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Bordism, rho-invariants and the Baum–Connes conjecture

Paolo Piazza and Thomas Schick

Abstract. Let ! be a finitely generated discrete group. In this paper we establish vanishing
results for rho-invariants associated to

(i) the spin Dirac operator of a spin manifold with positive scalar curvature and fundamental
group !;

(ii) the signature operator of the disjoint union of a pair of homotopy equivalent oriented
manifolds with fundamental group ! .

The invariants we consider are more precisely

! theAtiyah–Patodi–Singer (!APS) rho-invariant associated to a pair of finite dimensional
unitary representations "1;"2 W ! ! U.d/,

! the L2-rho-invariant of Cheeger–Gromov,

! the delocalized eta-invariant of Lott for a non-trivial conjugacy class of ! which is finite.

We prove that all these rho-invariants vanish if the group! is torsion-free and the Baum–Connes
map for the maximal group C*-algebra is bijective. This condition is satisfied, for example, by
torsion-free amenable groups or by torsion-free discrete subgroups of SO.n; 1/ and SU.n; 1/.
For the delocalized invariant we only assume the validity of the Baum–Connes conjecture for
the reduced C*-algebra. In addition to the examples above, this condition is satisfied e.g. by
Gromov hyperbolic groups or by cocompact discrete subgroups of SL.3;C/.

In particular, the three rho-invariants associated to the signature operator are, for such
groups, homotopy invariant. For the APS and the Cheeger–Gromov rho-invariants the latter
result had been established by Navin Keswani. Our proof reestablishes this result and also
extends it to the delocalized eta-invariant of Lott. The proof exploits in a fundamental way
results from bordism theory as well as various generalizations of the APS-index theorem; it
also embeds these results in general vanishing phenomena for degree zero higher rho-invariants
(taking values in A=ŒA;A# for suitable C*-algebras A). We also obtain precise information
about the eta-invariants in question themselves, which are usually much more subtle objects
than the rho-invariants.
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homotopy invariance.
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1. Introduction and main results

Throughout this paper, M is an oriented closed manifold of odd dimension
2n " 1. Let u W M ! B! be a continuous map, classifying a normal !-covering zM
ofM . Let .M 0; u0 W M 0 ! B!/ be a different oriented !-covering. We shall say that
.M 0; u0 W M 0 ! B!/ and .M; u W M ! B!/ are oriented !-homotopy equivalent
if there exists an oriented homotopy equivalence h W M ! M 0 such that u0 B h is
homotopic to u.

1.1. Atiyah–Patodi–Singer rho-invariant. Let"1;"2 W ! ! U.d/ be two finite di-
mensional unitary representations of ! of the same dimension. Equivalently,
"1 ""2 is a virtual representation in the representation ring of ! of dimension 0. The
representations "1;"2 induce flat bundlesL1 andL2 onM endowed with flat unitary
connections: if Vj denotes the representation space of "j , then Lj ´ zM #! Vj and
the unitary connection is induced from the trivial connection on the product zM #Lj .

LetD be a Dirac-type operator acting on the sections of a Clifford moduleE. We
shall always assume that the Clifford module is unitary and endowed with a unitary
Clifford connection rE . The operator D can be twisted with the flat bundles L1



Bordism, rho-invariants and the Baum–Connes conjecture 29

and L2. We use the notation DLj
, but also D"j

, for the twisted operator, acting on
sections of E ˝ Lj .

The usual integral defines the eta-invariant of the twisted operator

$.DLj
/ D 1p

%

Z 1

0

s"1=2 Tr.DLj
exp.".sD2

Lj
// ds: (1.1)

Convergence near s D 0 is ensured by our assumptions on E and rE , see [5]. In
particular, ifM is equipped with a spin structure andD ´ D= is the associated Dirac
operator, then $.D=Lj

/ is defined. Similarly, if D ´ Dsign is the signature operator

of an orientation and Riemannian metric on M , the eta-invariant $.Dsign
Lj
/ is defined

by (1.1).

1.2 Definition. The Atiyah–Patodi–Singer rho-invariant associated to the Dirac-type
operator D and the virtual representation "1 " "2 is the difference

&.D/"1""2
´ $.DL1

/ " $.DL2
/: (1.3)

The first important result we shall prove in this paper is the following.

1.4 Theorem. Assume that ! is a torsion-free discrete group and that the Baum–
Connes assembly map is an isomorphism

'max W K#.B!/ ! K#.C #!/;

where C #! is the maximal C*-algebra of ! .

(1) LetD be the Dirac operator of a spin structure,D D D= . If the metric onM has
positive scalar curvature then the Atiyah–Patodi–Singer rho-invariant is zero.

(2) Let D be the signature operator, D D Dsign, then the Atiyah–Patodi–Singer
rho-invariant &.Dsign/"1""2

only depends on the oriented !-homotopy type of
.M; u W M ! B!/ .

1.5 Remark. The result about the APS-rho-invariant of the signature operator is
due to Navin Keswani [29]. We give an independent proof of Keswani’s result. The
first special case of this result is due to Mathai [47], who proved it for Bieberbach
groups. We shall also try to present a “philosophical” reason for the theorem. It
should be added Keswani’s argument is most likely to be adapted so as to cover the
result on the spin Dirac operator as well. Finally, Shmuel Weinberger [66] proves the
homotopy invariance of the APS-rho-invariants for the signature operator under the
assumption that ! is torsion free and that theL-theory isomorphism conjecture holds
for ! . Chang [9] has used the same assumption to prove the corresponding result for
the L2-rho-invariant.
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1.6 Remark. Note that for finite groups the rho-invariants of the spin Dirac operator
are effectively used to distinguish different metrics with positive scalar curvature,
compare e.g. [6]. We see that this is not possible under our assumption on the group! .
This might be particularly surprising in view of the genuinely non-local definition of
the eta-invariants.

We shall use different C*-algebras associated to the group ! .

1.7 Definition. Let ! be a discrete group. The maximal C*-algebra C #! is the
completion of the group ring CŒ!# with respect to the maximal possible C #-norm on
this ring [13].

The maximal C*-algebra has the universal property that for each unitary repre-
sentation ( W ! ! U.H/ on a Hilbert space H , there is a unique C*-algebra homo-
morphism C #! ! B.H/ extending (.

More frequently used is the reduced C*-algebra of ! . It is by definition the
closure of CŒ!#, considered as subalgebra of B.l2.!// with respect to the right
regular representation (.

P
#2! "#)/ $g ´ P

#2! "# .)g/). Note that by the universal
property of C #! , we have a canonical homomorphism C #! ! C #

red! extending the
identity on ! .

We will also make use of the group von Neumann algebra N ! . This is by definition
the weak closure of the right regular representation of CŒ!# in B.l2!/. In particular
it is also the weak closure of C #

red! , i.e., we have an inclusion C #
red! ,! N ! . By the

bicommutant theorem, it is also equal to B.l2.!//! , i.e. all operators which commute
with the right regular representation of! on l2.!/. Note that N ! is also a C*-algebra.

