(F)$.