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Rho-classes, index theory and Stolz’ positive scalar
curvature sequence

Paolo Piazza and Thomas Schick

Abstract

In this paper, we study the space of metrics of positive scalar curvature using methods from
coarse geometry.

Given a closed spin manifold M with fundamental group Γ, Stephan Stolz introduced the
positive scalar curvature exact sequence.

Higson and Roe introduced a K-theory exact sequence → K∗(BΓ)
α−→ K∗(C∗

Γ)
j−→ K∗+1(D

∗
Γ) →

in coarse geometry. The K-theory groups in question are the home of interesting (secondary)
invariants, in particular the rho-class ρΓ(g) ∈ K∗(D∗

Γ) of a metric of positive scalar curvature.
One of our main results is the construction of a map from the Stolz exact sequence to the

Higson–Roe exact sequence (commuting with all arrows), using coarse index theory throughout.
The main tool is an index theorem of Atiyah–Patodi–Singer (APS) type. Here, assume that

Y is a compact spin manifold with boundary, with a Riemannian metric g which is of positive
scalar curvature when restricted to the boundary (and π1(Y ) = Γ). One constructs an APS-
index IndΓ(Y ) ∈ K∗(C∗

Γ). This can be pushed forward to j∗(IndΓ(Y )) ∈ K∗(D∗
Γ) (corresponding

to the ‘delocalized part’ of the index). The delocalized APS-index theorem then states that
j∗(IndΓ(Z)) = ρΓ(g∂Z) ∈ K∗(D∗

Γ).
As a companion to this, we prove a secondary partitioned manifold index theorem for ρ-classes.
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1. Introduction and main results

1.1. Summary of the results

Given a closed spin manifold M with fundamental group Γ, Stephan Stolz introduced the
positive scalar curvature exact sequence, in analogy to the surgery exact sequence in topology.
It calculates a structure group of metrics of positive scalar curvature on M (the object we want
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to understand) in terms of spin-bordism of BΓ (the classifying space of Γ) and a further group
Rspin(Γ).

Higson and Roe introduced a K-theory exact sequence → K∗(BΓ) α−→ K∗(C∗
Γ)

j−→
K∗+1(D∗

Γ)→ in coarse geometry which contains the Baum-Connes assembly map α, with
K∗(D∗

Γ) canonically associated to Γ. The K-theory groups in question are the home of
interesting index invariants and secondary invariants, in particular the coarse index of the
spin Dirac operator Ind(D) ∈ K∗(C∗

Γ) and the rho-class ρΓ(g) ∈ K∗(D∗
Γ) of a metric of positive

scalar curvature. This is a realm where calculations are feasible.
One of our main results is the construction of a canonical comparison map from the Stolz

exact sequence to the Higson-Roe exact sequence (commuting with all arrows), using coarse
index theory throughout. This theorem complements the results of Higson and Roe in [11–13]
where they show that it is indeed possible to map the surgery exact sequence in topology to
their sequence → K∗(BΓ) α−→ K∗(C∗

Γ)
j−→ K∗+1(D∗

Γ)→.
Our main tool is an index theorem of Atiyah-Patodi-Singer type, which we believe to

be of independent interest. For this theorem, assume that Y is a compact spin manifold
with boundary, with a Riemannian metric g which is a product near the boundary and
whose restriction to the boundary has positive scalar curvature. Assume also that π1(Y ) = Γ.
Because the Dirac operator on the boundary is invertible, one constructs an APS-index
IndΓ(Y ) ∈ K∗(C∗

Γ). This can be pushed forward to j∗(IndΓ(Y )) ∈ K∗(D∗
Γ) (corresponding

to the “delocalized part” of the index). We then prove a “delocalized APS-index” theorem,
equating this class to the rho-class of the boundary j∗(IndΓ(Z)) = ρΓ(g∂Z) ∈ K∗(D∗

Γ).
As a companion to this, we prove a secondary partitioned manifold index theorem. Given a

(non-compact) spin manifoldW with positive scalar curvature metric g, with a free and discrete
isometric action by a group Γ and a Γ-invariant cocompact partitioning hypersurface M , one
can use a “partitioned manifold construction” in order to obtain the partitioned manifold
ρ-class ρpm

Γ (g) ∈ K(D∗
Γ). Assume in addition that M has a tubular neighborhood where the

metric is a product g = gM + dt2. Then we prove the partitioned manifold ρ-class theorem
ρΓ(gM ) = ρpm

Γ (g) ∈ K∗(D∗
Γ). We use this secondary partitioned manifold index theorem to

distinguish isotopy classes of positive scalar curvature on W .

1.2. Basics on coarse geometry and coarse index theory

We start by recalling the basic constructions of coarse geometry, their associated C∗-algebras
and K-theory as used in the paper. We shall freely use concepts and results from [9, 33].

Definition 1.1. Let X be a complete Riemannian manifold of positive dimension, let
Cc(X) be the compactly supported continuous functions with values in C and C0(X) its sup-
norm closure, the continuous functions vanishing at infinity.

Let E → X be a Hermitean vector bundle. We consider H := L2(E) and H ′ := L2(E)⊗
l2(N). These are so-called adequate X-modules, which means that H is a Hilbert space with
a C∗-homomorphism C0(X)→ B(H), given here by pointwise multiplication, and if 0 �= f ∈
C0(X), then it does not act as compact operator, and that C0(X)H is dense in H. We have a
canonical isometry u : H → H ′ mapping into the first direct summand of l2(N). Using this, we
map an operator A on H to the operator uAu∗ on H ′. We will implicitly do this throughout
the paper and this way consider the operators on H as operators on H ′, without explicitly
mentioning it.

(1) We define D∗
c (X,H) to be the algebra of bounded operators T on L2(E)⊗ l2(N) with

the following properties:
(i) T has finite propagation, which means that there is an R > 0 such that for each

s ∈ L2(E) and for each x ∈ supp(Ts), d(x, supp(s)) < R;
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(ii) T is pseudo-local: for each φ ∈ Cc(X), the commutator [T, φ] is compact.
Then define D∗(X,H) as the norm closure of D∗

c (X,H).
(2) We define C∗

c (X,H) to be the subalgebra of D∗
c (X,H) of operators which are, in

addition, locally compact, that is, Tφ and φT are compact for each φ ∈ Cc(X). The norm
closure of C∗

c (X,H) is called C∗(X,H). This is the Roe algebra of X.

The definition generalizes to an arbitrary proper metric space X; L2(E) then has to be replaced
by an abstract adequate C0(X)-module.

There are natural functoriality properties that we recall from [9, 15, 33].

Definition 1.2. A map f : X → Y between proper metric spaces is a coarse map if for
each R > 0 there is S > 0 such that the image under f of every R-ball is contained in an S-ball
and, moreover, the inverse image of every bounded set is bounded.

We will not prove the following functoriality results of Higson and Roe, but we recall, after
the proposition, the relevant construction which we are going to use.

Proposition 1.3. If f : X → Y is a continuous coarse map and HX ,HY are adequate
C0(X) or C0(Y )-modules, respectively, then f induces a non-canonical, but with suitable
choices functorial homomorphism f∗ : D∗(X,HX)→ D∗(Y,HY ) which maps C∗(X,HX) to
C∗(Y,HY ). The induced map in K-theory is canonical.

Definition 1.4. Applying Proposition 1.3 to id : X → X, we observe that C∗(X,HX)
and D∗(X,HX) depend only mildly on the adequate module HX , and that their K-theory
is independent of this choice. We follow the custom of [33] and drop HX from the notation,
writing simply C∗(X) or D∗(X) instead of C∗(X,HX), D∗(X,HX).

For the construction of f∗ of Proposition 1.3, we need the following concepts:

Definition 1.5. Let HX and HY be two adequate modules and let f : X → Y be a coarse
map. We say that an isometric embedding W : HX → HY covers f in the C∗-sense if W is the
norm-limit of linear maps V satisfying the following condition:

∃R > 0 s.t. φV ψ = 0 ∀φ ∈ Cc(Y ), ψ ∈ Cc(X) with d(supp(φ), supp(ψ)) > R. (1.1)

Given a coarse map it is always possible to find such a W . Then the map Ad(W )(T ) :=
WTW ∗, from the bounded operators onHX to the bounded operators ofHY , sends C∗(X,HX)
to C∗(Y,HY ) and we define f∗ := Ad(W ) : C∗(X,HX)→ C∗(Y,HY ). The induced map in K-
theory is independent of the choice of W , see [15, Lemma 3]. Moreover, by [8] the functor
K∗(C∗(X)) is a coarse homotopy invariant.

Regarding D∗(X,H) we have the following definition.

Definition 1.6. Let f : X → Y be a continuous coarse map, let HX , HY be two adequate
modules. We shall say that an isometry W : HX → HY covers f in the D∗-sense† if W is the

†In [39, Definition 2.4], the same property is denoted ‘W covers f topologically’.
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norm-limit of bounded maps V satisfying the following two conditions:

(1) there is an R > 0 such that φV ψ = 0 if d(supp(φ), f(supp(ψ))) > R, for φ ∈ Cc(Y ) and
ψ ∈ Cc(X);

(2) φV − V (φ ◦ f) is compact for each φ ∈ C0(Y ).

For such aW one proves that Ad(W ) sendsD∗(X,HX) intoD∗(Y,HY ) and induces therefore
a morphism f∗ := Ad(W ) : D∗(X,HX)→ D∗(Y,HY ). As for C∗, one proves that the induced
map in K-theory does not depend on the choice of W , see [15, Lemma 3].

Up to tensoring with �2(N), see [9, Lemma 7.7], it is always possible to find an isometry W
satisfying the required two properties, which is the reason why we included this tensor product
with �2(N) in the definition of D∗(X).

By [9, Lemma 7.8], K∗(D∗(X)) is invariant under continuous coarse homotopy.
To be able to use standard techniques from the K-theory of C∗-algebras, given a subspace

Z ⊂ X we replace C∗Z by an ideal C∗(Z ⊂ X) of C∗X as follows:

Definition 1.7. Let X be a proper metric space and Z ⊂ X a closed subset. Define
C∗(Z ⊂ X) as the closure of those operators T ∈ C∗

c (X) such that there is an R > 0 satisfying
φT = 0 = Tφ whenever φ ∈ Cc(X) with d(supp(φ), Z) > R. Define D∗(Z ⊂ X)† as the closure
of those T ∈ D∗

c (X) such that

(1) there is RT � 0 satisfying φT = 0 = Tφ whenever φ ∈ Cc(X) with d(supp(φ), Z) > RT

and
(2) ∀φ ∈ C0(X \ Z) φT and Tφ are compact.

Then D∗(Z ⊂ X) and C∗(Z ⊂ X) are ideals in D∗(X).

We now describe equivariant versions of the constructions made so far. Assume therefore
in addition that a discrete group Γ acts freely and isometrically on the manifold X and the
Hermitean bundle E. It then also acts by unitaries on H = L2(E).

(1) We define D∗(X)Γ to be the norm closure of the Γ-invariant part D∗
c (X)Γ, and its ideal

C∗(X)Γ as the norm closure of C∗
c (X)Γ. If Z is a Γ-invariant subspace, then we define

in the corresponding way the ideals D∗(Z ⊂ X)Γ and C∗(Z ⊂ X)Γ.
(2) The construction generalizes to an arbitrary proper metric spaceX with proper isometric

Γ-action, using a Γ-adequate‡ Cc(X)-module H with compatible unitary Γ-action.
(3) As indicated in the notation, one has suitable independence on E, along the way with

the obvious generalization of functoriality to Γ-equivariant maps.
(4) If the quotient V = X/Γ is a finite complex, then K∗(D∗(X)Γ/C∗(X)Γ) 
 K∗−1(V ); see

[33, Lemmas 5.14 and 5.15].

Lemma 1.8 (cf. [15, Lemma 1; 39, Proposition 3.8]). Given a closed Γ-subspace Z of a

proper metric Γ-spaceX, the inclusion Z ↪→ X induces K-theory isomorphismsK∗(C∗(Z)Γ)
∼=−→

K∗(C∗(Z ⊂ X)Γ), K∗(D∗(Z)Γ)
∼=−→ K∗(D∗(Z ⊂ X)Γ).

†We deviate here from the notation employed by Roe, for example, C∗
Z(X) for C∗(Z ⊂ X) in [33,

Definition 3.10]. Our notation and definitions agree with those used in [39].
‡Adequate requires a little bit of extra care, cf. [33, Definition 5.13]: replacing H by H ⊗ l2(Γ) ⊗ l2(N)

will do.
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Directly from the above results and the short exact sequence

0 −→ C∗(X)Γ −→ D∗(X)Γ −→ D∗(X)Γ/C∗(X)Γ −→ 0,

we obtain the Higson–Roe surgery sequence for a Γ manifold X with quotient X/Γ compact:

· · · −→ Kn+1(X/Γ) −→ Kn+1(C∗(X)Γ) −→ Kn+1((D∗(X)Γ)) −→ Kn(X/Γ) −→ · · · . (1.2)

We will also be interested in a universal version of this sequence. First, we give a definition:

Definition 1.9. Let Γ be a discrete group. Define

K∗(C∗
Γ) := dirlim

X⊂EΓ Γ-compact
K∗(C∗(X)Γ); K∗(D∗

Γ) := dirlim
X⊂EΓ Γ-compact

K∗(D∗(X)Γ).

Here, EΓ is any contractible CW-complex with free cellular Γ-action, a universal space for free
Γ actions.

By coarse invariance of C∗ and [33, Lemma 5.14], there is a canonical isomorphism
K∗(C∗(X)Γ) ∼= C∗

r Γ for any free cocompact Γ-space X. Therefore, the definition of K∗(C∗
Γ) is

along canonical isomorphisms and we get canonically K∗(C∗
Γ) = K∗(C∗

r Γ). Once this definition
is given, we obtain immediately the (universal) Higson–Roe surgery sequence

· · · −→ Kn+1(BΓ) −→ Kn+1(C∗
Γ) −→ Kn+1(D∗

Γ) −→ Kn(BΓ) −→ · · · , (1.3)

which can be rewritten as

· · · −→ Kn+1(BΓ) −→ Kn+1(C∗
r Γ) −→ Kn+1(D∗

Γ) −→ Kn(BΓ) −→ · · · . (1.4)

It is proved by Roe [34] that the homomorphism Kn+1(BΓ)→ Kn+1(C∗
r Γ) appearing in

(1.4) is precisely equal to the assembly map. This implies

if Γ is torsion free, then the Baum–Connes conjecture for Γ is equivalent to Kn+1(D∗
Γ) = 0.

(1.5)
If M is a proper complete metric space with a free cocompact isometric Γ-action, then there

is a universal Γ-map u : M → EΓ with range in a Γ-finite subcomplex (u is automatically
coarse), and any two such maps are (coarsely continuously) Γ-homotopic. We therefore get
canonical induced maps

u∗ : K∗(C∗(M)Γ) −→ K∗(C∗
Γ); u∗ : K∗(D∗(M)Γ) −→ K∗(D∗

Γ).

Moreover, for C∗(M)Γ the map is a canonical isomorphism.
More generally, if W is a complete metric space with free Γ-action, M ⊂W is Γ-invariant and

M/Γ is compact, then D∗(M ⊂W )Γ is the limit of D∗(UR(M))Γ as R→∞, where UR(M) is
the closed R-neighborhood of M , again a Γ-compact metric space. We get a compatible system
of universal maps to EΓ, all with image in finite subcomplexes, and an induced compatible
system of maps in K-theory, giving rise to the maps

K∗(D∗(M)Γ) i∗−→∼= lim
R→∞

K∗(D∗(M ⊂ UR(M))Γ) ∼= K∗(D∗(M ⊂W )Γ) u∗−→ K∗(D∗
Γ),

whose composition is the universal map for D∗(M)Γ.

1.3. Index and ρ-classes

We now recall Roe’s method of applying C∗-techniques to the Dirac operator to efficiently
define primary and secondary invariants for spin manifolds in the context of coarse geometry.