1.8 Remark. The Baum–Connes conjecture for a torsion-free group ! asserts that
the assembly map

K#.B!/ ! K#.C #
red!/

is an isomorphism, where the right-hand side is the reduced C*-algebra of the group! .
It is a fact that K#.C #!/ and K#.C #

red!/ are identical for large classes of groups,
e.g. amenable groups or discrete subgroups of SO.n; 1/ or SU.n; 1/. However, for
groups with Kazhdan’s property T, they definitely differ, andK#.B!/ ! K#.C #!/
is known not to be surjective in this case.

1.2. L2-rho-invariant. If we look at the !-covering zM directly, we can lift any
differential operator D from M to a !-invariant differential operator zD on zM . In
particular, this is possible for a Dirac-type operatorD. Moreover, by using Schwartz
kernels, but integrating only over a fundamental domain for the covering zM ! M ,
we get an L2-trace Tr.2/, see [1]. This yields the L2-eta-invariant defined using
essentially formula (1.1) by

$.2/. zD/ D 1p
%

Z 1

0

s"1=2 Tr.2/. zD exp.".s zD2// ds;
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where the L2-trace is defined by

Tr.2/. zD exp."t zD2// D
Z

F

trx kt .x; x/: (1.9)

Here trx is the fiberwise trace and F is a fundamental domain.
In order to ensure the convergence of the integral near t D 0 we still require

the operator D to be associated to a unitary Clifford module endowed with a unitary
Clifford connection. The convergence of the integral for large t is discussed in [10]
and also in [54].

1.10 Definition. We define the L2-rho-invariant as the difference

&.2/.D/ ´ $.2/. zD/ " $.D/:

1.11 Theorem. If ! is torsion-free and the Baum–Connes assembly map for the
maximal C*-algebra of ! , K#.B!/ ! K#.C #!/, is an isomorphism, then
(1) theL2-rho-invariant of the Dirac operator of a spin manifold with positive scalar

curvature vanishesI
(2) the L2-rho-invariant of the signature operator depends only on the oriented

!-homotopy type of .M; u W M ! B!/ .

1.12 Remark. For the signature operator, this result is proved by Keswani in [30]
using methods different from ours.

The result for the spin Dirac operator was originally obtained (with a similar, but
slightly more complicated method as the one presented here) in unpublished work
of Nigel Higson and the second author. It should be possible to adapt Keswani’s
arguments so as to cover the result on the spin Dirac operator.

Our proof also provides some rather delicate information about the eta-invariants
directly (and not just of the less subtle rho-invariants).

1.3. Delocalized eta-invariants. We continue with the geometric setup of Sec-
tion 1.2, with a Galois !-covering ! "! zM "! M classified by a map u W M !
B! . To construct the L2-eta-invariant, we used the integral kernel kt .x; y/ of
zD exp."t zD2/ on zM . Fix now a non-trivial conjugacy class hgi of ! . Define the

delocalized trace

Trhgi. zD exp."t zD2// ´
X

g2hgi

Z

F

trx kt .x; gx/: (1.13)

Note that the fibers at x and gx of the pull back vector bundle on which zD acts are
canonically identified, so that kt .x; gx/ can be considered as an endomorphism of
this fiber, and its fiberwise trace tr is defined.

Convergence of this (possibly infinite) sum follows from exponential decay, com-
pare [41].
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Finite conjugacy classes. If the conjugacy class hgi contains only finitely many
elements, Lott proves in [41] that the following integral, defining the delocalized
eta-invariant, converges.

$hgi. zD/ ´ 1p
%

Z 1

0

t"1=2 Trhgi. zD exp."t zD2/ dt: (1.14)

We prove:

1.15 Theorem. Assume that ! is torsion-free and that the assembly map
'red W K#.B!/ ! K#.C #

red!/ for the reduced group C*-algebra is an isomorphism.
Let hgi be a non-trivial finite conjugacy class in ! .

(1) If D D D= is the spin Dirac operator of a spin manifold with positive scalar
curvature then

$hgi. zD=/ D 0:

(2) IfD D Dsign is the signature operator of an oriented Riemannian manifold then
$hgi. zDsign/ depends only on the oriented!-homotopy type of .M; uWM ! B!/ .

1.16 Remark. Notice that our assumption here involves the reduced group C*-
algebra. There are substantially more groups which satisfy the Baum–Connes conjec-
ture for the reduced C*-algebra, even some with property T, e.g. all Gromov hyperbolic
groups [52] or cocompact discrete subgroups of SL.3;C/ [31].

1.17 Remark. The stated result is only interesting if the group contains elements with
finite conjugacy class. Note that this does by no means imply that the corresponding
element has finite order.

Evidently, each central element has a finite conjugacy class (consisting only of
itself). This means that, starting with an arbitrary group ! , each central extension
with kernel Z will be a group with large center, and if H 2.!;Z/ ¤ f0g, there are
non-trivial such central extensions.

Infinite conjugacy classes. Lott establishes the convergence of the delocalized eta-
invariant under more general assumptions: it suffices to assume that the Dirac-type
operator on the covering has a gap at 0 (with 0 allowed in the spectrum) and that the
conjugacy class is of polynomial growth with respect to a word-metric on! . Thus, for
the spin Dirac operator of a manifold with positive scalar curvature, the delocalized
eta-invariant $hgi. zD= / is well defined, provided hgi is of polynomial growth. If, in
addition, ! is torsion-free and the reduced Baum–Connes map is bijective, then we
shall prove that, as in the case of finite conjugacy classes stated above, $hgi. zD= / D 0.
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1.4. General principle of the proofs of vanishing results. In order to simplify the
exposition we shall concentrate on the case where ! is the fundamental group of our
manifold and the !-covering is the universal covering.

First observe that the homotopy invariance of the rho-invariants for the signature
operator reduces to the vanishing of the rho-invariant for the disjoint unionXq"X 0,
if X and X 0 are homotopy equivalent, since all rho-invariants are certainly additive
under disjoint union.

For this reason we shall be only concerned with vanishing results. To establish
these results, we apply the following general principle. To avoid undue repetitions,
let & for the moment stand for any of the rho-invariants we want to investigate.

(1) We first define a stable variant &s of &. This will be defined as the invariant of a
perturbation of our generalized Dirac operator. Such perturbations do not always
exist, we need the vanishing of the index class of the generalized Dirac operator.
This very strong assumption is satisfied for geometric reasons if one looks at the
Dirac operator of a spin manifold with positive scalar curvature, as well as for the
signature operator on the disjoint union X q "X 0 of two homotopy equivalent
manifolds.

We study the main properties of &s . Most important is that it appears as the
correction term in an index theorem for manifolds with boundary for suitably
perturbed Dirac operators. We use this fact and the assumed surjectivity of the
Baum–Connes map in order to show that the stable rho-invariant is well defined,
independent of the chosen perturbation (we are always under the assumption that
the index class of our operator is zero). Under these assumptions we also prove
the fundamental fact that &s is a bordism invariant: suitable index theorems on
manifolds with boundary will again play a crucial role here.

