Geometria. Corso di Laurea in Fisica. Anno Accedemico 2013-14. Prof. P. Piazza. Canale 3. Alcuni preliminari.

In Matematica è molto frequente l'uso dei seguenti simboli:

 \Rightarrow : Implica \Leftrightarrow : Equivalente

 \forall : Per ogni \exists : Esiste \exists !: EsisteUnico \in : appartiene

L'abbrevazione | è utizzata a volte al posto di tale che

IMPLICAZIONI. Cominciamo con le implicazioni $(\Rightarrow, \Leftrightarrow)$ e le loro interpretazioni come condizioni necessarie e/o sufficienti.

Abbiamo già detto che $A \Rightarrow B$ vuol dire che "A implica B" oppure "da A segue B" o anche "accade che se A è vera allora è vera anche B".

La negazione di $A\Rightarrow B$ è "A non implica B" e cioè, "accade che A sia vera ma che B sia falsa".

La proposizione $A\Rightarrow B$ si può anche tradurre indifferentemente con una delle seguenti due proposizioni

- 1) Condizione necessaria affinché A sia vero è che sia verificato B.
- 2) Condizione sufficiente affinché B sia vero è che sia verificato A.

Osserviamo che una condizione sufficiente "implica" mentre una condizione necessaria "è implicata".

Esercizio 1 "Condizione sufficiente affinché la strada sia bagnata ¹ è che stia piovendo"

Come si scrive questa proposizione con il simbolo \Rightarrow ?

Esercizio 2 "Condizione necessaria affinché stia piovendo è che la strada sia bagnata"

Che differenza c'è fra questa proposizione e quella dell'esercizio 1?

Esercizio 3 "Condizione necessaria affinché la strada sia bagnata è che stia piovendo"

Come si scrive questa proposizione con il simbolo \Rightarrow ? È vera?

Soluzioni

- 1. "Sta piovendo" \Rightarrow "la strada è bagnata".
- **2.** Non c'è alcuna differenza. Anche questa proposizione si traduce in : "Sta piovendo" \Rightarrow "la strada è bagnata".
- 3. La proposizione si può scrivere "la strada è bagnata" \Rightarrow "sta piovendo". È chiaramente falsa (perché la strada davanti al portone di casa potrebbe essere bagnata per altri motivi).

In generale la veridicità di $A \Rightarrow B$ non fornisce alcuna informazione circa la veridicità della proposizione $B \Rightarrow A$.

Domanda 1 Se la strada è asciutta che cosa se ne può dedurre?

Risposta 1 "se la strada è asciutta" ne segue che "non sta piovendo".

Questo è un esempio della regola di contrapposizione:

 $A \Rightarrow B$ è equivalente a (negazione di B) \Rightarrow (negazione di A).

Giustifichiamo la regola di contrapposizione. Supponiamo vera $A \Rightarrow B$ e facciamo vedere che (negazione di B) \Rightarrow (negazione di A). Partiamo da (negazione di B),

¹La strada è per definizione la strada davanti al portone di casa

accettiamo quindi che la negazione di B sia vera. Ricordiamo ora la regola del terzo escluso: una proposizione o è vera oppure è falsa ($tertium\ non\ datur$). Quindi, o A è vera, oppure è falsa. Ci domandiamo: può essere vera A? La risposta è no, perché da A seguirebbe B, in contrasto col fatto che abbiamo accettato, per ipotesi, che sia vera la negazione di B. La conclusione è che se supponiamo vera $A\Rightarrow B$ allora è anche vera (negazione di B) \Rightarrow (negazione di A). L'implicazione inversa, e cioè

 $(\text{negazione di } B) \Rightarrow (\text{negazione di } A) \quad \text{implica} \quad A \Rightarrow B$

si dimostra allo stesso modo, utilizzando in aggiunta che

(negazione di (negazione di A)) è A

(due negazioni danno un'affermazione).

Domanda 2 Sia $n \in \mathbb{N}$. Consideriamo la seguente proposizione :

"Condizione necessaria e sufficiente affinché n^2 sia pari è che n sia pari."

- 1) Quali sono le due implicazioni che esprimono questa proposizione?
- 2) Come si traduce questa proposizione con il simbolo \Leftrightarrow ?
- 3) Qual è la condizione necessaria e quella sufficiente?

Risposta 2

- 1) Le implicazioni sono : " $n^2 pari \Rightarrow n pari$ " e " $n pari \Rightarrow n^2 pari$ ".
- 2) $n^2 pari \Leftrightarrow n pari$.

Osservazione. La proposizione " $A \Leftrightarrow B$ " si può anche esprimere dicendo che "A è equivalente a B" oppure "A è vera se e soltanto se B è vera".

3) "n è pari" è sia condizione necessaria che condizione sufficiente. Se si volesse dimostrare la veridicità della condizione necessaria si dovrebbe dimostrare che n^2 $pari \Rightarrow n$ pari. Se si volesse invece dimostrare la veridicità della condizione sufficiente allora si dovrebbe far vedere che n $pari \Rightarrow n^2$ pari.