Let X be an arbitrary complete spin manifold with free isometric action by Γ of dimension
n > 0. Fix an odd continuous chopping function χ : R→ R, that is, χ(x) x→+∞−−−−−→ 1. With the
Dirac operator DX we now consider χ(DX). Roe proves, using finite propagation speed of the
wave operator and ellipticity, that this is an element in D∗(X)Γ, cf. [31, Proposition 2.3].



970 PAOLO PIAZZA AND THOMAS SCHICK

Proposition 1.10. Assume that Y ⊂ X is a Γ-invariant closed subset and the scalar
curvature is uniformly positive outside Y . Then χ(DX) is an involution modulo C∗(Y ⊂ X)Γ.

In particular, if we have uniformly positive scalar curvature, then χ(DX) is an involution in
D∗(X)Γ.

For the other extreme, without any further curvature assumption, χ(DX) is an involution
modulo C∗(X)Γ.

This important proposition is at the heart of the method. It is stated by Roe [33, Proposition
3.11] but without a full proof. A complete proof is given independently in Pape’s thesis [27,
Theorem 1.4.28], compare [5, Theorem 1.7], or by Roe [35, Lemma 2.3].

Recall that, given an involution x in a C∗-algebra A, it defines in a canonical way the element
[12 (x+ 1)] ∈ K0(A). If n := dim(X) is odd, then, in the situation of Proposition 1.10, we obtain
the corresponding class [DX ] := [12 (χ(DX) + 1)] ∈ K0(D∗(X)Γ/C∗(Y ⊂ X)).

If n is even, then we have to use the additional Γ-invariant grading of the spinor bundle
L2(S) = L2(S+)⊕ L2(S−). The operator DX and, because χ is an odd function, χ(DX) are
odd with respect to this decomposition so that we obtain the positive part χ(DX)+ : L2(S+)→
L2(S−). We choose any isometry U : L2(S−)→ L2(S+) covering idX in the D∗-sense.†

Then Uχ(DX)+ is a unitary in D∗(X)Γ/C∗(Y ⊂ X)Γ and represents [DX ] ∈
K1(D∗(X)Γ/C∗(Y ⊂ X)Γ).

Definition 1.11. Let (X, g) be a complete Riemannian spin manifold of dimension n > 0
with isometric free action of Γ. Define

Indcoarse(DX) := ∂([DX ]) ∈ Kn(C∗(X)Γ).

Here, ∂ is the boundary map of the long exact sequence of the extension 0→ C∗(X)Γ →
D∗(X)Γ → D∗(X)Γ/C∗(X)Γ → 0.

Observe that, if we have uniformly positive scalar curvature outside of Y , then we have a
canonical lift to

Indrel(DX) := ∂([DX ]) ∈ Kn(C∗(Y ⊂ X)Γ).

If we have uniformly positive scalar curvature throughout, then we define a secondary invariant,
the ρ-class of the metric g, as

ρ(g) := [DX ] ∈ Kn+1(D∗(X)Γ). (1.6)

Finally, if X/Γ is compact, then there is the canonical map to Kn+1(D∗
Γ) of Definition 1.9 and

we define ρΓ(g) ∈ Kn+1(D∗
Γ), the ρΓ-class of g, as the image of ρ(g) under this map

ρΓ(g) := u∗(ρ(g)) ∈ Kn+1(D∗
Γ). (1.7)

Remark 1.12. It is important to point out that in contrast to the ρ-class ρ(g) ∈
Kn+1(D∗(X)Γ), the ρΓ-class ρΓ(g) ∈ Kn+1(D∗

Γ) vanishes for groups without torsion, at least
for those for which the Baum–Connes conjecture holds. See the fundamental remark appearing
in (1.5). This means we expect ρΓ(g) to be different from zero only for groups Γ with torsion.

Basic non-trivial examples of ρΓ(g) for Γ with torsion are considered in [14].

†In [33], it is only required that U covers idX . However, as pointed out by Ulrich Bunke, to make sure that
Uχ(DX)+ ∈ D∗(X)Γ one needs the stronger assumption.
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Note that the ρ-class is well-defined whenever the Dirac operator DX is L2-invertible; we
denote it ρ(DX) in this more general case. In fact, we will sometime employ this notation also
for the spin Dirac operator associated to a positive scalar curvature metric.

1.4. Delocalized APS-index theorem

Geometric set-up 1.13. Let now (W, gW ) be a n-dimensional Riemannian spin manifold
with boundary, complete as metric space.‡ We denote its boundary (M, gM ), and we assume
always that we have product structures near the boundary. We assume that the scalar curvature
of gM is uniformly positive, and that Γ acts freely, isometrically and cocompactly on W and
therefore also on M . We denote the quotient of (W, gW ) by the action of Γ as (Y, gY ), a compact
Riemannian manifold with boundary. Associated to these data is W∞ = W ∪M M × [0,∞)
with extended product structure on the cylinder. This defines a complete Riemannian metric
g on W∞ and we then have uniformly positive scalar curvature outside W ⊂W∞.

The considerations of the previous subsection apply now to the pair (W ⊂W∞) and we
obtain therefore a class Indrel(DW∞) ∈ Kn(C∗(W ⊂W∞)Γ) and thus a class

Ind(DW ) := c−1
∗ Indrel(DW∞) ∈ Kn(C∗(W )Γ). (1.8)

Here, we use the canonical inclusion c : C∗(W )Γ → C∗(W ⊂W∞)Γ which induces an
isomorphism in K-theory by Lemma 1.8.

Let us remark here that, under the canonical isomorphism Kn(C∗(W )Γ) ∼= Kn(C∗
r Γ), this

index class corresponds to any of the other APS-indices for manifolds with boundary defined
in this context, for example, using the Mishchenko–Fomenko approach and the b-calculus or
using APS-boundary conditions, cf. Section 2.

The passage from C∗X to D∗X corresponds to the passage to the delocalized part of the
index information (we will explain this later). This delocalized part we can compute by a
K-theoretic version of the APS-index theorem.

Theorem 1.14 (Delocalized APS-index theorem). Let (W, gW ) be an even dimensional
Riemannian spin-manifold with boundary ∂W such that g∂W has positive scalar curvature.
Assume that Γ acts freely isometrically and W/Γ is compact. Then

ι∗(Ind(DW )) = j∗(ρ(g∂W )) in K0(D∗(W )Γ). (1.9)

Here, we use j : D∗(∂W )Γ → D∗(W )Γ induced by the inclusion ∂W →W and ι : C∗(W )Γ →
D∗(W )Γ the inclusion.

Corollary 1.15. By functoriality, using the canonical Γ-map u : W → EΓ of Def-
inition 1.9, we have ι∗u∗(Ind(DW )) = ρΓ(g∂W ) in K0(D∗

Γ). If we define IndΓ(DW ) :=
u∗(Ind(DW )) in K0(C∗

Γ), then the last equation reads

ι∗(IndΓ(DW )) = ρΓ(g∂W ) in K0(D∗
Γ). (1.10)

This gives immediately bordism invariance of the ρ-classes.

Corollary 1.16. Let (M1, g1) and (M2, g2) be two odd-dimensional free cocompact spin
Γ-manifolds of positive scalar curvature. Assume that they are bordant as manifolds with

‡That is, every Cauchy sequence converges.
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positive scalar curvature, that is, that there is a Riemannian spin manifold (W, g) with free
cocompact Γ-action such that ∂W = M1 �−M2, g has positive scalar curvature and restricts
to gj on Mj . Then

ρΓ(g1) = ρΓ(g2) ∈ K0(D∗
Γ).

Proof. The rho-class is additive for disjoint union and changes sign if one reverses the spin
structure. Because W and W∞ have uniformly positive scalar curvature, Ind(DW ) = 0; thus
IndΓ(DW ) = 0. The assertion now follows directly from Corollary 1.15.

Remark 1.17. Note that bordism invariance holds only for ρΓ-classes; indeed, we need a
common K-theory group where we can compare the two invariants. Precisely because of this
last observation, the following variant of Corollary 1.16 holds:

Let (M1, g1) and (M2, g2) be two free cocompact spin Γ-manifolds of positive scalar curvature
endowed with Γ-equivariant reference maps f1, f2 to a Hausdorff topological Γ-space X̃ with
compact quotient X := X̃/Γ. Assume that there exists a Riemannian spin manifold (W, g) as in
Corollary 1.16 endowed with a Γ-equivariant reference map F : W → X̃ such that F |Mj

= fj .
Then, defining ρX̃(gj) := (fj)∗ρ(gj) ∈ K0(D∗(X̃)Γ), we have the following identity:

ρX̃(g1) = ρX̃(g2) ∈ K0(D∗(X̃)Γ). (1.11)

Proof. Denote by ιX̃ : C∗(X̃)Γ → D∗(X̃)Γ the inclusion and similarly for ιW . Let j1 and
j2 be the natural inclusions Mj ↪→W . Then, from Theorem 1.14 we obtain

(ιW )∗(Ind(DW )) = (j1)∗ρ(g1)− (j2)∗ρ(g2) in K0(D∗(W )Γ).

We now apply F∗ : K0(D∗(W )Γ)→ K0(D∗(X̃)Γ). Since F ◦ j1 = f1 and F ◦ j2 = f2 and
since F∗(ιW )∗ = (ιX̃)∗F∗, with the F∗ on the right-hand side going from K0(C∗(W )Γ) to
K0(C∗(X̃)Γ), we see that

(ιX)∗F∗(Ind(DW )) = (f1)∗ρ(g1)− (f2)∗ρ(g2).

Since the left-hand side vanishes (recall that g on W is of positive scalar curvature), this is
precisely what we wanted to prove.

Remark 1.18. We are convinced that the theorem also is correct if dim(W ) is odd. In
the present paper, we only deal with the even case. By using Cln-linear Dirac operators and
an appropriate setup for Cln-linear (also called n-multigraded) cycles for K-theory, we expect
that our method should generalize to all dimensions and also to the refined invariants in real
K-theory one can get that way.

Remark 1.19. As we shall see, Theorem 1.14 has a surprisingly intricate proof. A different
approach for proving it would be to develop a theory for the Calderon projector P associated to
a Dirac-type operator on a Galois covering with boundary. In this direction, recall the classical
formula for the APS numeric index in terms of the Calderon projection P and the APS
projection Π�: indAPSD+ = i(Π�, P ). If one were able to extend this formula to the APS-index
class, then the theorem would follow provided one could establish, in addition, that the image of
the class of the Calderon projector [P ] in K0(D∗(W )Γ) vanishes. It would be very interesting
to work out this alternative approach to Theorem 1.14, which seems to be, however, quite
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an intricate question. A first step in this direction is carried out in [1], where the Calderon
projector for C∗-module coefficients is constructed.

Example 1.20. The morphisms C∗(M)Γ → C∗(W )Γ → C∗(W ⊂W∞)Γ induce (canoni-
cal) isomorphisms in K-theory by Lemma 1.8 and because M →W is a coarse equivalence, as
W/Γ is compact. Consequently, we can map Ind(DW ) also to K∗(D∗(M)Γ) and compare its
image there to ρ(gM ).

It turns out that in general these two objects are different, so that a corresponding sharpening
of Theorem 1.14 is not possible. Indeed, an additional secondary term, a rho-class of a bordism,
shows up. This secondary class appears naturally when one gives a proof of bordism invariance
of the rho-index using suitable exact sequences of K-theory of Roe algebras and the principle
that ‘boundary of Dirac is Dirac’. We plan to work this out in a sequel publication.

Explicitly, take W = Dn+1 with ∂W = Sn, with the standard metrics (slightly modified to
have product structure near the boundary, but clearly with positive scalar curvature as long
as n > 1).

Because of overall positive scalar curvature, Ind(DW ) ∈ K∗(C∗(W )) = K∗(C) vanishes, and
so does its image in K∗(D∗(Sn)).

On the other hand, the Dirac operator on Sn represents the fundamental class, a non-trivial
element in Kn(Sn). By the commutativity of the diagram (1.15), another main theorem of this
paper, ρ(gSn) ∈ Kn(D∗(Sn)) has to be non-trivial, being mapped to a non-trivial element in
Kn(D∗(Sn)/C∗(Sn)) = Kn(Sn). Observe that this is a purely topological phenomenon, having
nothing to do with analysis.

1.5. Secondary index theorem for ρ-classes on partitioned manifolds

In this section, we formulate a partitioned manifold secondary index theorem, for the ρ-class
on a manifold of uniformly positive scalar curvature.

For this aim, let W be a (non-compact) Riemannian spin manifold of dimension n+ 1 with
isometric free Γ-action and assume that there is a Γ-invariant two-sided hypersurface M ⊂W
such that M/Γ is compact. We get a decomposition W = W− ∪M W+.

Let us quickly recall the primary partitioned manifold index theorem. The classical case is
Γ = {1}, then we obtain Ind(DW ) ∈ Kn+1(C∗(W )). The partition allows to construct a map
(showing up in a corresponding Mayer–Vietoris sequence as in Section 3.3) to Kn(C∗(M)) =
Kn(C). The partitioned manifold theorem of Roe [31] then simply states that the image of
Ind(DW ) under this map is ind(DM ). The corresponding statement for non-trivial Γ and even
n is covered in [46].

We now treat the same question for the secondary rho class of manifolds with uniformly
positive scalar curvature. Indeed, let us first give a direct definition of the partitioned manifold
rho-class, similar to the definition of the partitioned manifold index as given by Higson [6].

Definition 1.21. Assume, in the above situation, that W has dimension n+ 1 and
uniformly positive scalar curvature. Then we constructed ρ(DW ) ∈ Kn+2(D∗(W )Γ). Consider
the image of [DW ] under the D∗-Mayer–Vietoris boundary map for the decomposition of W
into W+ and W− along W (discussed in Section 3.3): δMV[DW ] ∈ Kn+1(D∗(M)Γ). We set

ρpm(g) := δMV[DW ] ∈ Kn+1(D∗(M)Γ) (1.12)

and we call it the partitioned manifold ρ-class associated to the partitioned manifold W =
W− ∪M W+. We shall be mainly concerned with a universal version of this class: we consider
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the canonical map u : M → EΓ and we set

ρpm
Γ (g) := u∗(δMV[DW ]) ∈ Kn+1(D∗

Γ). (1.13)

We call this secondary invariant the partitioned manifold ρΓ-class associated to
W = W− ∪M W+.

Theorem 1.22. Let (W, g) be a connected spin manifold partitioned by a hypersurface
M into W− ∪M W+. Let Γ act freely on (W,M). Let dim(W ) = n+ 1 be even. Assume that
the metric g on W has uniformly positive scalar curvature and that the metric on a tubular
neighborhood of the hypersurface M has product structure, so that the induced metric gM

also has positive scalar curvature. Assume, finally, that M/Γ is compact. Then

ρpm
Γ (g) = ρΓ(gM ) ∈ Kn+1(D∗

Γ).

Remark 1.23. We are convinced that the assertion of Theorem 1.22 also holds if dim(W )
is odd. As detailed in Remark 1.18, with appropriate new multigrading input our method might
carry over. Again, we hope to work this out in the future.

Corollary 1.24. Let W be as in Theorem 1.22 with two Γ-equivariant metrics g0, g1 of
uniformly positive scalar curvature (and in the same coarse equivalence class) which are of
product type near M . If g0, g1 are connected by a path of uniformly positive Γ-equivariant
metrics gt in the same coarse metric class (not necessarily product near M), then ρpm

Γ (g0
M ) =

ρpm
Γ (g1

M ) ∈ Kn+1(D∗
Γ).

Proof. We simply have to observe that we get a homotopy ρpm
Γ (gt) between ρpm

Γ (g0) and
ρpm
Γ (g1) in D∗

Γ and then apply homotopy invariance of K-theory.

As an application of this corollary, assume that M/Γ, which is assumed to be compact, has
two metrics g0, g1 with Γ-invariant lifts g̃0, g̃1 that have the property that ρΓ(g̃0) �= ρΓ(g̃1) ∈
Kn+1(D∗

Γ). Of course, this implies that the two metrics are not concordant on M/Γ. Stabilize
by taking the product with R (with the standard metric). We can now conclude that even
with the extra room on M/Γ× R we cannot deform g0 + dt2 to g1 + dt2 through metrics of
uniformly positive scalar curvature. This follows directly from the corollary.