(2) Then we use our injectivity assumption on the Baum–Connes map, fundamental
results in bordism theory and the bordism invariance established in (1) in order
to show that the stable invariant &s , whenever it is defined, is equal to the stable
invariant of a particularly nice manifold. For this nice manifold we compute the
stable invariant and show that it vanishes.

To this point, we have therefore shown that in certain special situations one can
define an invariant &s which turns out to be zero.

(3) As a last step we show that in the two geometric situations we are studying, the
stable invariant &s coincides with the unstable invariant &. This will be done
by constructing very special perturbations (used in the definition of the stable
invariant) which make the direct comparison of the stable and unstable invariant
possible. For the signature operator on X q "X 0 we use perturbations that are
inspired by the work of Hilsum–Skandalis.

In fact, our results here are much more precise: they give information directly
about the unstable eta-invariants. This is quite remarkable because of the non-
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stable nature of the eta-invariants under perturbations and might lead to future
applications or calculations of eta-invariants.

In the case of a spin manifold with positive scalar curvature, we do not have to
perturb at all, so the last step is trivial.

1.5. Examples. Let ! be a torsion-free discrete group satisfying our basic assump-
tion, the bijectivity of the Baum–Connes map. One might very well wonder whether
the signature rho-invariants considered in this paper are non-zero and whether they
can be effectively used in order to distinguish manifolds that are not homotopy equiv-
alent. In the last part of the paper we give a careful treatment of some non-trivial
examples. In particular, we construct manifolds with the same cohomology but which
are not in the same homotopy class and we distinguish their homotopy type through
their rho-invariants. This can be done for all non-trivial groups which satisfy our basic
examples. The results might also be obtainable using Blanchfield forms of classical
algebraic topology; however, it seems that one has to use some advanced version to
cover all the cases covered by our invariant. The advantage of our approach is that it
is very easy to carry out the calculations.

We also show, along the way, that the vanishing of the signature index class
is not sufficient for establishing the vanishing of the signature-rho-invariants. The
mere vanishing of the signature index class does not imply the vanishing of our rho-
invariants.

1.6. Plan of the paper. In Section 2 we gather the index theoretic results that will
be needed throughout the paper. We treat the general case of a Dirac operator twisted
by a bundle L of finitely generated projective A-modules, with A a C*-algebra. We
state A=ŒA;A#-valued index theorems on closed manifolds and on manifolds with
boundary. Proofs are given in Appendix A.

In Section 3 we specialize to the C*-algebras defined by a discrete group ! and to
the corresponding Mishchenko–Fomenko bundle; we also discuss the corresponding
notions when we twist with the group von Neumann algebra N ! .

In Section 4 we use the surjectivity of the assembly map in order to define the
stable rho-invariants and establish their bordism invariance. The stable rho-invariants
are C*-algebraic objects and they are defined under the additional assumption that the
index class in K1.C

#!/ is equal to zero.
In Section 5 we employ the injectivity of the assembly map in order to construct

a suitable bordism between d copies of the manifold X D M [ ."M 0/, withM and
M 0 homotopy equivalent, and a manifold of a special type. A similar result is proved
ifX is a manifold with positive scalar curvature. These bordisms take the classifying
maps into account.

In Section 6 we show that the stable rho-invariants of these special manifolds are
zero. This fact and the bordism invariance of Section 4 are then used in Section 7 to
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prove that under our assumptions the stable rho-invariants for D D Dsign are zero
if X D M [ ."M 0/, with M and M 0 homotopy equivalent. The corresponding
result for X a manifold with positive scalar curvature and D D D= is established in
Section 12.

In Section 8 we introduce unstable rho-invariants; these are von Neumann objects
producing the three rho-invariants defined in Subsections 1.1, 1.2, 1.3 as special cases.
The unstable rho-invariants are always defined.

In Section 9, Section 10 and Section 11 we show that ifX D M [."M 0/, withM
and M 0 homotopy equivalent, then the unstable rho-invariants are suitable limits of
stable rho-invariants. This step completes the proof of our theorems for the signature
operator, since we know that stable rho-invariants are zero under our assumptions.
The proof for the spin Dirac operator, which is much easier since there is no need for
this limit-argument, is given in Section 12

In Section 13 we gather several remarks on delocalized eta-invariant for infinite
conjugacy classes. We also prove vanishing results for higher rho-invariants.

In Section 14 we state a general von Neumann signature formula for manifolds
with boundary.

In Section 15 we give examples of closed manifolds with torsion-free fundamen-
tal group satisfying the Baum–Connes assumption and for which the relevant rho-
invariants are non-zero. We also construct manifolds with isomorphic homology but
with different homotopy type and we distinguish them by using the L2-rho-invariant
or the delocalized eta-invariant.

In four additional appendices we recall signatures and the signature operator of
HilbertA-module chain complexes with symmetry, and we give a detailed account of
the relationship between spectral invariants on!-coverings and certain algebra-valued
invariants; we also discuss naturality properties of these algebra-valued invariants. All
appendices either recall known results or immediate extensions of known results; they
are included for the reader’s convenience.

1.7. Acknowledgments. We thank Paul Kirk, Eric Leichtnam, Victor Nistor, George
Skandalis and ShmuelWeinberger for helpful discussions and remarks. Special thanks
go to Nigel Higson and John Roe for pointing out a gap in an earlier version of the
paper. Part of this work was carried out during visits of the authors to Göttingen, Paris
and Rome funded by Ministero Istruzione Università Ricerca, Italy (Cofin Spazi di
Moduli e Teorie di Lie), Institut de Mathématiques de Jussieu , CNRS, Graduiertenkol-
leg “Gruppen und Geometrie” (Göttingen).
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2. Index theory: statement of results

Many of the results of this paper are based on suitable generalizations of the Atiyah–
Singer and Atiyah–Patodi–Singer index theorem. In this section we gather the in-
dex theoretic results that we shall need in the rest of the paper. Most of these in-
dex theorems are described (sometimes implicitly) in the literature; they are due to
Mishchenko–Fomenko in the closed case and to Leichtnam and the first author in
the boundary case. Nevertheless, we shall give a direct and simplified account of
these results, showing in particular that once the index class inK#.C #

r !/ is carefully
described, it is possible to give heat kernel proofs of all needed results following the
same steps as for the numeric case (see, for example, [49, Introduction]).

This section is devoted to the statements; Appendix A will contain the proofs. We
start with the closed case.