Domanda 3 Si consideri ora la proposizione :

"Condizione necessaria e sufficiente affinché Paola sia a Roma è che Paola sia in Italia."

- 1) Questa proposizione è vera o falsa?
- 2) Se è falsa, quale fra le due condizioni (necessaria e sufficiente) è vera?

Risposta 3

1) La proposizione è ovviamente falsa perché se Paola è in Italia non è detto che sia a Roma. 2) "Paola è a Roma" ⇒ "Paola è in Italia" (e cioè la condizione necessaria) è vera. Mentre è falso che "Paola è in Italia" ⇒ "Paola è a Roma" (la condizione sufficiente).

Esercizio 4. Dimostrare che n^2 pari $\Leftrightarrow n$ pari, $n \in \mathbb{N}$.

Soluzione esercizio 4. n $pari \Rightarrow n=2k$ per qualche $k \in \mathbb{N}$. Ma allora $n^2=2(2k^2)$ e quindi n^2 è pari. Viceversa, sia n^2 pari. Dimostrare l'implicazione n^2 $pari \Rightarrow n$ pari è equivalente a dimostrare la contrapposta e cioè che n $dispari \Rightarrow n^2$ dispari. Ma n $dispari \Rightarrow n=2h+1$ per qualche $h \in \mathbb{N}$. Ne segue che $n^2=2(2h^2+2h)+1$ e quindi che n^2 è dispari. Quod **E**rat **D**emonstrandum.)

QUANTIFICATORI Passiamo ad illustrare l'uso dei simboli \forall e \exists . **Domanda 4**

- 1) Come si traduce con i simboli elencati la seguente proposizione?:
- " $\mathcal{P}1$: Si puó trovare un numero razionale diverso da zero il cui prodotto con un qualsiasi altro numero razionale diverso da zero è uguale a 1".
- 2) La proposizione $\mathcal{P}1$ é vera o falsa?

Risposta 4.

- 1) $\mathcal{P}1: \exists x \in \mathbb{Q} \ x \neq 0 \mid \forall y \in \mathbb{Q} \ y \neq 0, \ xy = 1$
- 2) La proposizione è falsa. Per dimostrarlo bisogna far vedere che non esiste $x \in \mathbb{Q}$ $x \neq 0$ con la proprietà enunciata. In altre parole, scelto comunque un numero razionale $x \neq 0$ basterà far vedere che esiste un y' tale che $xy' \neq 1$. Dato che $x \neq 0$ si può scegliere per esempio $y' = \frac{1}{2\pi}$ in modo tale che $xy' = \frac{1}{2} \neq 1$.

si può scegliere per esempio $y' = \frac{1}{2x}$ in modo tale che $xy' = \frac{1}{2} \neq 1$. Osservazione. Abbiamo dimostrato: $\forall x \in \mathbb{Q} \ x \neq 0 \ \exists y' \in \mathbb{Q} \ y \neq 0, \ | \ xy' \neq 1 \ cioè$ la negazione di $\mathcal{P}1$.

È importante capire questo punto:

 $\underline{Negare}: \forall x \ \grave{e} \ valida \ la \ proposizione \ \mathcal{P} \ \grave{e} \ equivalente \ a \ \underline{affermare}: \exists x \ per \ cui \ non \ \grave{e} \ valida \ la \ proposizione \ \mathcal{P}.$

 $\underline{Negare}:\exists x\ per\ cui\ \grave{e}\ valida\ la\ proposizione\ \mathcal{P}\ \grave{e}\ equivalente\ a\ \underline{affermare}:\ \forall x\ non\ \grave{e}\ valida\ la\ proposizione\ \mathcal{P}.$

Esercizio 5 Consideriamo la proposizione: $\mathcal{P}2: \forall x \in \mathbb{Q}, \ x \neq 0 \ \exists y \in \mathbb{Q} \mid xy = 1$. Questa proposizione è vera o falsa? Scrivetela per esteso e confrontatela con la proposizione $\mathcal{P}1$.

Soluzione Es. 5 La proposizione è vera; i numeri razionali $\mathbb Q$ sono costruiti precisamente per soddisfare questa proprietà, esistenza dell'elemento inverso per i numeri razionali non nulli.

Esercizio 6.

- 1) Negare : $\forall x \; \exists y \mid$ è valida la proposizione \mathcal{P}
- 2) Negare : $\exists x \mid \forall y$ è valida la proposizione \mathcal{P}
- 3) Negare : $\forall x \; \exists y \; | \; \forall z \; \text{è valida la proposizione } \mathcal{P}$

Soluzione esercizio 6.

- 1) $\exists x \mid \forall y \text{ non è valida } \mathcal{P}$.
- 2) $\forall x \; \exists y \mid \text{non è valida } \mathcal{P}.$
- 3) $\exists x \mid \forall y \; \exists z \mid \text{ non è valida } \mathcal{P}.$