The strategy of proof for this ρ-version of the partitioned manifold index theorem is the
same as the classical one:

(1) we prove it with an explicit calculation for the product case;
(2) we prove that the partitioned manifold rho-class depends only on a small neighborhood

of the hypersurface.

Remark 1.25. In the situation of Theorem 1.22, both ρpm(g) and ρ(gM ) are defined in
K∗(D∗(M)Γ). However, our method does not give any information about equality of these
classes, only about their images in K∗(D∗

Γ). This is in contrast to Theorem 1.14, where the
equality is established in K∗(D∗(W )Γ).

On the other hand, we also do not have an example where the partitioned manifold ρ-class
does not coincide with the ρ-class of the cross section. It is an interesting challenge to either
find such examples, or to improve the partitioned manifold secondary index theorem. The latter
would be important in particular in light of applications like the stabilization problem we just
discussed: if g1, g2 on M are positive scalar curvature metrics which are not concordant, is the
same true for g1 + dt2 and g2 + dt2 on R×M?
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1.6. Mapping the positive scalar curvature sequence to analysis

The Stolz exact sequence is the companion for positive scalar curvature of the surgery
exact sequence in the classification of high-dimensional manifolds. The latter connects the
structure set, consisting of all manifold structures in a given homotopy type, with the
generalized homology theory given by the L-theory spectrum and the algebraic L-groups of
the fundamental group.

Similarly, Stolz’ sequence connects the ‘structure set’ Posspin (cf. Definition 1.26), which
contains the equivalence classes of metrics of positive scalar curvature to the generalized
homology group Ωspin and to Rspin(X). The latter indeed is a group which only depends
on the fundamental group of X. It is similar to the geometric definition of L-groups. Missing
until now is an algebraic and computable description of these R-groups, in contrast to the
L-groups of surgery.

In this subsection, we construct a map from the Stolz positive scalar curvature exact sequence
to analysis. We give a picture which describes the transformation as directly as possible, using
indices defined via coarse geometry.

Definition 1.26. Fix a reference space X (often X = BΓ).

(1) Define Posspin
n (X) as the set of singular bordism classes (M,f : M → X, g) of n-

dimensional closed spin manifolds M together with a reference map f and a positive scalar
curvature metric g on M . A bordism between (M,f : M → X, g) and (M ′, f ′ : M ′ → X, g′)
consists of a compact manifold with boundary W , with ∂W = M � (−M ′), a reference map
F : W → X restricting to f and f ′ on the boundary and a positive scalar curvature metric on
W which has product structure near the boundary and restricts to g and g′ on the boundary.

(2) We define Ωspin
n+1 as the set of bordism classes (W, f, g) where W is a compact (n+ 1)-

dimensional spin-manifold, possibly with boundary, with a reference map f : W → X, and with
a positive scalar curvature metric on the boundary when the latter is non-empty. Two triples
(W, f, g∂W ), (W ′, f ′, g′∂W ) are bordant if there is a bordism with positive scalar curvature
between the two boundaries, call it N , such that

Y := W ∪∂W N ∪−∂W ′ (−W ′)

is the boundary of a spin manifold Z. The reference maps to X have to extend over Z. By
the surgery method for the construction of positive scalar curvature metrics, this set actually
depends only on the fundamental group of X if X is connected, cf. [36, Section 5].

(3) Finally, Ωspin
n (X) is the usual singular spin bordism group of X.

Proposition 1.27. As a direct consequence of the definitions we get a long exact sequence,
the Stolz exact sequence

−→ Posspin
n (X) −→ Ωspin

n (X) −→ Rspin
n (X) −→ Posspin

n−1(X) −→
with the obvious boundary or forgetful maps.

Theorem 1.28. For X a compact space with fundamental group Γ and universal covering
X̃, there exists a well defined and commutative diagram, if n is odd,

−−−−→ Ωspin
n+1(X) −−−−→ Rspin

n+1(Γ) −−−−→ Posspin
n (X) −−−−→ Ωspin

n (X) −−−−→⏐⏐�β

⏐⏐�IndΓ

⏐⏐�ρΓ

⏐⏐�β

−−−−→ Kn+1(X) −−−−→ Kn+1(C∗
r Γ) −−−−→ Kn+1(D∗(X̃)Γ) −−−−→ Kn(X) −−−−→ .

(1.14)
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We also get a universal commutative diagram

−−−−→ Ωspin
n+1(BΓ) −−−−→ Rspin

n+1(BΓ) −−−−→ Posspin
n (BΓ) −−−−→ Ωspin

n (BΓ) −−−−→⏐⏐�β

⏐⏐�IndΓ

⏐⏐�ρΓ

⏐⏐�β

−−−−→ Kn+1(BΓ) −−−−→ Kn+1(C∗
r Γ) −−−−→ Kn+1(D∗

Γ) −−−−→ Kn(BΓ) −−−−→ .
(1.15)

Remark 1.29. As soon as the extension to arbitrary dimensions of our secondary index
Theorem 1.14 has been carried out (as indicated in Remark 1.18), also Theorem 1.28 extends
to arbitrary dimensions.

Remark 1.30. In their seminal papers [11–13], Higson and Roe carry out a program
similar to the one developed here: they construct a map from the surgery exact sequence
in topology to exactly the same K-theory exact sequence showing up in (1.15) (with 2
inverted). Their construction is not quite as analytic as ours: it is not based on the index
of the signature operator but rather on the manipulation of Poincaré duality complexes. In
[29], we develop a direct analog of our index theoretic construction for the surgery exact
sequence in topology. Note that the analysis is more difficult than the one developed here,
given that the signature operator attached to an element of the structure set will not be
invertible; similarly, the boundary-signature operator attached to an element of the L-groups
of the fundamental group will not be invertible. One can use the homotopy equivalences built in
the definition of the L-groups and the structure set in order to obtain a smoothing perturbation
which makes the signature operator invertible, as in [28]. The issue is then to extend the
constructions of index and rho-classes and the proofs of the secondary index theorems to this
more general class of Dirac-type operators with smoothing perturbation (making the sum
invertible).

We have completed this program in [29], reproving the main results of [11–13] with purely
operator theoretic methods. The corresponding general index theorems should be useful in
other contexts, as well.

Remark 1.31. Beyond the extension of the method to the surgery exact sequence, a
second goal for future work is to continue and map further from the K-theory exact sequence
of (1.15) to a suitable exact sequence in cyclic (co)homology which should then allow one
to obtain systematically numerical higher invariants. To achieve this, one has to overcome
further analytic difficulties as the algebra D∗X is too large to allow for easy constructions
of (higher) traces on it. Higson and Roe [14] carry out a small part of this program. They
check that the pairing with the trace coming from a virtual representation of dimension zero
(which gives rise to the APS rho invariant) is compatible with the K-theory exact sequence.
It turns out that their construction of the relevant map on K∗(D∗X) is very delicate. In [42],
Wahl extends this to some more refined invariants, but working directly with the surgery
exact sequences and its specific properties and, more importantly, mapping directly to cyclic
homology, or rather non-commutative de-Rham homology, as was done in [21] for the Stolz
sequence.

We now describe the structure of the rest of the paper. In Section 2, we review several
alternative and previously used definitions of higher indices, in particular for manifolds with
boundary, and check that they coincide with the approach via coarse C∗-algebras which we
have described above (in the contexts where this makes sense). This puts ‘coarse index theory’
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in the context of usual index theory and allows us to use a few known properties of indices
(like bordism invariance and gluing formulas) without having to prove them again in the coarse
setting. In Section 3, we will work out basic properties of the K-theory of coarse C∗-algebras
which we use in the course of the proofs. Section 4 finally is devoted to the proofs of the main
Theorems 1.22 and 1.28, implementing the program set out above.

Remark 1.32. After the first publication of the present paper in the arXiv, Xie and Yu,
in the preprint [45], treated the problem with a different method. They use Yu’s localization
algebras and an exterior product structure between K-homology and the analytic structure
group to reduce the proof of the main result of this paper to the known behavior of the K-
homology fundamental class under the Mayer–Vietoris boundary map. Where for us the main
difficulty lies in the explicit index calculation in the model situation, for them the main difficulty
is the explicit calculation of certain exterior products which uses the full force of KK-theory.
Their method does cover even and odd dimensions at the same time.

Moreover, also Paul Siegel announced a proof of the general case, along similar lines as Xie
and Yu. In his PhD thesis, he develops a new model for K-homology and the structure set
and develops an exterior product between those, and calculates the exterior product between a
rho-class and a fundamental class. Paul Siegel has announced that he proved the compatibility
between exterior product and Mayer–Vietoris. Again, this would lead to a proof of our main
theorems in all dimensions, and would generalize to real K-theory.

2. Coarse, b- and APS index classes

The goal of this section is to give alternative descriptions of the relative coarse index class
Indrel(DW∞) ∈ Kn(C∗(W ⊂W∞)Γ), n = dimW , connecting it with classes that have already
been defined in the literature. We also explain why we look at our index theorem as a delocalized
APS index theorem.

2.1. Index classes in the closed case

First of all, we tackle the analogous problem in the boundaryless case. Thus, let V be a complete
spin† Riemannian manifold with a free, isometric, cocompact spin structure preserving action
of Γ. We denote the quotient V/Γ, a compact spin manifold without boundary, by Z; we thus
get a Galois Γ-covering V

π−→ Z. We denote the spinor bundles on V and Z by SV and SZ ,
respectively; SV is Γ-equivariant and SZ is obtained from SV by passing to the quotient. There
are five C∗-algebras which we consider:

(1) C∗(V )Γ, the Roe algebra we have defined in Subsection 1.3;
(2) the C∗-algebra C∗(G) defined by the groupoid G associated to the Γ-covering Γ− V →

Z; this is the groupoid with set of arrows V ×Γ V , units Z and source and range maps
defined by s[v, v′] = π(v′) and r[v, v′] = π(v). We also consider the Morita equivalent
C∗-algebra C∗(G,SV ), which is defined by taking the closure of the algebra of smooth
integral kernels C∞

c (G, (s∗SZ)∗ ⊗ r∗SZ);
(3) the C∗-algebra of compact operators K(E) of the C∗

r Γ-Hilbert module E defined by taking
the closure of the pre-Hilbert CΓ-module C∞

c (V, SV );
(4) the C∗-algebra of compact operators K(EMF) of the Mishchenko–Fomenko C∗

r Γ-Hilbert
module EMF which is, by definition, L2(Z, SZ ⊗ VMF); here VMF denotes the Mishchenko

†Our arguments actually apply to any Dirac-type operator.



978 PAOLO PIAZZA AND THOMAS SCHICK

bundle: VMF := V ×Γ C
∗
r Γ. We can also consider E1

MF := H1(Z, SZ ⊗ VMF), the first
Sobolev C∗

r Γ-module.
(5) the reduced C∗-algebra of the group Γ: C∗

r Γ.

The relationships between these C∗-algebras are as follows:

C∗(V )Γ = C∗(G,S) 
 K(E) 
 K(EMF) 
 K ⊗ C∗
r Γ (2.1)

where all the isomorphisms are canonical. The first equality, with L2(V, SV ) chosen as Hilbert
C0(V )-module for C∗(V )Γ, follows from the inclusion

C∞
c (G, (s∗SZ)∗ ⊗ r∗SZ) ⊂ Cc(V )Γ.

The second isomorphism is a special case of the corresponding result for foliated bundles in [25],
and was well known before. The third isomorphism is induced by a canonical isomorphism of
CΓ-modules, ψ : C∞

c (V, SV )→ C∞
c (V, SV ⊗ CΓ)Γ ≡ C∞(Z, SZ ⊗ Valg) with Valg := V ×Γ CΓ,

see [23, Proposition 5] (it will suffice to replace Bω there with CΓ). The last isomorphism is a
consequence of the fact that L2(Z, SZ ⊗ VMF) is isomorphic to the standard C∗

r -Hilbert module
HC∗

r Γ.
From (2.1), we obtain

K∗(C∗(V )Γ) = K∗(C∗(G,S)) 
 K∗(K(E)) 
 K∗(K(EMF))

 K∗(K ⊗ C∗

r Γ) 
 K∗(C∗
r Γ), (2.2)

where all the isomorphisms are canonical.
The K-theory of these C∗-algebras are the home of different equivalent definition of the

index class associated to the Dirac operator DV . Let us recall these definitions in the even
dimensional case:

(1) the coarse index class Indcoarse(DV ) ∈ K0(C∗(V )Γ) of Definition 1.11;
(2) the Connes–Skandalis index class IndCS(DV ) ∈ K0(C∗(G,SV )) defined via the Connes–

Skandalis projector associated to a parametrix Q for DV . Thus, we first choose Q, a
Γ-compactly supported pseudodifferential operator of order (−1) so that

QD+
V = Id− S+, D+

V Q = Id− S− (2.3)

with remainders S− and S+ that are in C∞
c (G, (s∗S±

Z )∗ ⊗ r∗S±
Z ); then we consider

IndCS(DV ) := [PQ]− [e1] ∈ K0(C∗(G,SV )), with

PQ :=
(

S2
+ S+(I + S+)Q

S−D+
V I − S2

−

)
; e1 :=

(
0 0
0 1

)
. (2.4)

Here, we have in fact defined the compactly supported index class IndCS
c (DV ) ∈

K0(C∞
c (G, (s∗SZ)∗ ⊗ r∗SZ)); the C∗-index class is the image of this class under the K-

theory homomorphism induced by the inclusion C∞
c (G, (s∗SZ)∗ ⊗ r∗SZ) ↪→ C∗(G,SV ).

There are other equivalent descriptions of this C∗-index class, such as the one defined
by the Wassermann projector [4, p. 356] or the graph projector [25, Section 8]; these
are obtained from parametrices that are of Sobolev order (−1) but are not compactly
supported.

(3) the analogous index class IndCS
MF(DV ) ∈ K0(K(EMF)), defined via a Mishchenko–

Fomenko parametrix Q for D+, with D+ equal to the Dirac operator on Z twisted
by VMF;

(4) the Mishchenko–Fomenko index class IndMF(DV ) := [L+]− [L−] ∈ K0(C∗
r Γ), defined via

a Mishchenko–Fomenko decomposition induced by D+ on E1
MF and EMF.
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Proposition 2.1. Up to canonical K-theory isomorphisms we have

Indcoarse(DV ) = IndCS(DV ) = IndCS
MF(DV ) = IndMF(DV ). (2.5)

Proof. The equality IndCS(DV ) = IndCS
MF(DV ) follows from the second and third isomor-

phism in (2.1). A detailed proof appears in [4, Lemma 6.1], where it is actually proved that
IndCS

MF(DV ) is equal to the image of the compactly supported index class IndCS
c (DV ) under the

K-theory homomorphism induced by the inclusion C∞
c (G, (s∗SZ)∗ ⊗ r∗SZ) ↪→ C∗(G,SV ).

For the other equalities we make a preliminary remark. It is clear that the Connes–Skandalis
index class of DV is equal to the Connes–Skandalis index class of the bounded transform of
DV . This is true by general principles but can also be checked directly: consider A = (1 +
D2

V )−1/2DV and B = (1 +D−
V D

+
V )1/2Q, which will be written shortly as (1 +D2

V )1/2Q. Then
A+B = Id−R− and BA+ = Id−R+, with R− = S− and R+ = (1 +D2

V )1/2S+(1 +D2
V )−1/2.

We can now write the Connes–Skandalis projector associated to A+, B and R± and we call it
PB . This is homotopic to the Connes–Skandalis projector (2.4) (just consider (1 + sD2

V )±1/2,
with s ∈ [0, 1], throughout). Moreover, the K-theory class defined by PB is nothing but
∂[A+], the index class associated to A+ via the short exact sequence 0→ K(E)→ B(E)→
B(E)/K(E)→ 0. Now, the same remark applies to IndCS

MF(DV ) but for the isomorphic short
exact sequence 0→ K(EMF)→ B(EMF)→ B(EMF)/K(EMF)→ 0. We can now invoke the results
in [43, Section 17], stating the equality of the latter index with the Mishchenko–Fomenko index
of (1 +D2)−1/2D+. Using the Mishchenko–Fomenko calculus the latter is easily seen to be the
same as the Mishchenko–Fomenko index of D+, see for example [37, Theorem 6.22] for the
details.