2.1. Atiyah–Singer index theory for arbitrary C*-algebras

2.1.1. Geometric setup. LetM be a closed manifold. We assume thatD is a Dirac-
type operator acting on a finite dimensional Clifford module E on M , see [5] for the
definitions. Our main interest will be the spin Dirac operator D= of a spin structure,
and the signature operatorDsign of an orientation and Riemannian metric onM . LetA
be a C*-algebra, and L a bundle of finitely generated projective Hilbert A-modules,1

with anA-connection rL. We defineDL to be the operatorD twisted with the bundle
with connection L, acting on sections ofE˝ L. ThenDL is an A-linear differential
operator,

DL 2 Diff1
A.M IE ˝ L; E ˝ L/ % ‰#

A.M IE ˝ L; E ˝ L/:

On the right-hand side the Mishchenko–Fomenko pseudodifferential calculus ap-
pears. DL is elliptic in the sense of Mishchenko–Fomenko with a well-defined index
class Ind.DL/ 2 Kdim.M/.A/. We shall recall below the definition of Ind.DL/ 2
Kdim.M/.A/ when dim.M/ is even.

In many situations, instead of working with the differential operator DL itself,
we will have to perturb the operator slightly (thereby leaving the world of differential
operators). We do this because on the one hand we will have to improve some
technical properties of the operator, such as the large time behavior of the associated
heat kernel; on the other hand, when the operator arises as a boundary operator, we
shall need invertibility in order to define a Fredholm problem on the manifold with
boundary. Of course, each time such a perturbation is introduced, we shall have then
to control how invariants such as the index or the eta-invariant behave.

We start with some generalities about perturbations; this material will be needed
throughout the paper.

1A comment on notations: objects in the C*-algebraic context will always be denoted by script letters.
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2.1 Definition. Let C 2 ‰"1
A be a smoothing operator in the Mishchenko–Fomenko

calculus, acting on sections of E ˝ L. Set

DL;C ´ DL C C :

This is a (smoothing) perturbation of DL.

The following lemma is a direct consequence of the Mishchenko–Fomenko (!MF)
pseudodifferential calculus.

2.2 Lemma. DL;C is an elliptic element in the MF-calculus

DL;C 2 ‰1
A.M IE ˝ L; E ˝ L/ % ‰#

A.M IE ˝ L; E ˝ L/: (2.3)

Moreover, the operators DL and DL;C have the same index

Ind.DL/ D Ind.DL;C / 2 Kdim.M/.A/:

Fundamental in what follows is the following Mishchenko–Fomenko decomposi-
tion theorem.

2.4 Theorem. LetM be even dimensional so thatE D EC ˚E". Let .E˝L/˙ ´
E˙ ˝ L. There is a Mishchenko–Fomenko decomposition of the space of sections of
E ˝ L with respect to DL, i.e.,

C1.M; .E ˝ L/C/ D IC ˚ I?
C; C1.M; .E ˝ L/"/ D I" ˚DL.I

?
C/: (2.5)

By completion, we obtain a decomposition of the Sobolev Hilbert A-modules
Hm.M; .E ˝ L/˙/ for any m 2 N.

The second decomposition is not, a priori, orthogonal. However, DL induces an
isomorphism .in the Fréchet topology/ between I?

C and DL.I
?
C/, and IC and I"

are finitely generated projective Hilbert A-modules .consisting of smooth section of
L2.M;E˝L//. The projections…IC onto IC .orthogonal/ and…I! onto I" .along
DL.I

?
C// are smoothing operators in the Mishchenko–Fomenko calculus. Because

I˙ are already complete finitely generated projective Hilbert A-modules they are
unchanged under the completions. The Mishchenko–Fomenko index class is given by

Ind.DL/ D ŒIC# " ŒI"# 2 K0.A/: (2.6)

2.7 Remark. The theorem is ultimately a consequence of the ellipticity of DL and
more precisely of the existence of an inverse for DL modulo smoothing operators.
Thus, an identical statement remains true for the more general (elliptic) operator
DL;C . The existence of the decomposition is implicitly proved in [53]; the structure
of the two projections is analyzed in [33, Appendix A].
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2.1.2. The A=ŒA; A!-valued index. We want to give a heat kernel proof of a suitable
Atiyah–Singer (! AS) index theorem for the operator DL of 2.1.1. First of all, we
introduce the index we want to compute. Consider the index class Ind.DL/ expressed
through the MF-decomposition theorem (see 2.6): Ind.DL/ D ŒIC#" ŒI"# 2 K0.A/.
Expressing the finitely generated projective modules I˙ as the images of idempotent
matrices and taking the difference of the traces, we obtain a well-defined element
in A=ŒA;A#, with ŒA;A# equal to the C-subspace generated by the commutators
Œa; b# ´ ab " ba for a; b 2 A.

2.8 Definition. Consider the closure ŒA;A# of the subspace ŒA;A#. We set

Aab ´ A=ŒA;A#: (2.9)

where the subscript ab stands for abelianization. It should be noticed that Aab is a
commutative Banach algebra.

In this way we define a homomorphism of abelian groups

tralg W K0.A/ ! Aab: (2.10)

Since this is nothing but the zero-degree part of the Karoubi–Chern character [27],
we denote tralg.ŒIC# " ŒI"#/ by

ŒIC#Œ0$ " ŒI"#Œ0$ 2 Aab; (2.11)

or, equivalently, by IndŒ0$.DL/ 2 Aab.
Our aim is to give a formula for IndŒ0$.DL/ 2 Aab and to prove it via heat kernel

techniques. First we need the existence of the heat kernel for the Dirac Laplacian
D2

L and its perturbation D2
L;C . This is not completely obvious, given that we are

in the C*-algebraic context. We shall give the precise statement in Lemma A.1 of
Appendix A.1 For the time being we shall content ourselves with the statement that
the heat semigroup fe"tD2

L;C ; t > 0g exists, provides a fundamental solution of the
heat equation and is such that e"tD2

L;C 2 ‰"1
A .

Since the heat operator is a smoothing operator in the Mishchenko–Fomenko
calculus, we can consider its supertrace

STR.e"tD2
L/ 2 Aab:

This is defined as follows: we restrict the heat kernel to the diagonal * in M #M ,
* $ M , thus obtaining an element in C1.M;End.E ˝ L//, we take for each fiber
over x the Aab-valued supertrace on End.E ˝ L/x and integrate

STR.e"tD2
L/ ´

Z

M

stralg
x .e

"tD2
L.x; x// volM 2 Aab: (2.12)

Our first result concerns the large time behavior of the heat kernel in the
Mishchenko–Fomenko calculus.
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2.13 Proposition.

lim
t!1 STR.e"tD2

L/ D ŒIC#Œ0$ " ŒI"#Œ0$ ! IndŒ0$.DL/ 2 Aab;

where part of the assertion is that the limit exists.

The proof of this proposition can be found in Appendix A.1. Next we want
to connect IndŒ0$.DL/ 2 Aab defined using the index class and the algebraic trace
tralg W K0.A/ ! Aab to the integral-kernel-trace, TR, of the projection operators
PC ´ …IC , P" ´ …I! given in the Mishchenko–Fomenko decomposition. We
recall that these are smoothing operators; the trace TR is thus well defined. We state
the result here and defer the proof to Appendix A.1.