Summarizing: we have also proved that IndCS
MF(DV ) = IndMF(DV ). It remains to show that

Indcoarse(DV ) = IndCS(DV ). To this end we start with the expression of the Connes–Skandalis
index class in terms of A+, B, R±

IndCS(DV ) = [PB ]− [e1] with PB =
(

R2
+ R+(I +R+)B

R−A+ I −R2
−

)
.

Consider now the function χ(x) := x/
√

1 + x2; this is a chopping function (so, it can be used
to define the coarse index) and χ(DV ) = A. The inverse of U∗A+ in D∗(V )Γ/C∗(V )Γ can be
represented by BU ∈ D∗(V )Γ: we observe that

(BU)(U∗A+) = Id−R+; (U∗A+)(BU) = U∗(Id−R−)U.

We now write the expression of ∂(U∗A+) in terms of these choices and we obtain

Indcoarse(DV ) = [ΠB ]− [e1] with ΠB =
(

R2
+ R+(I +R+)BU

U∗R−A+ U∗(I −R2
−)U

)
.

Observing now that

ΠB =
(

1 0
0 U∗

)
PB

(
1 0
0 U

)
,

we conclude that Indcoarse(DV ) = IndCS(DV ), as required.

2.2. Index classes on manifolds with boundary

We now pass to manifolds with boundary and we adopt the notation explained in the Geometric
set-up 1.13. We remark that the complete Riemannian spin manifold (W∞, g) is in a natural
way a Γ-covering of Y∞, the manifold with cylindrical end associated to Y . We consider the
groupoid G∞ := W∞ ×Γ W∞ and the associated C∗-algebra C∗(G∞), obtained by taking the
closure of C∞

c (G∞). Similarly, we can consider C∗(G∞, S) with S the spinor bundle of W∞.
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Then, as in (2.1)

C∗(W ⊂W∞)Γ = C∗(G∞, S). (2.6)

Proposition 2.2. Assume that W has dimension n = 2� and that the boundary has
positive scalar curvature. Then, using a b-parametrix, there is a well-defined b-index class
associated to the spin Dirac operator on W∞

Indb(DW∞) ∈ K0(C∗(W ⊂W∞)Γ).

Proof. This class is, by definition, the Connes–Skandalis projector associated to a suitable
parametrix. We take the parametrix construction explained in [26] (which is directly inspired
by the b-parametrix construction of Melrose [24]). The parametrix in [26] is explicitly proved
to have remainders in C∗(G∞, S), thus, by (2.6), in C∗(W ⊂W∞)Γ.

Together with this b-index class we consider other K-theory classes:

(1) the Mishchenko–Fomenko b-index class Indb
MF(DW∞) ∈ K0(C∗

r Γ), obtained from a
Mishchenko–Fomenko decomposition theorem induced by a b-parametrix in the b-
Mishchenko-Fomenko calculus on Y∞, see [19] and the Appendix of [20];

(2) the index class IndAPS
MF (DW ) ∈ K0(C∗

r Γ) defined by a Mishchenko–Fomenko boundary
value problem on Y à la APS, see [44];

(3) the conic index class Indconic
MF (DW ) ∈ K0(C∗

r Γ) defined by a Mishchenko–Fomenko conic
parametrix, see [20].

Remark 2.3. Each one of these index classes has interesting features: Indb
MF(DW∞) is the

most suitable for proving higher index formulas (see the next subsection); the conic index class
displays the most interesting stability properties (see [18], where these two properties are used
in order to define higher signatures on manifolds with boundary and proving, under additional
assumptions on Γ, their homotopy invariance). The APS index class, on the other hand, makes
the study of gluing and cut-and-paste problems particularly easy.

Proposition 2.4. Up to natural K-theory isomorphisms the following equalities hold:

Indrel(DW∞) = Indb(DW∞) = Indb
MF(DW∞) = IndAPS

MF (DW ) = Indconic
MF (DW ).

Proof. The equalities Indb
MF(DW∞) = IndAPS

MF (DW ) = Indconic
MF (DW ) are proved in [18] (the

case treated here, with full invertibility of the boundary operator, is actually simpler than
the one discussed in [18]). The proof that Indb(DW∞) = Indb

MF(DW∞) is as in the closed
case (hence, using the results in [43]). Thus, we only need to prove the first equality:
Indrel(DW∞) = Indb(DW∞). However, this follows once again from the reasoning given in
the proof of Proposition 2.1. Indeed, the relative-coarse index class is defined in terms of
U∗χ(DV )+, with χ a chopping function equal to ±1 on the spectrum of the boundary operator.
We have claimed that χ(D)−U is an inverse of U∗χ(DV )+ modulo C∗(W ⊂W∞)Γ; now, in
order to define ∂[U∗χ(DV )+] we can choose an arbitrary inverse in the quotient. Consider BU ,
with B = (1 +D2

V )1/2Q and Q equal to a b-parametrix for D+
V as in [26]. It is easy to see,

from the expression of Q, that BU is indeed an element in D∗(W∞)Γ; moreover, since S±, the
remainders given by Q, are residual terms in the b-calculus, it follows that R± are also residual,
so that BU is indeed an inverse of U∗χ(DV )+ mod C∗(G∞, S), that is, modC∗(W ⊂W∞)Γ.
The proof now proceeds as in the closed case.
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2.3. Delocalizing

The goal of this subsection is to explain why we look at our index formula (1.10)

ι∗(IndΓ(DW )) = ρΓ(g∂W )∈K0(D∗
Γ)

as an equality between a delocalized part of the index class and the rho-class of the boundary
operator. This is not needed in the sequel, but meant to put our considerations in the context
of previously established index theorems.

To this end we recall the higher APS-index formula proved in [19, Theorem 14.1]. This is
a formula for the Karoubi Chern-character of the index class Indb(DW∞), an element in the
non-commutative de Rham homology H̄∗(B∞) (B∞ is a suitable dense holomorphically closed
subalgebra of C∗

r Γ, for example the Connes–Moscovici algebra). The formula reads

Ch(Indb
MF(DW∞)) =

[∫
Y

Â(Y,∇Y ) ∧ ω − 1
2
η̃(D∂W )

]
in H̄∗(B∞), (2.7)

where Y = W/Γ, ω is a certain bi-form in Ω∗(Y )⊗ Ω∗(CΓ) and where

η̃(D∂W ) ∈ Ω̄∗(B∞) := Ω∗(B∞)/[Ω∗(B∞),Ω∗(B∞)]

is Lott’s higher eta invariant of the boundary operator [22], an invariant which is well defined
for any L2-invertible Dirac operator DV on the total space of a boundaryless Galois Γ-covering
V with base Z. Assume now, for simplicity, that Γ is virtually nilpotent. Under this additional
assumption, the complex Ω̄∗(B∞) splits as the direct sum of sub-complexes labeled by the
conjugacy classes of Γ. Write 〈Γ〉 for the set of conjugacy classes. Thus η̃(DV ) splits as a
direct sum

η̃(DV ) =
⊕

〈x〉∈〈Γ〉
η̃〈x〉(DV ).

The higher ρ-invariant of Lott [22] associated to DV is, by definition,

ρ̃(DV ) :=
⊕

〈x〉�=〈e〉
η̃〈x〉(DV ).

As pointed out in [22, p. 222], the higher ρ-invariant lies in fact in H̄∗(B∞). Note that
H̄∗(B∞) splits as the direct sum H̄∗(B∞) = H̄〈e〉,∗(B∞)⊕ H̄deloc

∗ (B∞) with the first group on
the right-hand side associated to the subcomplex of Ω̄∗(B∞) labeled by the trivial conjugacy
class 〈e〉 and the second group associated to the subcomplexes labeled by the non-trivial
conjugacy classes; H̄deloc

∗ (B∞) is thus the delocalized part of H̄∗(B∞). Then ρ̃(DV ) lies in
H̄deloc

∗ (B∞). We let πdeloc be the natural projection map. Then on the basis of the higher APS
index formula (2.7) one proves easily that

πdeloc(Ch ◦ Indb
MF (DW∞)) = − 1

2 ρ̃(D∂W ). (2.8)

Thus we see that Lott’s higher rho invariant corresponds to the delocalized part of the Chern
character of the index class. We regard our equation ι∗(IndΓ(DW )) = ρΓ(g∂W ) as a sharpening
in K-theory of (2.8).

Finally, it is proved in [21] that the higher rho-invariant induces a well-defined group
homomorphism

ρ̂ : Posspin
n (BΓ) −→ H̄deloc

∗ (B∞) (2.9)



982 PAOLO PIAZZA AND THOMAS SCHICK

with ρ̂[Z, u : Z → BΓ, gZ ] = − 1
2 ρ̃(DV ), V = u∗EΓ, and ∗ = odd if n = 2� and ∗ = even is n =

2�+ 1. Together with (2.8) this shows that the following diagram is commutative:

Rspin
n+1(BΓ) −−−−→ Posspin

n (BΓ)⏐⏐�Ch◦IndΓ

⏐⏐�ρ̂

H̄∗(B∞) −−−−→ H̄deloc
∗ (B∞).

(2.10)

In future work, we plan to tackle the problem of defining a group homomorphism
Chdeloc : K∗(D∗

Γ)→ H̄deloc
∗ (B∞) so that the following double diagram is commutative and the

composition of the two vertical arrows on the right-hand side is precisely ρ̂ in (2.9):

Rspin
n+1(BΓ) −−−−→ Posspin

n (BΓ)⏐⏐�IndΓ

⏐⏐�ρ

Kn+1(C∗
r Γ) −−−−→ Kn+1((D∗

Γ))⏐⏐�Ch

⏐⏐�Chdeloc

H̄∗(B∞) −−−−→ H̄deloc
∗ (B∞).

In fact, we hope to map the whole Higson–Roe surgery sequence to a sequence in non-
commutative de Rham homology.

3. K-theory homomorphisms

3.1. Geometrically induced homomorphisms

Let W , W∞, M = ∂W be as in the Geometric set-up 1.13.
In the following, with slight abuse of notation we will denote all inclusions C∗(X)→ D∗(X)

(and their equivariant and relative versions) by ι and the induced map in K-theory by ι∗.

Proposition 3.1. We have commutative diagrams

K∗(C∗(∂W )Γ) ι∗−−−−→ K∗(D∗(∂W )Γ)⏐⏐�j∗

⏐⏐�j∗

K∗(C∗(W )Γ) ι∗−−−−→ K∗(D∗(W )Γ)

c

⏐⏐�∼= c

⏐⏐�∼=

K∗(C∗(W ⊂W∞)Γ) ι∗−−−−→ K∗(D∗(W ⊂W∞)Γ),

(3.1)

K∗(D∗(∂W )Γ) −−−−→ K∗(D∗(W )Γ)

∼=
⏐⏐�j∂ ∼=

⏐⏐�c

K∗(D∗(∂W ⊂ [0,∞)× ∂W )Γ)
j+−−−−→ K∗(D∗(W ⊂W∞)Γ)

(3.2)

with j+ and j∂ induced by the natural inclusions.

Proof. To construct the maps C∗(∂W )Γ → C∗(W )Γ and D∗(∂W )Γ → D∗(W )Γ, we can and
will use the same isometry covering the inclusion j : ∂W →W . Then all the maps are induced
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by inclusions of algebras and therefore the commutativity follows from naturality of K-theory.
The isomorphism claims in the statement have already been discussed.

3.2. Kasparov lemma

The following lemma, stated for the first time in [17, Proposition 3.4], see also [7, Lemma 7.2],
is a useful tool in proving pseudolocality.

Lemma 3.2 (Kasparov lemma). Let H be an adequate X-module. A bounded operator
A : H → H is pseudo-local if and only if ψAφ is compact whenever ψ and φ are bounded
continuous functions on X such that the supports supp(ψ) and supp(φ) are disjoint and at
least one of them is compact.

If A is a norm limit of operators of bounded propagation, then it is sufficient to consider
only functions of compact support.

Proof. A proof of the first statement for the case that X is compact is given in [10, 5.4.7].
It directly covers the general case, as well.

The second statement about finite propagation operators is already remarked in [7, footnote
6]. To prove it, it suffices (by a limit argument) to assume that A has bounded propagation
R. Then, given φ, ψ with φ of compact support and such that φψ = 0, write ψ = ψ1 + ψ2 such
that ψ1 has compact support and ψ2 has support of distance R from φ. Then by the bounded
propagation property, φAψ2 = 0, and by assumption φAψ1 is compact, so also φAψ is compact
and the assumptions of the usual form of the Kasparov lemma are fulfilled.

3.3. The Mayer–Vietoris sequence

Assume that X = X1 ∪X2 is a Riemannian manifold (typically non-compact), decomposed
into two closed subsets X1,X2, with X0 := X1 ∩X2. (The more general case of metric spaces
is treated in exactly the same way.) We make the following excision assumption: X0 := X1 ∩X2

is big enough in the following sense (of Higson, Roe and Yu [15]): for each R > 0 there is S > 0
such that UR(X1) ∩ UR(X2) ⊂ US(X0).

Using along the way the relative Roe-algebras for Xi ⊂ X and Lemma 1.8, one finally gets
the expected commuting diagram of 6-terms exact Mayer–Vietoris sequences [39, Section 3]

. . . −→ K0(C∗(X1))⊕K0(C∗(X2)) −−−−→ K0(C∗(X)) δMV−−−−→ K1(C∗(X1 ∩X2)) −→⏐⏐� ⏐⏐� ⏐⏐�

. . . −→ K0(D∗(X1))⊕K0(D∗(X2)) −−−−→ K0(D∗(X)) δMV−−−−→ K1(D∗(X1 ∩X2)) −→ .
(3.3)

Exactly the same works for the Γ-equivariant versions.

3.4. Mayer–Vietoris for the cylinder

Let M be a Galois Γ-cover of a compact manifold Z and consider the cylinder X := R×M ,
with Γ acting in a trivial way on R. We set X1 = (−∞, 0]×M and X2 = [0,∞)×M so that
X0 = {0} ×M = M . This decomposition of the cylinder clearly satisfies the excision axiom;
thus, we have the commuting diagram of long exact sequence for C∗ and D∗
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. . . −→ K0(C∗((−∞, 0]×M)Γ) −−−−→ K0(C∗(R×M)Γ) δMV−−−−→ K1(C∗(M)Γ) −→ . . .

⊕
K0(C∗([0,∞)×M)Γ)⏐⏐� ⏐⏐� ⏐⏐�

. . . −→ K0(D∗((−∞, 0]×M)Γ)

⊕
K0(D∗([0,∞)×M)Γ) −−−−→ K0(D∗(R×M)Γ) δMV−−−−→ K1(D∗(M)Γ) −→ . . .

(3.4)

Lemma 3.3. For any metric space M with isometric Γ-action

K∗(C∗([0,∞)×M)Γ) = 0; K∗(D∗([0,∞)×M)Γ) = 0.

Proof. This is a special instance of a general principle introduced by Roe: any space of the
form [0,∞)×M is flasque in the sense of [33, Definition 9.3], and then by [33, Proposition
9.4] the K-theory of C∗([0,∞)×M) vanishes.

The argument given there, based on an Eilenberg swindle, word by word applies also to the
Γ-invariant subalgebras and to D∗.

In particular, we conclude that the boundary maps in the Mayer–Vietoris sequence induce
compatible isomorphisms

K∗(C∗(R×M)Γ) δMV−−−−→
 K∗+1(C∗(M)Γ)⏐⏐� ⏐⏐�
K∗(D∗(R×M)Γ) δMV−−−−→
 K∗+1(D∗(M)Γ).