2.14 Proposition. The algebraic trace

IndŒ0$.DL/ ´ ŒIC#Œ0$ " ŒI"#Œ0$ of Ind.DL/;

i.e. the image of Ind.DL/ under the map tralg W K0.A/ ! Aab; can be calculated as

ŒIC#Œ0$ " ŒI"#Œ0$ D TR.PC/ " TR.P"/

!
Z

M

tralg
x PC.x; x/ "

Z

M

tralg
x P".x; x/ 2 Aab;

where PC and P" are the projections onto IC and I" as given by the Mishchenko–
Fomenko decomposition.

Proceeding now as in the classical case, one proves the following Aab-valued
Atiyah–Singer index theorem:

2.15 Theorem. We have

IndŒ0$.DL/ D TR.PC/ " TR.P"/ D
Z

M

AS.D/.x/ ^ ch L.x/Œdim M $ 2 Aab

where AS.D/.x/ is the local integrand in the Atiyah–Singer formula for D.

In the above formula the differential form

.x 7! AS.D/.x/ ^ ch.E/.x/ ^ ch L.x/Œdim M $/ 2 +dim M .M;Aab/

can be calculated as usual using Chern–Weyl theory and the curvature of the connec-
tions, see [60].
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2.2. APS index theory for arbitrary C*-algebras

2.2.1. Geometric setup. Let W be a compact manifold of even dimension with
boundary @W D M . We assume that D is a Dirac-type operator acting on a finite
dimensional Dirac-bundleE onW . Our main interest will be the spin Dirac operator
of a spin structure, and the signature operator of an orientation and Riemannian
metric onW . We always assume that all these structures are of product type near the
boundary.

Let A be a C*-algebra, and L a bundle of finitely generated projective Hilbert
A-modules, with an A-connection rL (again everything has a product structure near
the boundary). We define DL to be the operator D twisted with the bundle with
connection L. Associated to this are the boundary operators DM ! D@W of D and
DM;L ! D@W;L ofDL. We can attach an infinite cylinder ."1; 0##M toW along
its boundary @W D M , thus obtaining a manifold with cylindrical ends !W and with
product metric dt2 C g@W along the cylinder. The operatorsDL extends in a natural
way to the manifold !W . The change of coordinates t D log x compactifies !W to a
manifold with boundary and with product b-metric dx2=x2 Cg@M near the boundary.
The operator on !W then defines in a natural way a b-differential operator on the
compactified manifold. We refer the reader to the book [49] of Melrose for basics
about the b-calculus. As we shall mainly work in the framework of the b-calculus,
we keep denoting the compactified manifold by W and the resulting b-differential
operators by DL.

2.2.2. Trivializing perturbations. Let M be odd dimensional and without bound-
ary, and let us assume that Ind.DM;L/ D 0 2 K1.A/. This will be the case in the
following examples:

! DM is the signature operator on M D X t ."X 0/ with X and X 0 homotopy
equivalent.

! DM is the signature operator and .M;L/ bounds, i.e., there is a manifold W
with @W D M such that L extends to W .

! M is spin with positive scalar curvature and DM is the spin Dirac operator.

For more on these examples we refer the reader to [22], [56], [34] and [57]. According
to [68], [38, Theorem 3] we can find a non-commutative spectral section P forDM;L.2

Using the projection P one can construct [34, Proposition 2.10] a smoothing operator
CP 2 ‰"1

A .M IE ˝ L/ such that

DM;L C CP 2 ‰1
A.M IE ˝ L/ is invertible in ‰#

A.M IE ˝ L/:

2Thus, by definition, P is a self-adjoint projection, P 2 ‰0
A and there exists functions %1;%2 2

C 1.R; Œ0; 1$/ such that %i .t/ D 0 for t $ 0, %i .t/ D 1 for t % 0, %2 & 1 on a neighborhood of
the support of %1 and im%1.DM;L/ ' im P ' im%2.DM;L/.
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Moreover, CP is symmetric with respect to the A-valued scalar product on
C1.M;E˝L/. We shall consider in what follows the set of allowable perturbations:

P ´ PDM;L
´ fC 2 ‰"1

A .M IE ˝ L/ j C is symmetric

and DM;L C C is invertible in ‰#
A.M IE ˝ L/g: (2.16)

Summarizing, we have just seen that

Ind.DM;L/ D 0 ) P ¤ ;: (2.17)

Let us go back to the case where M D @W , with W even dimensional. As
mentioned above, by cobordism invariance, the index class ofDM;L is zero inK1.A/;
thus P ¤ ;. Let C 2 P and consider the invertible operator DM;L C C . According
to [34, Lemma 6.1] there exists a smoothing operator in the Mishchenko–Fomenko
b-calculus

CC
W 2 ‰"1

b;A .W IEC ˝ L; E" ˝ L/

such that DC
L C CC

W has DM;L C C as boundary operator. Using the invertibility of
DM;L C C one proves the invertibility of the indicial family associated toDC

L C CC
W ;

this property can in turn be used to prove thatDC
L CCC

W isA-Fredholm as an operator
between suitable Sobolev HilbertA-modules. Thus there is a well defined index class
in K0.A/, denoted Indb.DL C CW /. More precisely

Indb.DL C CW / D ŒIC# " ŒI"# 2 K0.A/ (2.18)

with I˙ finitely generated projective A-modules and

I˙ % x"H1
b .W; .E ˝ L/˙/; " > 0:

The construction of CW from C involves choices; the index class, on the other hand,
does not depend on these choices. We refer the reader to [34] for the details.

2.19 Remark. The results in [34], [38] are noncommutative generalizations of the
results first proved in [50], [51] for families of Dirac operators (i.e. for C.B/-linear
operators, with B a compact manifold).

2.20 Notation. We shall often denote by Indb.DL;C/ the index class in (2.18).

2.21 Remark. Notice that the index class Indb.DL;C/ does depend on C .3

3For example if CP 2 P and CQ 2 P are defined by spectral sections P and Q respectively, then
(see [36], [39])

Indb.DL; CP / " Indb.DL; CQ/ D ŒQ " P $ in K0.A/;

where on the right-hand side the difference class defined by the two projections Q, P appears. This is
known to be non-zero in general.
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2.22 Definition. Let tralg W K0.A/ ! Aab be the trace introduced in Subsection 2.1.2.
The Aab-valued b-index is by definition tralg.Indb.DL;C// 2 Aab. As in the closed
case we use the notation

tralg.Indb.DL;C// µ Indb;Œ0$.DL;C/ D ŒIC#Œ0$ " ŒI"#Œ0$ 2 Aab:

Our goal is to prove an index formula for Indb;Œ0$.DL;C/. First of all, we introduce
the boundary correction term that will appear in the formula.

2.2.3. Eta-invariants for perturbed operators. Let C 2 PDM;L
. Consider the

pseudo-differential operator

DM;L C C 2 ‰1
A.M IE ˝ L/:

We define the Aab-valued eta-invariant $Œ0$.DM;L C C/ 2 Aab by

$Œ0$.DM;L C C/ ´ 1p
%

Z 1

0

TR..DM;L C C/e"t.DM;LCC/2
/
dtp
t
: (2.23)

The integral converges for large t because of the invertibility of DM;L C C . The
convergence for t # 0 follows from the local Aab-valued index theorem on closed
manifold and the observation that

e"t.DM;LCC /2 D e"tD2
M;L C tC1.Œ0;1/; ‰"1

A .M;E ˝ L//;

a consequence of Duhamel’s formula and the fact that C 2 ‰"1
A .M;E ˝ L/.