(3.5)

Remark 3.4. The maps δMV of (3.5) are given as follows: take a representative α ∈
C∗(R×M)Γ of the K-theory class, that is, either a projector or an invertible (using that
the algebra is stable). One now has to trace the definition of the splicing argument which gives
rise to (3.3): map α to C∗(R×M)Γ/C∗((−∞, 0]×M ⊂ R×M)Γ. Then we lift it (through
the inverse of the natural isomorphism) to C∗([0,∞)×M)Γ/C∗({0} ×M ⊂ [0,∞)×M)Γ. For
this, let ψ+ be the characteristic function of [0,∞)×M , then the compression ψ+αψ+ (where
ψ+ acts as multiplication operator) is such a lift. That it has the relevant properties follows, as
proved in Lemmas 4.6 and 4.4. Finally, δMV (α) = c−1δ([ψ+αψ+]) where δ is the boundary
homomorphism of the K-theory long exact sequence for C∗({0} ×M ⊂ [0,∞)×M)Γ ↪→
C∗([0,∞)×M)Γ and c is the isomorphism of Lemma 1.8.

Exactly the same construction works for D∗.

4. Proofs of the main theorems

The goal of this section is to provide a proof of our two main theorems. We shall begin by
stating a key result, the ‘cylinder delocalized index theorem’. This result is the cornerstone
for the proof of both theorems. We state the cylinder delocalized index theorem in Subsection
4.1, but we defer the (quite technical) proof to Subsection 4.4. Next we explain how the
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cylinder delocalized index theorem can be employed in order to prove both theorems. We do
this in Subsections 4.2 and 4.3. Finally, as anticipated, we give a detailed proof of the cylinder
delocalized index theorem in Subsection 4.4.

4.1. The cylinder delocalized index theorem

Notation 4.1. We let M be a boundaryless manifold with a free, isometric and cocompact
action of Γ. We assume thatM is endowed with a Γ-invariant metric of positive scalar curvature.
We assume M to be of dimension n, with n odd. We shall consider R×M , R� ×M , R� ×M .
We consider the Dirac operators

DM on M and Dcyl on R×M.

We shall also employ the notation DR×M for Dcyl.

The positive scalar curvature assumption on M implies that DM is L2-invertible; thus there
is a well-defined ρ-class ρ(DM ) ∈ K0(D∗(M)Γ). Also Dcyl is L2-invertible; hence χ(Dcyl), with
χ a suitable chopping function, is an involution. This means that there is a well-defined ρ-
class on the cylinder: ρ(DR×M ) ∈ K1(D∗(R×M)Γ). We know by (3.5) that for the cylinder
R×M = (R� ×M) ∪M (R� ×M) there is a well-defined Mayer–Vietoris isomorphism

δMV : K1(D∗(R×M)Γ) −→ K0(D∗(M)Γ).

Thus, it makes sense to consider δMV(ρ(DR×M )) ∈ K0(D∗(M)Γ). The following result will be
crucial:

Theorem 4.2 (Cylinder delocalized index theorem).

δMV(ρ(DR×M )) = ρ(DM ) in K0(D∗(M)Γ). (4.1)

4.2. Proof of the delocalized APS index theorem assuming Theorem 4.2

In this subsection, we make use of the fundamental identity on the cylinder, (4.1), in order to
give a proof of Theorem 1.14, the delocalized APS index theorem.

Notation 4.3. We consider W , ∂W and W∞ as in the Geometric set-up 1.13. We also
consider

R× ∂W, R� × ∂W, R� × ∂W.
We consider the Dirac operators

D on W∞, D∂ on ∂W and Dcyl on R× ∂W.
Recall that the boundary ∂W is endowed with a metric of positive scalar curvature, so that
the coarse index class of D is well defined as an element Indrel(D) ∈ K0(C∗(W ⊂W∞)Γ). The
positive scalar curvature assumption implies that also Dcyl is L2-invertible; hence χ(Dcyl) is
an involution, too.

We denote by ψ the characteristic function of [0,∞)× ∂W on W∞ and by ψ+ the
corresponding characteristic function on R× ∂W .

Consider the operator ψ+χ(Dcyl)ψ+ on R� × ∂W ; obviously, this is not an involution any
more. Similarly, consider the operator ψχ(Dcyl)ψ on W∞, which also fails to be an involution.

We start with a basic lemma about commutators with ψ+.
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Lemma 4.4. If T ∈ D∗(R× ∂W )Γ, then [T, ψ+] is in D∗(∂W ⊂ R× ∂W )Γ, and corres-
pondingly if T ∈ D∗(W∞)Γ, then [T, ψ] ∈ D∗(W ⊂W∞)Γ.

Proof. We follow the proof of [33, Lemma 4.3]. We already know that [T, ψ+] belongs to
D∗(R× ∂W )Γ and we only need to show that it lies actually in the ideal D∗(∂W ⊂ R× ∂W )Γ.
We can assume that T has finite propagation R. Then, outside a sufficiently large neighborhood
of the support of ψ+, [T, ψ+] is zero, because there ψ+ acts as the identity. It follows that it is
compactly supported in the R direction, as desired.

Finally, given φ ∈ Cc((0,∞)× ∂W ), we have to show that [T, ψ+]φ is compact. But

[T, ψ+]φ = Tφ− ψ+Tφ = (1− ψ+)Tφ.

Because of finite propagation of T we can replace (1− ψ+) by (1− ψ+)α where α has compact
support. Then, as (1− ψ+)αφ = 0, by the pseudolocality of T this operator (1− ψ+)Tφ =
(1− ψ+)αTφ indeed is compact.

Remark 4.5. The first part of Lemma 4.6 holds unchanged if we consider, more generally,
a boundaryless manifold M with a free, isometric and cocompact action of Γ and endowed with
a Γ-invariant metric of positive scalar curvature. In this case ψ+χ(Dcyl)ψ+ is an involution in
D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ.

Lemma 4.6. ψ+χ(Dcyl)ψ+ is an involution in D∗(R� × ∂W )Γ/D∗(∂W ⊂ R� × ∂W )Γ,
where we write briefly D∗(∂W ⊂ R� × ∂W )Γ instead of D∗({0} × ∂W ⊂ R� × ∂W )Γ.
Similarly, ψχ(Dcyl)ψ is an involution in D∗(W∞)Γ/D∗(W ⊂W∞)Γ.

Proof. We choose χ such that χ(Dcyl)2 = 1, this is possible because 0 is not in the spectrum
of Dcyl by the positive scalar curvature assumption. Then, using that ψ2

+ = ψ+

(ψ+χ(Dcyl)ψ+)2 = ψ+χ(Dcyl)2ψ+ + ψ+χ(Dcyl)[ψ+, χ(Dcyl)]ψ+

= 1 + (ψ+ − 1) + ψ+χ(Dcyl)[ψ+, χ(Dcyl)]ψ+.

Observe that the second and the third operator are both in D∗(W∞)Γ. Note that, on
[0,∞)× ∂W , ψ+ − 1 = 0. On W∞, the corresponding ψ − 1 is the negative of the characteristic
function of W , so has propagation 0 and vanishes identically on [0,∞)× ∂W , therefore
(ψ − 1) ∈ D∗(W ⊂W∞)Γ. Using Lemma 4.4, we see that also the third summand belongs
to D∗(W ⊂W∞)Γ or D∗(∂W ⊂ [0,∞)× ∂W )Γ, so the statement follows.

Definition 4.7. Let n+ 1, the dimension of W , be even.
Consider the half cylinder R� × ∂W ; observe that the spinor bundle is in this case the pull-

back of the direct sum of two copies of the spinor bundle on ∂W . Thus, in this case, we could
choose U to be the identity. Using Lemma 4.6, we can define the class

[U∗(ψ+χ(Dcyl)+ψ+)] ∈ K1(D∗(R� × ∂W )Γ/D∗(∂W ⊂ R� × ∂W )Γ) (4.2)

and thus, applying the boundary map for the obvious 6-terms long exact sequence

∂ : K1(D∗(R� × ∂W )Γ/D∗(∂W ⊂ R� × ∂W )Γ) −→ K0(D∗(∂W ⊂ R� × ∂W )Γ), (4.3)

we obtain a class

∂[U∗(ψ+χ(Dcyl)+ψ+)] ∈ K0(D∗(∂W ⊂ R� × ∂W )Γ). (4.4)
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Similarly, if n+ 1 is odd, then we have a well-defined class

∂(1
2 [1 + ψ+χ(Dcyl)ψ+]) ∈ K1(D∗(∂W ⊂ R� × ∂W )Γ). (4.5)

Remark 4.8. There is a corresponding statement, obtained by replacing ∂W by a general
M with positive scalar curvature. In particular, if M is odd dimensional and if we choose U to
be the identity, then this gives classes

[ψ+χ(Dcyl)+ψ+] ∈ K1(D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ) (4.6)

and

∂[ψ+χ(Dcyl)+ψ+] ∈ K0(D∗(M ⊂ R� ×M)Γ). (4.7)

Remark 4.9. We can restate Lemma 4.6, and its obvious extensions in Remarks 4.5 and 4.8
in a more conceptual way. Indeed, exactly the same proof establishes the following statements:

If n+ 1 is even, then compression by χ+ gives a well-defined homomorphism

K1(D∗(R×M)Γ) −→ K1(D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ),

which sends the ρ-class defined by DR×M to the class (4.6).
Therefore, composition of this homomorphism with the boundary map

∂ : K1(D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ) −→ K0(D∗(M ⊂ R� ×M)Γ)

gives a homomorphism

H : K1(D∗(R×M)Γ) −→ K0(D∗(M ⊂ R� ×M)Γ).

Further composing with the inverse of the isomorphism

jM : K0(D∗(M)Γ) −→ K0(D∗(M ⊂ R� ×M)Γ)

induced by the inclusion (it is the analog of (3.2)) gives finally a well-defined homomorphism:

K1(D∗(R×M)Γ) −→ K0(D∗(M)Γ) (4.8)

and this homomorphism sends ρ(DR×M ) into j−1
M ∂[ψ+χ(Dcyl)+ψ+]. It is not difficult to

show, proceeding exactly as in Remark 3.4, that the homomorphism (4.8) is precisely the
Mayer–Vietoris homomorphism δMV we have described in Subsection 3.4; in particular, by the
argument given in Subsection 3.4, the homomorphism (4.8) is an isomorphism. Moreover, by
the above remarks, the following identity holds in K0(D∗(M)Γ):

δMV(ρ(DR×M )) = j−1
M ∂[ψ+χ(Dcyl)+ψ+]. (4.9)

The corresponding statement holds in the odd dimensional case.

We now go back to the manifold with cylindrical ends W∞. Then, by the second part of
Lemma 4.6 we have, in the even dimensional case,

[U∗(ψχ(Dcyl)+ψ)] ∈ K1(D∗(W∞)Γ/D∗(W ⊂W∞)Γ)

and thus applying the boundary map

∂ : K1(D∗(W∞)Γ/D∗(W ⊂W∞)Γ) −→ K0(D∗(W ⊂W∞)Γ),

we obtain an element

∂[U∗(ψχ(Dcyl)+ψ)] ∈ K0(D∗(W ⊂W∞)Γ). (4.10)
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In the odd-dimensional case we have a corresponding class

∂( 1
2 [1 + ψχ(Dcyl)ψ]) ∈ K1(D∗(W ⊂W∞)Γ). (4.11)

Lemma 4.10. χ(D)− ψχ(Dcyl)ψ ∈ D∗(W ⊂W∞)Γ.

Proof. This is a consequence of the proof of [32, Proposition 1.5]. We have to show two
things:

(i) if φ ∈ C0(W∞) with d(W, supp(φ)) > ε > 0, then (χ(D)− ψχ(Dcylψ))φ is compact;
(ii) for each ε > 0 there is R > 0 such that ‖(χ(D)− ψχ(Dcylψ))φ‖ < ε whenever φ ∈

C0(W∞) with d(W, supp(φ)) > R.

Write the distribution χ̂(t) = α(t) + β(t) such that α is smooth and rapidly decreasing
and β is a distribution supported in (−ε, ε). Then χ(D) =

∫
R
α(t)eitD +

∫ε

−ε
β(t)eitD. By

unit propagation and isometry invariance of the wave operator, eitDφ = eitDcylφ for t � R
if d(W, supp(φ)) > R. Therefore, in this situation

(χ(D)− ψχ(Dcyl))φ =
∫
|t|�R

α(t)(eitD − ψeitDcyl)φ

=⇒ ‖(χ(D)− ψχ(Dcyl))φ‖ � 2 sup
|t|�R

|α(t)|.

As α is smooth and rapidly decreasing, the operator belongs to C∗(W∞)Γ and therefore is
compact for each R > 0, and the norm converges to 0 as R→∞. This establishes the two
properties.

Lemma 4.11. Let ι∗ : K∗(C∗(W ⊂W∞)Γ) −→ K∗(D∗(W ⊂W∞)Γ) be the homomorphism
induced by the inclusion (we considered ι∗ in Lemma 3.1). If n+ 1 is even, then

ι∗(Indrel(D)) = ∂[U∗(ψχ(Dcyl)+ψ)] in K0(D∗(W ⊂W∞)Γ). (4.12)

If n+ 1 is odd, then

ι∗(Indrel(D)) = ∂[12 (1 + ψχ(Dcyl)ψ)] in K1(D∗(W ⊂W∞)Γ). (4.13)

Proof. Let us prove the case in which n+ 1 is even. Recall the inclusion of the ideal C∗(W ⊂
W∞)Γ ⊂ D∗(W ⊂W∞)Γ. Using an obvious commutative diagram we see that the left-hand side
of (4.12) is nothing but the boundary map applied to the involution

[U∗χ(D)+)] ∈ K1(D∗(W∞)Γ/D∗(W ⊂W∞)Γ).

The lemma follows immediately from Lemma 4.10. The odd case is similar.

For the next lemma and the following proposition recall the homomorphisms j+ and j∂
appearing in Proposition 3.1.

Lemma 4.12. If n+ 1 is even, then

∂[U∗(ψχ(Dcyl)+ψ)] = j+(∂[U∗(ψ+χ(Dcyl)+ψ+)]) in Kn+1(D∗(W ⊂W∞)Γ). (4.14)

If n+ 1 is odd

∂[12 (1 + ψχ(Dcyl)ψ)] = j+(∂[12 (1 + ψ+χ(Dcyl)ψ+)]) in Kn+1(D∗(W ⊂W∞)Γ. (4.15)
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Proof. We only prove (4.14), the other statements can be derived similarly. We choose
as adequate modules on R� × ∂W and on W∞ the L2-sections of the corresponding spinor
bundles. Observe now that the adequate module for R� × ∂W is a direct summand of the one
for W∞. Thus, we can choose the isometry V covering the inclusion R� × ∂W ↪→W∞ to be
simply given by the inclusion of the first module as a direct summand into the second. Then,
by definition, j+([U∗(ψ+χ(Dcyl)+ψ+)]) = [U∗(ψχ(Dcyl)+ψ)] and since j+ commutes with the
boundary map, we are done.

Note that we can choose U to induce the identity on the cylindrical end, where the positive
and the negative spinor bundles are both the pullback of the spinor bundle on ∂W . Then the
above identity reads

∂[U∗(ψχ(Dcyl)+ψ)] = j+(∂[ψ+χ(Dcyl)+ψ+]). (4.16)

Finally, we have the following proposition which is of crucial importance.

Proposition 4.13. If n+ 1 is even, then

∂[ψ+χ(Dcyl)+ψ+] = j∂ρ(D∂) in Kn+1(D∗(∂W ⊂ R� × ∂W )Γ). (4.17)

Proof. We apply j−1
∂ to both sides. Using (4.9) for M = ∂W we see that (4.17) is

equivalent to

δMV(ρ(DR×∂W )) = ρ(D∂W ) in Kn+1(D∗(∂W )Γ) (4.18)

which is precisely the content of Theorem 4.2 (this is the cylinder delocalized index theorem).

Remark 4.14. Of course, we expect that the corresponding formula to Equation (4.17)
holds if n+ 1 is odd, namely

∂[ 12 (1 + ψ+χ(Dcyl)ψ+)] = j∂ρ(D∂) in Kn+1(D∗(∂W ⊂ R� × ∂W )Γ). (4.19)

Proof of Theorem 1.14. We can finally give the proof of Theorem 1.14. Indeed, if n+ 1 is
even, then from (4.12), (4.16), (4.17) we obtain at once

ι∗(Indrel(D)) = ∂[U∗(ψχ(Dcyl)+ψ) = j+(∂[ψ+χ(Dcyl)+ψ+]) = j+(j∂ρ(D∂)).

Applying c−1 and using the commutativity of (3.2) we get precisely what we have to show.

4.3. Proof of the partitioned manifold theorem for ρ-classes assuming Theorem 4.2

In this subsection, we show how to prove Theorem 1.22 assuming the cylinder delocalized index
Theorem 4.2, namely that

δMV(ρ(DR×M )) = ρ(DM ) in K0(D∗(M)Γ).

Consider (W, g), an (n+ 1)-dimensional Riemannian manifold with uniformly positive scalar
curvature metric g, partitioned by a two-sided hypersurfaceM ,W = W− ∪M W+, with product
structure near M and with signed distance function f : W → R. We also assume an isometric
action of Γ, preserving M and with the property that M/Γ is compact. There is then a
resulting Γ-map u : M → EΓ. We have defined in Subsection 1.5 the partitioned manifold
ρ-class ρpm(g) ∈ Kn(D∗(M)Γ) and the partitioned manifold ρΓ-class ρpm

Γ (g) ∈ Kn(D∗
Γ). We

shall also employ the notation ρpm
Γ (DW ) for this class.
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Recall that our goal is to show that

ρpm
Γ (g) = ρΓ(gM ) in Kn(D∗

Γ) (4.20)

We first show that the left-hand side is unchanged if we replace W by R×M . Note that our
proof only applies to ρpm

Γ (g) ∈ Kn(D∗
Γ); it does not apply to ρpm(g) ∈ Kn(D∗(M)Γ).

First of all, we extend our discussion in Remark 3.4 and give a more detailed description
of δMV[DW ], with δMV the Mayer–Vietoris boundary homomorphism associated to the
partition W = W− ∪M W+. To this end, we recall that δMV : Kn(D∗(W )Γ)→ Kn+1(D∗(M)Γ)
is obtained by composing

Kn(D∗(W )Γ) −→ Kn(D∗(W )Γ/D∗(W− ⊂W )Γ) 
 Kn(D∗(W+ ⊂W )Γ)/D∗(M ⊂W )Γ

∂−→ Kn+1(D∗(M ⊂W )Γ) c−1

−−→∼= Kn+1(D∗(M)Γ).

Let χ± be the characteristic functions of W±. By writing an element x in Kn(D∗(W )Γ) as
χ+xχ+ + χ−xχ− +R, with R ∈ D∗(M ⊂W )Γ, we see first of all that δMV(ρ(DW )), with
ρ(DW ) ∈ Kn(D∗(W )Γ), is equal to c−1∂[χ+ρ(DW )χ+] where ∂ is equal to the connecting
homomorphism for the ideal D∗(M ⊂W )Γ in D∗(W+ ⊂W )Γ. Observe now that there is an
isomorphism of algebras

D∗(W+ ⊂W )Γ/D∗(M ⊂W )Γ α←− D∗(W+)Γ/D∗(M ⊂W+)Γ (4.21)

and that the lift of [χ+ρ(DW )χ+] ∈ D∗(W+ ⊂W )Γ/D∗(M ⊂W )Γ through α is the class
[χ+ρ(DW )χ+] ∈ D∗(W+)Γ/D∗(M ⊂W+)Γ, that is, the same element seen in a different
algebra. Of course this correspondence will hold also for the associated K-theory elements.
Consider now the manifold Wcyl,+ := (R� ×M) ∪M W+; thus, we cut out W− and we
glue at its place R� ×M . We can also consider the class [χ+(Dcyl,+)χ+] ∈ Kn(D∗(W+ ⊂
Wcyl,+)Γ/D∗(M ⊂Wcyl,+)Γ) and its lift to Kn(D∗(W+)Γ/D∗(M ⊂W+)Γ) under the K-theory
isomorphism induced by the analog to (4.21) but forWcyl,+. The two lifts can now be compared,
as they live in the K-theory of the same algebra, which is D∗(W+)Γ/D∗(M ⊂W+)Γ.

Lemma 4.15. In Kn(D∗(W+)Γ/D∗(M ⊂W+)Γ) the following equality holds:

[χ+DWχ+] = [χ+(Dcyl,+)χ+]. (4.22)

Assuming the lemma we now conclude the proof of the partitioned manifold theorem for
ρ-classes.

Theorem 4.2, the cylinder delocalized index theorem, states that for any n-dimensional Γ-
manifold without boundary, n odd, with isometric, free, cocompact action and positive scalar
curvature one has

δMVρ(DR×M ) = ρ(DM ) in Kn+1(D∗(M)Γ).

In particular,
δMVρΓ(DR×M ) = ρΓ(DM ) in Kn+1(D∗

Γ).

From this equation and the very definition of ρpm
Γ class, we obtain at once that

ρpm
Γ (DR×M ) = ρΓ(DM ) in Kn+1(D∗

Γ).

Thus, it suffices to prove that

ρpm
Γ (DW ) = ρpm

Γ (DR×M ). (4.23)

In order to show this equality we observe, first of all, that it suffices to prove that

ρpm
Γ (DW ) = ρpm

Γ (Dcyl,+) in Kn+1(D∗
Γ).
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Indeed, if this equality holds we can further modify Wcyl,+ by cutting out M+ and gluing in at
its place R� ×M , obtaining from Wcyl,+ the manifold Wcyl,cyl, which is nothing but R×M .
By the same argument above we obtain the equality

ρpm
Γ (Dcyl,+) = ρpm

Γ (Dcyl,cyl) ≡ ρpm(DR×M ) in Kn+1(D∗
Γ).

This proves that
ρpm
Γ (DW ) = ρpm

Γ (DR×M ) in Kn+1(D∗
Γ),

which is precisely (4.23). In order to show that ρpm
Γ (DW ) = ρpm

Γ (Dcyl,+) we use Lemma 4.15
and the following commutative diagram. For the sake of brevity we set

A := D∗(W+ ⊂Wcyl,+)Γ/D∗(M ⊂Wcyl,+)Γ, B := D∗(W+)Γ/D∗(M ⊂W+)Γ,

C = D∗(W+ ⊂W )Γ/D∗(M ⊂W )Γ,

AΓ := D∗(R× EΓ ⊂ R� ×EΓ)Γ/D∗({0} × EΓ ⊂ R× EΓ)Γ,

BΓ := D∗(R� × EΓ)Γ/D∗({0} × EΓ ⊂ R� × EΓ)Γ,

AΓ := D∗({0} × EΓ ⊂ R× EΓ)Γ, BΓ := D∗({0} × EΓ ⊂ R� × EΓ)Γ.

We note furthermore that n ≡ 1mod 2.

K1(A) −−−−→ K1(AΓ) ∂−−−−→ K0(AΓ)
∼=−−−−→ K0(D∗

Γ)	⏐⏐∼=
	⏐⏐∼=

	⏐⏐ 	⏐⏐=

K1(B) −−−−→ K1(BΓ) ∂−−−−→ K0(BΓ)
∼=−−−−→ K0(D∗

Γ)⏐⏐�∼=
⏐⏐�∼=

⏐⏐� ⏐⏐�=

K1(C) −−−−→ K1(AΓ) ∂−−−−→ K0(AΓ)
∼=−−−−→ K0(D∗

Γ).

The class ρpm
Γ (DW ) can be obtained by mapping the class [χ+DWχ+] ∈ K1(C) all the way

to K0(D∗
Γ) via the homomorphisms of the bottom horizontal line. Here the naturality of the

boundary map in K-theory has been used. This same class can also be computed, always
applying commutativity and naturality, by lifting [χ+DWχ+] ∈ K1(C) to K1(B) and then
traveling on the central horizontal line. The same argument applies to ρpm

Γ (Dcyl,+), which
is originally defined by considering [χ+(Dcyl,+)χ+] in K1(A) and then traveling on the top
horizontal line; the resulting class in K0(D∗

Γ) can also be obtained by lifting [χ+(Dcyl,+)χ+] to
K1(B) and then traveling on the central horizontal line. Since, by the lemma, the two lifts of
[χ+DWχ+] and [χ+(Dcyl,+)χ+] are equal in K1(B), we see that ρpm

Γ (DW ) = ρpm
Γ (Dcyl,+), as

required.
Summarizing, assuming Lemma 4.15 and the cylinder delocalized index Theorem 4.2, we

have proved that

ρpm
Γ (DW ) = ρpm

Γ (DR×M ) ≡ δMV(ρΓ(DR×M )) = ρΓ(DM )

and this is precisely what we need to show in order to establish Theorem 1.22
We shall now prove Lemma 4.15.
Consider more generally the following situation: we have two complete Γ-manifolds as above,

W and Z, both endowed with metrics of positive scalar curvature and with partitions

W = W1 ∪M W2, Z = W1 ∪M Z2.

In other words, the two partitions have one component equal, W1, they (necessarily) involve
the same hypersurface, M , but have the other component of the partition different. Choose a
chopping function χ equal to ±1 on both the spectrum of DW and DZ . We want to show that

χW1(χ(DW ))χW1 = χW1(χ(DZ))χW1 in D∗(W1)Γ/D∗(M ⊂W1)Γ, (4.24)
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with χW1 denoting the characteristic function of W1. Consider the left-hand side of the above
equation, χW1(χ(DW ))χW1 . The Fourier transform of χ is a smooth rapidly decreasing function
away from 0, see [31, p. 121]. Thus, χW1(χ(DW ))χW1 is (up to multiplication with

√
2π)

approximated in norm for R ∈ R large by

χW1

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χW1 .

We rewrite this latter term as

χ(W1\UR(M))

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χ(W1\UR(M1)) + χW1

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χUR(M)

+ χUR(M)

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χ(W1\UR(M)). (4.25)

Because of the unit propagation property, the first summand is unchanged if we replace DW

by DZ , that is, is equal to

χ(W1\UR(M))

(∫R

−R

χ̂(ξ) eiξDZ dξ

)
χ(W1\UR(M)).

We then rewrite (4.25) as

χW1

(∫R

−R

χ̂(ξ) eiξDZ dξ

)
χW1 + χW1

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χUR(M)

+ χUR(M)

(∫R

−R

χ̂(ξ) eiξDW dξ

)
χ(W1\UR(M)) − χW1

(∫R

−R

χ̂(ξ) eiξDZ dξ

)
χUR(M)

− χUR(M)

(∫R

−R

χ̂(ξ) eiξDZ dξ

)
χ(W1\UR(M)).

The first summand in this sum approximates χW1(χ(DZ))χW1 ; moreover, by unit propagation
the remaining four summands are elements in the idealD∗(M ⊂W1)Γ. Therefore, the difference

χW1(χ(DW ))χW1 − χW1(χ(DZ))χW1

is approximated by a sequence of elements in the ideal D∗(M ⊂W1)Γ; since this ideal is closed
we have proved that χW1(χ(DW ))χW1 − χW1(χ(DZ))χW1 ∈ D∗(M ⊂W1)Γ, that is, that

χW1(χ(DW ))χW1 = χW1(χ(DZ))χW1 modD∗(M ⊂W1)Γ.

The lemma is proved.
The proof of the partitioned manifold theorem for ρ-classes, Theorem 1.22, is now complete.

Remark 4.16. In [38, 39], the classical partitioned manifold index theorem is extended
to a multi-partitioned situation, that is, to a manifold partitioned by k suitably transversal
hypersurfaces. It would be interesting to generalize also our ρ-index theorem to the multi-
partitioned situation. This does not seem straightforward if one only assumes a product
structure near the (codimension k) intersection of the k hypersurfaces.

4.4. Proof of Theorem 4.2

In this subsection, we finally prove Theorem 4.2, the cylinder delocalized index theorem.
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We will only treat the case in which n+ 1, the dimension of the cylinder R×M , is even.
We want to show the equality

δMV(ρ(DR×M )) = ρ(DM ) in K0(D∗(M)Γ).

Equivalently, see Remark 4.9, we want to show that

∂[ψ+χ(Dcyl)+ψ+] = jMρ(DM ) in K0(D∗(M ⊂ [0,∞)×M)Γ),

where jM : K∗(D∗(M)Γ) → K∗(D∗(M ⊂ [0,∞)×M)Γ) is the map induced by the inclusion
M ↪→ [0,∞)×M and ∂ is the boundary map K1(D∗([0,∞)×M)Γ/D∗(M ⊂ [0,∞)×M)Γ →
K0(D∗(M ⊂ [0,∞)×M)Γ).

Notation 4.17. In order to lighten the notation we shall always write L2(M) for the
covariant M -module given by the L2-section of the spinor bundle of M ; the latter is denoted
SM . We shall consider R×M and write L2

⊕(R×M) for the L2-sections of the bundle obtained
by pulling back SM ⊕ SM from M to R×M . We keep the notation L2(R×M) for the L2-
sections of SM . Similar notations are adopted for [0,∞)×M ≡ R� ×M , the half cylinder.
Departing from the notation adopted so far, and only for this subsection, we denote by D
the (Γ-equivariant) Dirac operator on M and by Dcyl the (Γ-equivariant) operator on R×M
(these being the only Dirac operators we will be concerned with).

We thus tackle the proof of the identity

∂[ψ+χ(Dcyl)+ψ+] = jMρ(D) (4.26)

in Kn+1(D∗(M ⊂ [0,∞×M))Γ), with ψ+ the characteristic function of [0,∞)×M in R×M .
In order to establish (4.26) we need an explicit representative for the right-hand side. To

define jM we must find an isometry V : L2(M)→ L2(R� ×M) covering in the D∗-sense the
inclusion M ↪→ R� ×M , m �→ (0,m); see Section 1. Of course, we know that one can always
find covariant modules H1 for M , H2 for R� ×M and an isometry V : H1 → H2 covering
the inclusion in the D∗-sense; here we want to show that we can choose H1 = L2(M), H2 =
L2(R� ×M) and then describe explicitly the isometry V .

Consider L2(R� ×M); this can be identified with L2([0,∞),L2(M)). Define V as follows:

L2(M) � s �−→ V s ∈ L2([0,∞),L2(M)), (V s)(t) :=
√

2|D|e−t|D|(s). (4.27)

Proposition 4.18. The bounded linear operator V : L2(M)→ L2(R� ×M) of (4.27)
covers in the D∗-sense the inclusion i : M ↪→ R� ×M, m→ (0,m).

Proof. We prove this in Subsection 4.5.

We now observe that by its very definition the ρ-class of the operator on M , ρ(D) =
[χ[0,∞)(D)] in K0(D∗(M)Γ).

We have, by definition of jM ,

jM [χ[0,∞)(D)] = [V χ[0,∞)(D)V ∗] ∈ K0(D∗(M ⊂ R� ×M)Γ).

The operator P := V χ[0,∞)(D)V ∗, which is a projector, acts as follows on L2([0,∞),L2(M)):

(V χ[0,∞)(D)V ∗g)(t) =
∫∞

0

√
2|D|e−t|D|χ[0,∞)(D)

√
2|D| e−τ |D|g dτ. (4.28)

Thus, we need to show that the K-theory class of the projector P given by (4.28) coincides
with the index class ∂[ψ+χ(Dcyl)+ψ+]. In order to achieve this it suffices to show that there
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exists an L ∈ D∗(R� ×M) such that

(ψ+χ(Dcyl)+ψ+) ◦ L = Id; L ◦ (ψ+χ(Dcyl)+ψ+) = Id− P . (4.29)

Indeed, from the very definition of the boundary map, see [2], we would then have that
∂[ψ+χ(Dcyl)+ψ+] = [P ] which is what we wish to prove.