2.2.4. The A=ŒA; A!-valued Atiyah–Patodi–Singer index formula. In Appen-
dix A.2 we shall recall the precise form of the Mishchenko–Fomenko decomposition
theorem in the b-context. From this result we get the two finitely generated projective
modules I˙ entering into the definition of the b-index class Indb;Œ0$.DL;C/. b-
elliptic regularity implies that the projections P˙ onto these two modules have well
defined traces TR.P˙/ 2 Aab. Analyzing the large-time behavior of the b-supertrace
of the heat kernel for .DL C CW /

2, computing the short-time limit and using the
commutator formula for the b-trace, one finally proves the following theorem (see
Appendix A.2 for proofs and relevant definitions).

2.24 Theorem.

Indb;Œ0$.DL;C/ ! ŒIC#Œ0$ " ŒI"#Œ0$

D lim
t!C1

b STR.e"t.DLCCW /2
/ D TR.PC/ " Tr.P"/

D
Z

W

AS.D/.x/ ^ ch.E/.x/ ^ ch L.x/ dx " 1

2
$Œ0$.DM;L C C/

2 Aab:

where AS.D/ is the local integrand in the APS index theorem for D.
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3. Discrete groups, twisting bundles and index theorems

In this section we show how we can derive the particular index theorems needed for
the results stated in the introduction from the general ones presented above. We shall
specialize to the maximal or the reduced C*-algebra of the group, and also to the
group von Neumann algebra.

3.1. The group C*-algebra and the classical Mishchenko–Fomenko twisting bun-
dle. We now specialize the C*-algebraA and the HilbertA-module bundle L in 2.2.1
and 2.1.1 to the cases which lead to essentially all our applications.

Specifically, let ! be a discrete finitely generated group. Let ! ! zM ! M be
a Galois covering and let u W M ! B! be the associated classifying map, i.e., zM is
the pull back of the universal !-covering E! ! B! under u. We twist our Dirac
type operator D with the flat C #!-bundle L associated to the covering, i.e. with

L ´ zM #! C #!:

3.1 Theorem. For this operator

IndŒ0$.DM;L/ D
"Z

M

AS.D/
#

$ 1 2 .C #!/ab: (3.2)

Here AS is the integrand in the classical Atiyah–Singer index theorem and we recall
that .C #!/ab ´ C #!=ŒC #!; C #!#.

Proof. We apply Theorem 2.15. Since L is flat, and each fiber is isomorphic to the
free C #!-module of rank 1, ch.L/.x/ D 1 2 .C #!/ab, so that we get the constant 1
in the formula. !

We now look at a compact manifoldW with boundaryM , again with a!-covering
! ! $W ! W , classified by a map (also called u) u W W ! B! . Note that this
induces, by restriction, a !-covering zM of the boundary.

Let D be a Dirac type operator on W . Then let C 2 PDM;L
give rise to an

allowable perturbation of the boundary operator DM;L.

3.3 Theorem.

Indb;Œ0$.DL;C/ D
"Z

W

AS.D/
#

$ 1 " 1

2
$Œ0$.DM;L C C/ 2 .C #!/ab: (3.4)

Proof. This is a special case of Theorem 2.24. Note that, since the twisting bundle
L is flat and fiberwise isomorphic to the free Hilbert C #!-module of rank 1, again
ch L.x/ D 1 2 .C #!/ab, so that it does only contribute the 1 in the formula. !
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3.5 Remark. Consider the reduced group C*-algebraC #
r ! of Definition 1.7. One can

form a Mishchenko–Fomenko twisting bundle zM #!C #
r ! and prove .C #

r !/ab-valued
index formulas completely analogous to formulas (3.2) and (3.4).

4. Surjectivity of the Baum–Connes map and stable rho-invariants

4.1. The "-index and its vanishing. Let ! be a discrete group. Let ! ! $W !
W be an even-dimensional Galois covering of a compact manifold with boundary
W , classified by u W W ! B! . Let ! ! zM ! M be the boundary cover-
ing. As before, we consider D ´ DL, a Dirac-type operator on W twisted with
the Mishchenko–Fomenko line bundle L. Since the boundary operator DM;L has
trivial index in K1.C

#!/ we can choose a trivializing perturbation C 2 PDM;L
.

With respect to this perturbation, we have Indb.D ;C/ 2 K0.C
#!/. By applying

tralg W K0.C
#!/ ! .C #!/ab we have finally defined the .C #!/ab-valued b-index

Indb;Œ0$.D ;C/ 2 .C #!/ab.
Since .C #!/ab is a vector space with one dimensional subspace generated by

Œ1# D 1 C ŒC #!; C #!#, we can project the degree zero part of the index onto the
quotient .C #!/ab=hŒ1#i.

4.1 Definition. The &-index associated to D is the image of Indb;Œ0$.D ; C / in the
quotient .C #!/ab=hŒ1#i. We shall denote the &-index by

ind&b;Œ0$.D ; C / 2 .C #!/ab=hŒ1#i: (4.2)

4.3 Remark. Suppose now that W is closed and let IndŒ0$.D/ 2 .C #!/ab be the
associated .C #!/ab-valued index. Using the degree-zero Atiyah–Singer index for-
mula 3.1, we see that the &-index of D vanishes:

ind&Œ0$.D/ D 0 2 .C #!/ab=hŒ1#i: (4.4)

This simple observation plays a fundamental role.

4.5 Lemma. If ! is torsion-free and the Baum–Connes map 'max W K0.B!/ !
K0.C

#!/ is surjective, then the &-index vanishesW

ind&b.D ; C /Œ0$ D 0 in .C #!/ab=hŒ1#i:

Proof. Observe that we can define a homomorphisms

ˆ& W K0.C
#!/ ! .C #!/ab=hŒ1#i;

by simply composing tralg W K0.C
#!/ ! .C #!/ab with the quotient map .C #!/ab !

.C #!/ab=hŒ1#i. Using the above remark, we see that this homomorphism is zero on the
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image of 'max, since the image of 'max consists precisely of index classes associated
to closed manifolds. We use the Baum–Douglas [4] description of the K-homology
of B! here. By assumption, 'max is surjective, so that ˆ& D 0 on all of K0.C

#!/.
Thus 0 D ˆ&.Indb.D ; C // D ind&b.D ; C /Œ0$ and the assertion follows. !

4.2. The stable rho-invariant. Assume that D is a Dirac type operator on a closed
odd-dimensional manifold M , twisted with the Mishchenko–Fomenko line bundle
L associated to some classifying map u W M ! B! . Assume that Ind.D/ D 0 2
K1.C

#!/. Pick a trivializing perturbation C 2 PD .