In order to find such an L we first perform a deformation of the representatives of the class
[ψ+χ(Dcyl)+ψ+] in K1(D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ). Let us denote by t the variable
on the line R appearing in R×M ; let us denote by ∂t the derivative with respect to t. We first
concentrate our analysis on R×M . The operator Dcyl is given as(

0 D − ∂t

D + ∂t 0

)
, (4.30)

where we recall that D denotes the Γ-equivariant Dirac operator on M . We have already
observed that since D is assumed to be L2-invertible (the scalar curvature on M is positive),
also Dcyl is L2-invertible. We choose as a chopping function χ the one given by χ(t) = 1 for
t � 0, χ(t) = −1 for t < 0, which is continuous on the spectrum of Dcyl. Thus, χ(Dcyl)+ is the
bounded operator on L2(R×M) given by the left bottom corner of⎛

⎜⎜⎜⎝
0

D − ∂t√
D2 − ∂2

t

D + ∂t√
D2 − ∂2

t

0

⎞
⎟⎟⎟⎠ .

The operator χ(Dcyl)+ will be written as (D + ∂t)/
√
D2 − ∂2

t . We shall connect it to

|D|+ ∂t

D − ∂t
,

which is also an invertible operator on L2(R×M). We observe here a few useful identities:
[D, ∂t] = 0 = [|D|, ∂t]; (|D| − ∂t)(|D|+ ∂t) = D2 − ∂2

t = (D − ∂t)(D + ∂t). The latter equality
gives

|D|+ ∂t

D − ∂t
=

D + ∂t

|D| − ∂t
.

Note, in particular, that ( |D|+ ∂t

D − ∂t

)−1

=
|D| − ∂t

D + ∂t
. (4.31)

We claim that the line segment joining the two operators,

s �−→ s
D + ∂t√
D2 − ∂2

t

+ (1− s) |D|+ ∂t

D − ∂t

is through L2-invertible operators in D∗(R×M)Γ.
The fact that for each s ∈ [0, 1] the above operator is invertible can be seen by rewriting

it as As/((D − ∂t)
√
D2 − ∂2

t ) with As = s(D2 − ∂2
t ) + (1− s)(|D|+ ∂t)

√
D2 − ∂t; it suffices

to show that As is invertible for each s ∈ [0, 1], which in turn is proved with an elementary
computation by showing that A∗

sAs > 0 (here the L2-invertibility of D and Dcyl is used).
Next we address the fact that s((D + ∂t)/

√
D2 − ∂2

t ) + (1− s)((|D|+ ∂t)/(D − ∂t)) ∈
D∗(R×M)Γ for each s. Since D∗ is a C∗-subalgebra of the bounded operators of L2(R×M),
it suffices to show that the end points of the convex combination are in D∗(R×M)Γ. We
already know that (D + ∂t)/

√
D2 − ∂2

t is in D∗(R×M)Γ (given that is the left bottom corner
of Dcyl/|Dcyl|). Thus, we only need to establish the following proposition.

Proposition 4.19. The operator (|D|+ ∂t)/(D − ∂t) belongs to D∗(R×M)Γ.
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Proof. We prove this in Subsection 4.5.

Using the above convex combination we see easily that[
ψ+

D + ∂t√
D2 − ∂2

t

ψ+

]
=
[
ψ+
|D|+ ∂t

D − ∂t
ψ+

]
in K1(D∗(R� ×M)Γ/D∗(M ⊂ R� ×M)Γ).

In particular, ∂[ψ+((D + ∂t)/
√
D2 − ∂2

t )ψ+] = ∂[ψ+((|D|+ ∂t)/(D − ∂t))ψ+] in K0(D∗(M ⊂
R� ×M)Γ) and so we are reduced to the problem of finding Q ∈ D∗(R� ×M)Γ such that(

ψ+
|D|+ ∂t

D − ∂t
ψ+

)
◦Q = IdL2(R�×M), (4.32)

Q ◦
(
ψ+
|D|+ ∂t

D − ∂t
ψ+

)
= IdL2(R�×M) − P. (4.33)

We claim that we can take Q := ψ+((|D| − ∂t)/(D + ∂t))ψ+. First, by Proposition 4.19,
Q ∈ D∗(R� ×M)Γ. Next we need to show that with this choice (4.32) holds.
Using that (ψ+)2 = ψ+, together with (4.31) we see that it suffices to show that
ψ+((|D| − ∂t)/(D + ∂t))ψ+ = ((|D| − ∂t)/(D + ∂t))ψ+ on L2(R×M). We decompose L2(R×
M) using the spectral transform induced by the Browder–Garding decomposition associated
to the self-adjoint operator D, see [30]. Thus, there is an isometry

T : L2(R×M) −→ L2(R,⊕jL
2(R, dμj)) (4.34)

such that ψ+((|D| − ∂t)/(D + ∂t))ψ+ = ((|D| − ∂t)/(D + ∂t))ψ+ if and only if

χ[0,∞)
|λ| − ∂t

λ+ ∂t
χ[0,∞) =

|λ| − ∂t

λ+ ∂t
χ[0,∞)

on each L2(R, L2(R, dμj)). Conjugate both sides of the last equation by the Fourier transfor-
mation F for the t-variable, then write F−1((|λ| − ∂t)/(λ+ ∂t))χ[0,∞)F as (F−1((|λ| − ∂t)/
(λ+ ∂t))F)(F−1χ[0,∞)F). Then the right-hand side is equal to the projection onto the
Hardy space, see [40], followed by the multiplication operator by (|λ|+ iτ)/(λ− iτ) =
(λ+ iτ)/(|λ| − iτ). The latter function is holomorphic on the upper half plane, so multi-
plication by it does preserve the Hardy space. It follows that projecting once again onto
the Hardy space leaves it unchanged. This proves that χ[0,∞)((|λ| − ∂t)/(λ+ ∂t))χ[0,∞) =
(|λ| − ∂t)/(λ+ ∂t))χ[0,∞) and thus that (4.32) holds. Next we tackle (4.33), that is, the equation

ψ+

( |D| − ∂t

D + ∂t

)
ψ+ ◦

(
ψ+
|D|+ ∂t

D − ∂t
ψ+

)
= IdL2(R�×M) − P (4.35)

with P : L2([0,∞),L2(M))→ L2([0,∞),L2(M)) defined by

(Pg)(t) =
∫∞

0

√
2|D| e−t|D|χ[0,∞)(D∂)

√
2|D| e−u|D|g du. (4.36)

Lemma 4.20. Under the spectral transform

T : L2([0,∞)×M) −→ L2([0,∞),⊕jL
2(R, dμj)) (4.37)

the projector P diagonalizes. Let Pj be the restriction of P to L2([0,∞), L2(Rλ, dμj)) and
consider the decomposition

L2([0,∞), L2(R, dμ)) = L2([0,∞), L2([0,∞)λ, dμ))⊕ L2([0,∞), L2((−∞, 0)λ, dμ)).
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Then Pj is diagonal and equal to (
P+

j 0
0 0

)

with P+
j described in the following way: view L2([0,∞), L2([0,∞)λ), dμj) as L2

dμj
([0,∞)λ,

L2[0,∞)t). With respect to this decomposition, P+
j is the direct integral

∫
[0,∞)

Pλ dμj(λ) where

Pλ : L2([0,∞))→ L2([0,∞)) is the projector onto the subspace spanned by fλ(t) =
√

2λe−λt.
Observe that, because 0 is not in the spectrum of the operator D, 0 is not in the support of

any of the measures μj so that fλ indeed is in L2([0,∞)) and depends continuously on λ for
all λ relevant to us.

Proof. With respect to the decomposition of our Hilbert space, as D acts as multiplication
with λ and |D| acts as multiplication with |λ| under the spectral transform T , the formula
(4.36) becomes the direct integral over the operators

g �−→
∫∞

0

√
2|λ| e−t|λ|χ[0,∞)(λ)

√
2|λ| e−u|λ|g(u) du =

{
fλ〈g, fλ〉L2([0,∞)); λ > 0,
0; λ < 0.

We are now in the position to prove (4.35). We use the spectral transform and we reduce to a
computation on each single L2([0,∞), L2(R, dμ)). First, we remark that the operator induced
by the left-hand side of (4.35) diagonalizes with respect to the decomposition

L2([0,∞), L2([0,∞)λ, dμ))⊕ L2([0,∞), L2((−∞), 0)λ, dμ),

even better, as before it becomes a direct integral over λ ∈ R with measure μj(λ). Moreover, the
restriction to the second summand is equal to the identity, given that the restriction of the oper-
ator induced by (|D|+ ∂t)/(D − ∂t) on L2(R, L2(R, dμ)) is equal to (|λ|+ ∂t)(λ− ∂t)−1 and it
is therefore equal to −Id on L2(R, L2(−∞, 0)λ, dμ), and the same holds with the same argument
for (|D| − ∂t)/(D + ∂t). The conclusion is that the restriction of the two sides of (4.35) to the
second summand of L2([0,∞), L2([0,∞)λ, dμ))⊕ L2([0,∞), L2((−∞), 0)λ, dμ) agree.

Thus, we are left with the task of showing that the operator induced by the left-hand
side of (4.35) on L2([0,∞), L2([0,∞)λ, dμ)) in its direct integral decomposition for each λ ∈
(0,∞) has a one-dimensional null space, generated by fλ(t) =

√
2λ e−tλ, t � 0 and it is equal

to the identity on the orthogonal complement of this null space. Using the direct integral
decomposition, we treat λ > 0 as a constant. Let us then check that the function fλ(t) is in the
null space of the operator induced by the left-hand side of (4.35). In order to check this property
we conjugate by Fourier transform. The inverse Fourier transform of

√
2λ e−λt, t � 0, is up to

a constant equal to 1/(λ− iτ) (cf. [16, Appendix]) which is holomorphic outside τ = −iλ; in
particular, it is holomorphic on the upper half plane which means that it is left unchanged by
the projection onto the Hardy space (as it should, given that χ[0,∞)fλ = fλ). Now we apply
the operator of multiplication by (λ− iτ)(λ+ iτ)−1, getting the function 1/(λ+ iτ). This is
holomorphic on the lower half plane and therefore its boundary value is in the orthogonal
complement of the Hardy space, so it is mapped to 0 by projecting onto the Hardy space. The
conclusion is that fλ is indeed in the null space of the left-hand side of (4.35).

Consider now the orthogonal complement of fλ, that is,{
g ∈ L2([0,∞));

∫∞

0

g(t)fλ(t) dt =
∫

R

g(t) eit(iλ) dt = 0
}
.

This is the space of functions g such that (F−1g)(iλ) = 0. This means that

τ �−→ (λ− iτ)
(λ+ iτ)

(F−1g
)
(τ)
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is still holomorphic on the upper half plane and thus projection onto the Hardy space leaves
it unchanged. Composing with the multiplication operator by (λ+ iτ)/(λ− iτ) gives back
F−1g. Thus the left-hand side of (4.35) acts as the identity on the orthogonal complement of
fλ and the conclusion is that the left-hand side of (4.35) is precisely equal to Id− P , thanks
to Lemma 4.20.

4.5. Proof of Propositions 4.18 and 4.19

We begin by proving Proposition 4.18.
We wish to prove that the bounded linear operator V : L2(M)→ L2(R� ×M) defined by

(V s)(t) :=
√

2|D|e−t|D|(s) is an isometry that is the norm-limit of bounded linear operators
U satisfying the propagation condition appearing in Definition 1.6 such that φU − U(φ ◦ i) is
compact for each φ ∈ C0(R� ×M).

The fact that V is an isometry is proved by direct computation, using the fact that the
spectrum of D does not contain zero, so that e−t|D| converges (exponentially) to zero for
t→ +∞. Consider next the propagation condition which we recall here: there exists an R > 0
such that φUψ = 0 if d(suppφ, i(suppψ)) > R, with φ ∈ C0(R� ×M) and ψ ∈ C0(M). We must
find an approximating sequence of bounded linear operators U with this property. Consider
the function ht(x) :=

√|x| e−t|x|. Our operator V is obtained from ht by

(V s)(t) =
√

2√
2π

∫
R

ĥt(ξ) eiξD(s) dξ.

We consider the function

ft(x) :=

{
0; x < 0,√
x e−tx; x � 0.

We write ht = ft + gt, with gt(x) := ft(−x). Its Fourier–Laplace transform is

f̂t(ζ) =
1√
2π

∫+∞

0

√
xe−x(t+iζ) dx,

and we observe that this is a holomorphic function in the region Im(ζ) < t. For s < t the
integral can easily be evaluated, giving

f̂t(is) = C
1

(t− s)3/2
, with C =

1√
2π

∫+∞

0

√
x e−x dx.

Thus, by the identity principle for holomorphic functions, we deduce that

f̂t(ζ) = C(t+ iζ)−3/2,

with the branch of the square root such that t
3
2 is positive for t > 0. Going back to ht we have

therefore proved that for ξ ∈ R

C−1ĥt(ξ) = (t+ iξ)−3/2 + (t− iξ)−3/2.

Fix R ∈ R, R > 0. We define a bounded linear operator UR : L2(M)→ L2(R� ×M) as follows:

(URs)(t) =

⎧⎪⎨
⎪⎩
√

2√
2π

∫R4

−R4
ĥt(ξ) eiξDdx if t � R,

0 if t > R.

It is clear that UR satisfies the propagation condition. We have

‖(UR − V )(s)‖2 �
√

2‖
√
|D|e−R|D|‖2‖s‖2 +

√
2

∫R

0

∥∥∥∥∥
∫
|ξ|>R4

ĥt(ξ) eiξD dξ(s)

∥∥∥∥∥
2

dt.
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For the second summand on the right-hand side we can use the explicit description of ĥt(ξ),
to get the estimates

∫R

0

∥∥∥∥∥
∫
|ξ|>R4

ĥt(ξ)eiξD(s)

∥∥∥∥∥
2

dt � ‖s‖2
∫R

0

(∫
|ξ|>R4

|ĥt(ξ)| dξ
)2

dt

� ‖s‖2
∫R

0

(∫
|ξ|>R4

(C|t+ iξ|−3/2 + C|t− iξ|−3/2) dξ

)2

dt

� 2C‖s‖2
∫R

0

(∫
|ξ|>R4

|ξ|− 3
2 dξ

)2

� C ′ 1
R
‖s‖2.

Summarizing, we have shown that there exists a positive C > 0 such that

‖(UR − V )(s)‖2 � C(‖
√
|D|e−R|D|‖2 +R−1) · ‖s‖2

proving that UR → V in operator norm as R→ +∞.
Next we need to show that φUR − UR(φ ◦ i) is compact for each φ ∈ C0(R� ×M). For

notational convenience we deal with V instead of UR. One checks immediately that the
arguments also work for UR. By the Kasparov Lemma 3.2 it suffices to prove that φ1V ψ2

is compact whenever φ1 ∈ C0([0,∞)×M) ψ2 ∈ C0(M) and the image of the support of ψ2

through the inclusion map i is disjoint from the support of φ1. Clearly, it suffices to prove that
φ1V ψ2 is the norm limit of compact operators. We can obviously consider φ1 = α⊗ ψ1 with
ψ1 ∈ C0(M) and α ∈ C0[0,∞). There are then two cases:

(1) α(0) = 0, and we may as well assume that α is supported away from t = 0;
(2) α is not supported away from t = 0 but d(suppψ1, suppψ2) � δ > 0.