4.6 Lemma. If ! is torsion-free and the Baum–Connes map 'max W K0.B!/ !
K0.C

#!/ is surjective, then

Œ$Œ0$.D C C/# 2 .C #!/ab=hŒ1#i; (4.7)

i.e., the image of $Œ0$.D C C/ 2 .C #!/ab in the quotient .C #!/ab=hŒ1#i, does not
depend on the particular perturbation C chosen.

Proof. Let C 0 2 P be a different perturbation. Consider the cylinder Œ"1; 1##M . On
the boundary of the cylinder we have an invertible operator, obtained by considering
the operator D C C on f"1g #M and the operator D C C 0 on f1g #M . As already
explained, there is a well-defined b-index class in K0.C

#!/, obtained by lifting
the two perturbations to the cylinder and defining a b-pseudodifferential operator
DŒ"1;1$(M C CŒ"1;1$(M with invertible indicial family. We denote this index class
by

Indb.DŒ"1;1$(M C CŒ"1;1$(M /:

Using the APS-index formula 3.3 we obtain

ind&b.DŒ"1;1$(M C CŒ"1;1$(M /Œ0$

D "1
2 .&Œ0$.D C C/ " &Œ0$.D C C 0// 2 .C #!/ab=hŒ1#i:

On the other hand, by the assumed surjectivity of the Baum–Connes map we know
that ind&b.DŒ"1;1$(M C CŒ"1;1$(M / D 0 and the lemma is proved. !

4.8 Definition. Assume that Ind.D/ D 0 2 K1.C
#!/ and that the max-Baum–

Connes map K0.B!/ ! K0.C
#!/ is surjective. Then the stable degree-zero rho-

invariant is the class

&s
Œ0$.D/ ´ Œ$Œ0$.D C C/# 2 .C #!/ab=hŒ1#i (4.9)

for any perturbation C 2 PD , and it is well defined because of Lemma 4.6.
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4.10 Notation. Let r W M ! B! be a classifying map. We shall frequently use the
notation &s

Œ0$.M; r/ with the understanding that this rho-invariant is associated either
to the signature operator on the oriented Riemannian manifold M , or to the spin
Dirac operator on the spin manifold M (both twisted by the Mishchenko–Fomenko
bundle), depending on the context. Sometimes we shall omit the classifying map
from the notation thus writing &s

Œ0$.M/.

4.3. Bordism invariance. Let .M; g/ be an odd dimensional Riemannian manifold
endowed with a bundle of Clifford modules defining a Dirac-type operator DM . Let
.M; r W M ! B!/ be a Galois covering and let D ´ DM;L be the twisted Dirac oper-
ator in the Mishchenko–Fomenko calculus. Let .M 0; g0/ be another odd dimensional
Riemannian manifold endowed with a Clifford module and let .M 0; r 0 W M 0 ! B!/
be a Galois covering on M 0; set D 0 ´ DM 0;L0 . Assume now the existence of a
bordism .W;R W W ! B!/ between .M; r W M ! B!/ and .M 0; r 0 W M 0 ! B!/;
we also assume the existence of a Riemannian metric and of a bundle of Clifford
modules on W restricting to the given data on M and M 0.

4.11 Proposition. Assume ! is torsion-free and such that the Baum–Connes map
' max is surjective. Assume that Ind.D/ D 0 in K1.C

#!/ so that the stable rho-
invariant &s

Œ0$.D/ is well defined. By the bordism invariance of the index class we
know that Ind.D 0/ D 0 so that &s

Œ0$.D
0/ is also well defined. We have

&s
Œ0$.D/ D &s

Œ0$.D
0/:

Proof. The argument establishing Lemma 4.6 can be repeated here, provided we
substitute the cylinder Œ"1; 1# #M there with the bordism W here. !

5. Injectivity of the Baum–Connes map and bordism

5.1. Statement of results. In contrast to the previous section we now consider only
the spin Dirac operatorD= and the signature operatorDsign and not arbitrary general-
ized Dirac type operators.

5.1 Definition. Consider .M; u W M ! B!/ . If d 2 N n f0g, then we denote by
d.M; u W M ! B!/ the disjoint union of d copies of M with obvious induced map
du W dM ! B! , and with obvious induced structure (orientation, etc.).

5.2 Proposition. Assume that M is a closed oriented manifold, u W M ! B! a
classifying map. Let D sign be the associated Mishchenko–Fomenko signature op-
erator. Assume that 'max W K#.B!/ ˝ Q ! K#.C #!/ ˝ Q is injective and that
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Ind.D sign/ D 0 in Kdim M .C
#!/ ˝ Q. Then there exists d 2 N n f0g such that

d $ ŒM; u W M ! B!# is bordant to

k[

j D1

.Aj # Bj ; rj # 1 W Aj # Bj ! B!/

in+SO
dim M .B!/, with dimBj D 4bj ,%1.Bj / D 1 and hL.Bj /; ŒBj #i D sgn.Bj / D 0.

Here rj W Aj ! B! is a continuous map and .rj # 1/.a; b/ ´ rj .a/.

5.3 Proposition. Assume thatM is a closed spin manifold,u W M ! B! a classifying
map. Let D= ´ D=L be the associated Mishchenko–Fomenko spin Dirac operator.
Assume that 'max W K#.B!/˝ Q ! K#.C #!/˝ Q is injective and that Ind.D= / D
0 2 K#.C #!/ ˝ Q. Then there is d 2 N n f0g such that dŒM; u W M ! B!# is
bordant to

k[

j D1

.Aj # Bj ; rj # 1 W Aj # Bj ! B!/

in +spin
dim M .B!/, with dimBj D 4bj , %1.Bj / D 1 and h yA.Bj /; ŒBj #i D 0. Here

rj W Aj ! B! is a continuous map and .rj # 1/.a; b/ ´ rj .a/.

5.4 Remark. In Propositions 5.2 and 5.3, the condition that the index of the
Mishchenko–Fomenko operator in the K-theory of the maximal C*-algebra vanishes
can be replaced by the more familiar condition that the index in the K-theory of the
reduced C*-algebra vanishes, if we replace the assumption on the rational injectivity
of the maximal Baum–Connes map by the analogous one for the reduced C*-algebra.
Moreover, it should be remarked that the rational injectivity of the complex Baum–
Connes map is equivalent to the rational injectivity of the real Baum–Connes map.
This is a well-known result, a proof can be found in [61].

We prove Propositions 5.2 and 5.3 with the same method from algebraic topology,
which characterizes rationalized homology theories.

5.2. Rational homology theories. Let h# and k# be two generalized homology
theories. We will be interested in the examples+spin

# of spin bordism,+SO
# of oriented

bordism, K# and KO# of complex or real K-homology (the homology theory dual to
K-theory).