Let us treat (1) first. Take Λ� 0 and consider χ[−Λ,Λ]. Then we can consider (α⊗ ψ1)VΛψ2

with (VΛs)(t) :=
√

2|D|e−t|D|χ[−Λ,Λ](D)(s). The operator (α⊗ ψ1)VΛψ2 is compact; indeed
χ[−Λ,Λ](D) is in C∗(M), so that χ[−Λ,Λ](D)ψ is compact for each ψ ∈ C0(M). We are
considering (α⊗ ψ1)V χ[−Λ,Λ](D)ψ2; since χ[−Λ,Λ](D)ψ2 is compact and since V is an isometry
(and the composition of a compact operator with a bounded operator is again compact),
we conclude that (α⊗ ψ1)VΛψ2 is compact. It remains to show that the operator norm
of (α⊗ ψ1)V ψ2 − (ψ1 ⊗ α)VΛψ2 is small. We shall achieve this by proving that αV − αVΛ

is small in norm. Consider the spectral transform (4.37); under this transformation, which
is an isometry, the operators V and VΛ diagonalize as the direct sum of bounded opera-
tors Vj : L2(Rλ, dμj)→ L2[0,∞), L2(Rλ, dμj)) and similarly for VΛ. We have: (Vjσ)(t, λ) =
e−t|λ|√2|λ|σ(λ) and similarly for VΛ,j . Recall that we are under the assumption that the L2-
spectrum of D does not contain 0. Thus 0 is never in the support of any of the measures
μj . We are also under the assumption that α is supported away from 0. Using this and some
elementary computation one proves that ‖αVjψ − αVΛ,j‖ is exponentially decreasing in Λ. Thus
αVΛ,j

Λ→∞−−−−→ αVj in norm and therefore (α⊗ ψ1)VΛψ2
Λ→∞−−−−→ (α⊗ ψ1)V ψ2 in norm, which is

what we wanted to show.
Next we tackle (2). It suffices to work under the assumption that α ≡ 1, so that we are

looking at ψ1V ψ2 with d(suppψ1, suppψ2) � δ > 0. Let P : L2(R� ×M)→ L2(R� ×M) be
the operator of multiplication by the characteristic function of the t-interval [0, εδ). Then
ψ1V ψ2 = Pψ1V ψ2 + (Id− P )ψ1V ψ2. The second summand on the right-hand side is compact
by the same argument we have employed for (1). Thus, it suffices to show that the norm of
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Pψ1V ψ2, as an operator from L2(M)→ L2(R� ×M), is less than ε. Write ψ1V ψ2 as

ψ1

(
1√
2π

∫
R

ĥt(ω) eiωD dω

)
ψ2

with ht(λ) :=
√

2|λ|e−t|λ|. From the assumption d(suppψ1, suppψ2) � δ > 0 and the propaga-
tion ω of eiωD, this is equal to

ψ1

(
1√
2π

∫
|ω|�δ

ĥt(ω)eiωD dω

)
ψ2.

Fix s ∈ L2(M). Then

‖Pψ1V ψ2(s)‖2L2(R�×M) �
∫ εδ

0

(
1√
2π

∫
|ω|�δ

|ĥt(ω)|dω
)2

‖ψ1‖2∞‖ψ2‖2∞‖s‖2L2 dt.

Ir remains to show that
∫εδ

0
((1/
√

2π)
∫
|ω|�δ

|ĥt(ω)|dω)2dt is small. However, from the explicit
computation of ĥt we see that this is less than

C

∫ εδ

0

(∫
|ω|�δ

|ω|−3/2 dω

)2

dt with C > 0.

Because this latter term is equal to Cεδ(16/δ) = 16Cε, the proof of Proposition 4.18 is complete.

We now prove Proposition 4.19. We want to show that (|D|+ ∂t)/(D − ∂t) belongs toD∗(R×
M)Γ. We must prove that this operator is a norm limit of operators that are pseudo-local and
of finite propagation.

We write (|D|+ ∂t)/(D − ∂t) as |D|/(D − ∂t) + ∂t/(D − ∂t) and deal with the two sum-
mands separately.

We think of (D − ∂t)−1 : L2 → H1 as bounded operator from L2 to the Sobolev space H1,
and we will compose it with ∂t : H1 → L2 or |D| : H1 → L2 as bounded operator from H1

to L2.
We will show that for D :=

(
0 D+∂t

D−∂t 0

)
the operator D−1 : L2 → H1 can be approximated

by operators Fε of finite propagation in the operator norm from L2 to the Sobolov space H1,
such that the commutator [Fε, φ] : L2 → H1 is compact as an operator from L2 to H1 whenever
φ is (multiplication by) a compactly supported continuous function. The same is then true for
its corner (D − ∂t)−1.

Secondly, we will show that also ∂t : H1 → L2 and |D| : H1 → L2 can be approximated as
operators from H1 to L2 by finite propagation operators such that the commutator of the
approximating operators with compactly supported functions is compact as operator from H1

to L2.
Having achieved this, the compositions will have the same required property.
Of the three operators to study, ∂t itself has propagation zero, and the commutator [∂t, φ] is

multiplication with the compactly supported function ∂tφ, which as operator from H1 to L2

is compact by the Rellich lemma.
Next we study D−1. As D is an invertible elliptic operator of first order, we can and will

choose on H1 the norm such that D : H1 → L2 is an isometry. Let f be an odd smooth bounded
function equal to 1/x on the spectrum of the invertible self-adjoint operator D. Note that f ,
and thus its Fourier transform f̂ , lies in L2(R). We consider the function x �→ xf(x) and we
arrange that g(x) := xf(x)− 1 is compactly supported. Thus its Fourier transform ĝ(ξ) will be
in the Schwartz space S. This means that ∂ξ f̂ − 1√

2π
δ0 is an element in S; we deduce from this

that f̂ is bounded, smooth outside 0, odd and of Schwartz class as |ξ| → +∞. Write f̂ = gε + vε

with gε odd and compactly supported and vε ∈ S with the property that |∂xvε|L1(R) < ε.
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We achieve this by setting vε := φεf̂ with an even smooth cutoff function φ which vanishes
in a sufficiently large neighborhood of 0 and which has uniformly small derivative (using
that f̂ is of Schwartz class at ±∞). Then f = hε + wε with hε having compactly supported
Fourier transform gε and wε ∈ S with the property that |xwε(x)|∞ < 2πε. We deduce that
f(D) = D−1 and

‖f(D)− hε(D)‖L2→H1 = ‖wε(D)‖L2→H1 = ‖Dwε(D)‖L2→L2 � |xwε(x)|∞ < 2πε.

Finally, hε(D) is of finite propagation by unit propagation speed for the Dirac type operator D.
Let now φ be a compactly supported smooth function on R×M . Bearing in mind the

finite propagation (say Rε) of hε(D), we choose a compactly supported function ψ which
takes the value 1 on the Rε-neighborhood of the support of φ. Then hε(D)φ = ψhε(D)φ
and φhε(D) = φhε(D)ψ. Choose a compact spin manifold X with an open subset U which
is isometric (preserving the spin structure) to an open neighborhood V of the support of ψ.
To construct X, take, for example, the double of a compact 0-codimensional submanifold
with boundary of R×M containing the support of ψ. Then (again by unit propagation
speed for Dirac operators) the operators φhε(D)ψ and ψhε(D)φ are unitarily equivalent to the
corresponding operators on the compact manifold X; we see in this way that the commutator
[φ, hε(D)] is unitarily equivalent to [φX , hε(DX)] : H1(X)→ L2(X). Here φX is the function φ
transported to X via the isometry, and DX is the Dirac operator on X. Now it is a classical
fact that hε(DX) is a pseudodifferential operator of order 1. This follows, for example, from
[41, Theorem XII.1.3]. Strictly speaking, we write hε(DX) = DXwε(

√
D2

X) which is possible
because we made sure that hε(x) is an odd function. Our original f(x) is smooth and equal
to 1/x for x large, hence is a symbol of order −1. More precisely, it belongs to S−1

1,0(R) in
the sense of [41, Lemma XII.1.2]. Now hε(x) differs from f(x) by the Fourier transform of a
Schwartz function, that is, by a Schwartz function, that is, also belongs to S−1

1,0 . As hε is odd, wε

(satisfying xwε(|x|) = hε(x)) is smooth and belongs to S−2
1,0 . By Seeley’s theorem on complex

powers of elliptic operators (or the special proof given in [41, Section XII.1]),
√
D2

X is a positive
pseudodifferential operator of order 1 with scalar valued principal symbol on the compact
manifold X. Thus, all the hypotheses of [41, Theorem XII.1.3] are fulfilled and we conclude
that wε(

√
D2

X) is a pseudodifferential operator of order −2 and hε(DX) = DXwε(
√
D2

X)
is a pseudodifferential operator of order −1. By standard results of the pseudodifferential
calculus this implies that its commutator with the smooth function φX is a pseudodifferential
operator of order −2 (this is a direct consequence of the short exact sequence defined by
the principal symbol and the formula for the principal symbol of a composition). So, up
to unitary equivalence, [hε(D), φ] can be written as composition of the bounded operators
[hε(DX), φX ] : L2 → H2 and i : H2 → H1 where the latter operator is compact by the Rellich
lemma on the compact manifold X. Therefore [hε(D), φ] indeed is compact, as we had to
show. Then also the commutators with arbitrary continuous compactly supported functions
are compact because the smooth functions are dense in sup-norm in C0.

Finally, we treat |D| : H1 → L2. Note that this should really be written as idL2(R)⊗|D|,
which is not a function of the Dirac operator on R×M ; this makes the analysis slightly more
complicated.

We begin by analyzing the operator |D| acting on M . We keep considering |D| as a bounded
operator from H1 to L2. As above, we can write |D| = kε(D) + uε(D) where uε now is an even
Schwartz function such that ‖uε(D)‖ < ε (even when considered as operator L2 → L2) and such
that kε(D) has finite propagation, say Rε. Then, as above, for a smooth compactly supported
function φ1 on M , the commutator [kε(D), φ1] is unitarily equivalent to [kε(DX), φ1,X ] for a
compact manifolfd X. And, exactly with the same reasoning as above, kε(x) is an even symbol
of order 1, so that kε(DX) is a pseudodifferential operator of order 1. Therefore [kε(DX), φ1,X ]
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is a pseudodifferential operator of order 0, defining a bounded operator L2 → L2. So the same
is true for [kε(D), φ1] (which is additionally supported on a compact subset of M).

Now we return to R×M . Note that the precise meaning of idL2(R)⊗D : H1(R×M)→
L2(R×M) is the composition of the (bounded) embedding H1(R×M) ↪→ L2(R)⊗H1(M)
with the bounded operator idL2(R)⊗D : L2(R)⊗H1(M)→ L2(R×M). We will use this
notation throughout. We write

idL2(R)⊗|D| = idL2(R)⊗kε(D) + idL2(R)⊗uε(D) : H1(R×M) −→ L2(R×M).

The first summand on the right-hand side, a bounded operatorH1 → L2, has finite propagation
whereas the second has small norm as on operator from H1 → L2. Thus, we are left with
the task of proving that idL2(R)⊗kε(D) is pseudolocal as an operator from H1 to L2.
Given compactly supported smooth functions φ2 on R and φ1 on M , the commutator
[idL2(R)⊗kε(D), φ2φ1] equals φ2 ⊗ [kε(D), φ1] which factors as the inclusionH1 → L2 composed
with the bounded operator φ2 ⊗ [kε(D), φ1] : L2 → L2. As, in addition, this commutator is
compactly supported, the Rellich lemma implies that this composition is compact as an
operator from H1 to L2. As smooth compactly supported functions of the form φ1 ⊗ φ2 are
dense in all continuous functions of compact support, this finishes the proof of Proposition 4.19.

Remark 4.21. We use the calculus of pseudodifferential operators here just for conve-
nience. In [29], we generalize the assertions to perturbations of Dirac type operators which
are not necessarily pseudodifferential, replacing the pseudodifferential arguments by purely
functional analytic ones.

5. Mapping the positive scalar curvature sequence to analysis

In this section, we finally prove Theorem 1.28. One part of this theorem is the construction
and commutativity of the following diagram (1.15).

−−−−→ Ωspin
n+1(BΓ) −−−−→ Rspin

n+1(BΓ) −−−−→ Posspin
n (BΓ) −−−−→ Ωspin

n (BΓ) −−−−→⏐⏐�β

⏐⏐�IndΓ

⏐⏐�ρΓ

⏐⏐�β

−−−−→ Kn+1(BΓ) −−−−→ Kn+1(C∗
r Γ) −−−−→ Kn+1(D∗

Γ) −−−−→ Kn(BΓ) −−−−→
First of all, we need to give a precise definition for the vertical homomorphisms. Consider an

element [Y, f : Y → BΓ, g∂ ] ∈ Rspin
n+1(BΓ). Let gY be a Riemannian metric on Y extending g∂ .

We consider the Galois Γ-covering W := f∗EΓ, endowed with the lifted metric gW . We consider
(W∞, g), the complete Riemannian manifold with cylindrical ends associated to W . We wish
to define IndΓ([Y, f : Y → BΓ, g∂ ]) ∈ Kn+1(C∗

Γ); to this end consider the relative coarse index
class Indrel(DW∞) ∈ Kn+1(C∗(W ⊂W∞)Γ) and its image Ind(DW ) ∈ Kn+1(C∗(W )Γ) through
the canonical isomorphism Kn+1(C∗(W ⊂W∞)Γ) 
 Kn+1(C∗(W )Γ). We then consider the
image of this class through the canonical isomorphism u∗ : Kn+1(C∗(W ⊂W∞)Γ) 
 Kn+1(C∗

Γ)
induced by the classifying map u : W → EΓ. We have denoted this image by IndΓ(DW ),
see 1.15. We set

IndΓ([Y, f : Y −→ BΓ, g∂ ]) := IndΓ(DW ) ∈ Kn+1(C∗
Γ).

That this index map Rspin
n+1(X) IndΓ−−−→ Kn+1(C∗

r Γ) is well defined, that is, that IndΓ(DW )
is bordism invariant, can be proved in many different ways. In future work, we plan to
give a treatment of bordism invariance in the spirit of coarse index theory. Alternatively,
relying on published previous work, it follows from the compatibility between the coarse
index class Indrel(DW∞) and the Mishchenko–Fomenko index class, either obtained on the
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associated manifold with cylindrical ends or à la APS, see Proposition 2.4, then applying to
the Mishchenko–Fomenko index class [3] or [21], where [3] employs a relative index theorem
and [21] is based on a gluing formula for index classes. We remark that it would also be possible
to state and prove a relative index theorem similar to [3] but in coarse geometry and then apply
Bunke’s argument directly to the coarse index class IndΓ(DW ).

Consider now an element [Z, f : Z → BΓ, gZ ] ∈ Posspin
n (BΓ); we consider the Γ-covering

M := f∗BΓ and we endow it with the lifted metric g. Then, by definition,

ρΓ[Z, f : Z −→ BΓ, gZ ] = ρΓ(g) ∈ Kn+1(D∗
Γ).

The fact that ρΓ is well defined follows from Corollary 1.16. Finally, let us recall the definition of
the map β : Ωspin

n+1(BΓ)→ Kn+1(BΓ), as given by Higson and Roe [11–13]. Consider an element
[Z, f : Z → BΓ] ∈ Ωspin

n+1(BΓ) and let M := f∗EΓ, endowed with any Γ-invariant Riemannian
metric g. We consider the class [DM ] ∈ Kn(D∗(M)Γ/C∗(M)Γ) 
 Kn+1(M/Γ) ≡ Kn+1(Z) and
we push it forward through f∗ to Kn+1(BΓ):

β[Z, f : Z −→ BΓ] := f∗[DM ] ∈ Kn+1(BΓ).

We must now tackle the commutativity of the diagram. We consider the three distinct
squares of the diagram from left to right. The commutativity of the first square, which is
implicitly discussed in the work of Higson–Roe, follows from the definition of the C∗

r Γ-index
class, as given in Subsections 1.3 and 1.4. The commutativity of the second square is a direct
consequence of our APS index theorem, see Corollary 1.15 and more precisely formula (1.10).
The commutativity of the third square is again a direct consequence of the definitions.

The remaining part of Theorem 1.28 deals with a compact spaceX with fundamental group Γ
and universal covering X̃. Here one uses the canonical isomorphisms Rspin

∗ (X) = Rspin
∗ (Γ) (the

structure groups depend only on the fundamental group), K∗(X) = K∗+1(D∗(X̃)Γ/C∗(X̃)Γ)
and K∗(C∗(X̃)) = K∗(C∗

r Γ). Then the proof of (1.14) is exactly parallel to the proof of (1.15)
once we use the results explained in Remark 1.17. This finishes the proof of Theorem 1.28.
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