Let Lh# ´ h#.pt/ and Lk# ´ k#.pt/ be the coefficients.
It is easy to see thath#˝Q andH#.X I Q/˝Q. Lh#˝Q/ (graded tensor product, the

n-th group is
L

pCqDnHp.X/˝ Lhq) are again homology theories, compare e.g. [23,
3.18 ff].4

4One remark on the reference [23]: here only cohomology is considered, but everything works exactly
in the same way if cohomology is replaced by homology.
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5.5 Proposition. (1) Every natural transformation T W h# ˝ Q ! k# ˝ Q is de-
termined by {T W Lh# ˝ Q ! Lk# ˝ Q.

(2) Every homomorphism {T W Lh# ˝Q ! Lk# ˝Q has a unique extension to a natural
transformation T W h# ˝ Q ! k# ˝ Q.

(3) There is a unique natural transformationH#. $ I Q/˝ . Lh# ˝ Q/ ! h#. $ /˝ Q
which is the identity on the point. It is a natural isomorphism of Lh# ˝Q-modules
if h# is a multiplicative homology theory.

Proof. Compare [23, (3.20), (3.21), (3.22)]. !

Now, we apply this to the examples we want to study. By definition, elements in
K#.X/ are represented by triples .M;E;(/, whereM is a closed oriented Riemannian
manifold of dimension congruent to & .mod 2/,E is a bundle of Clifford modules on
M and ( W M ! X is continuous. Similarly, KO#.X/ is defined by triples .M;E;(/
as above, with the exception that E is a bundle of real Clifford modules. Of course,
a suitable equivalence relation has to be factored out. See [4] and [28].

In particular, we get natural transformations

TSO W +SO
# .X/ ! K#.X/; ŒM

'"! X # 7! ŒM;ƒsign;(#I

Tspin W +spin
# .X/ ! KO#.X/; ŒM

'"! X # 7! ŒM; S= ;(#:

Hereƒsign stands for the complex Clifford module defining the signature operator on
the oriented Riemannian manifoldM , whereas S= is the spin Clifford module defining
the real Dirac operator of the given spin structure.5 IfX is a point, TSO is just given by
the signature (using the canonical isomorphism K2n.pt/ D Z). Also if X D fptg,
Tspin is the ˛-invariant, which is (up to a multiple) equal to yA.M/ for dimensions
divisible by 4 (again use the canonical isomorphism KO4n.pt/ D Z). Note that, in
other dimensions, KOk.pt/ is finite, and K2nC1.pt/ D 0.

Using Proposition 5.5 we get commutative diagrams:

H#.X I Q/˝ .+SO
# .pt/˝ Q/

id ˝T Q
SO !!

Š
""

H#.X I Q/˝ .K#.pt/˝ Q/

Š
""

+SO
# .X/˝ Q

T Q
SO !! K#.X/˝ Q

(5.6)

5Topologists refer to these transformations as the natural K-orientation associated to an .ordinary/
orientation after inversion of 2 and natural KO-orientation associated to a spin structure on M , respec-
tively.
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H#.X I Q/˝ .+
spin
# .pt/˝ Q/

id ˝T Q
spin !!

Š
""

H#.X I Q/˝ .KO#.pt/˝ Q/

Š
""

+
spin
# .X/˝ Q

T Q
spin !! KO#.X/˝ Q:

(5.7)

It is not really necessary for us to understand completely the vertical isomorphisms.
The important point is that +spin

# .X/ ˝ Q is a free module over +spin
# .pt/ ˝ Q

(free generators given by a basis of H#.X I Q/ under the vertical isomorphism). The
corresponding statements hold for +SO

# .X/ ˝ Q and K#.X/ ˝ Q, KO#.X/ ˝ Q.
Moreover, we also see that the basis can be chosen in a natural way and such that
the transformations TQ

SO and TQ
spin are diagonal with respect to them. In particular,

ker.TQ
SO.X// is a free module over ker.TQ

SO.pt// and ker.TQ
spin.X// is a free module

over ker.TQ
spin.pt//.

This means that every element in the kernel of TQ
SO or TQ

spin, respectively, will after
multiplication with a suitable non-zero integer (to clear the denominators) have the
form described in Proposition 5.2 or Proposition 5.3, respectively. Here we use the
fact that the {+#-module structure of +#.X/ is given by the Cartesian product.

Finally, recall that

Ind.D sign/ D 'max.TSO.ŒM
u"! B!#// 2 Kdim M .C

#!//

in the situation of Proposition 5.2, and that

Ind.D= R/ D 'R;max.Tspin.ŒM
u"! B!#// 2 KOdim M .C

#
R!/

in the situation of Proposition 5.3. Because we assume that 'max ˝ Q is injective,
Proposition 5.2 on the signature operator follows from the descriptions of ker.TQ

SO/we
have just given. Concerning Proposition 5.3, we point out that the rational vanishing
of the complex index class associated to D= is equivalent to the rational vanishing of
the corresponding real index class for the real spin Dirac operator D= R. Recalling
that the rational injectivity of the real Baum–Connes map 'R;max is equivalent to the
rational injectivity of the complex Baum–Connes map'max [61], we see that the result
stated in Proposition 5.3 is again a consequence of the description of ker.TQ

spin/ we
have just given.

6. Vanishing of stable rho-invariants for certain product manifolds

6.1 Theorem. Assume that M D U # V , where V is a simply connected oriented
Riemannian manifold of dimension divisible by 4 with vanishing signature, and U is
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any oriented Riemannian manifold of odd dimension. Let A be a C*-algebra and L
a flat finitely generated projective Hilbert A-module bundle on U .defining a bundle,
also called L, on M by pullback/. Let DL be the corresponding signature operator.

Then IndDL D 0 2 Kdim M .A/ and there exists a perturbation C 2 PDL
such

that
$Œ0$.DL C C/ D 0 2 Aab:

Proof. For the differential forms on U # V we have the following decomposition:

L2+.U # V / D L2+.U /˝ L2+C.V /˚ L2+.U /˝ L2+".V /

where +˙.V / refers to the grading associated to the signature operator on V . Since
the bundle L pulls back from V , we get a corresponding decomposition of the Hilbert
A-module of forms with coefficients in L:

L2+.U # V I L/ D L2+.U I L/˝ L2+C.V /˚ L2+.U I L/˝ L2+".V /:

With respect to this decomposition, the signature operator splits as

DU (V D
"
DU ˝ 1V 1U ˝D"

V

1U ˝DC
V "DU ˝ 1V

#
D DU ˝ , C 1U ˝DV ;

where , is the grading operator on L2+.V /. Since L is flat, we get a corresponding
splitting of the signature operator twisted with L:

DL;U (V D
"
DL;U ˝ 1V 1U ˝D"

V

1U ˝DC
V "DL;U ˝ 1V

#
D DL;U ˝ , C 1U ˝DV : (6.2)

Let us now define the perturbed operator. Choose an isometry ‰ W ker.DC
V / !

ker.D"
V /. Since V is compact with vanishing signature, such an isomorphism of finite

dimensional vector spaces exists. Then

C ´
"
0 ‰#

‰ 0

#
W L2+C.V /˚ L2+".V / ! L2+C.V /˚ L2+".V /

is a smoothing operator onV (here “‰” stands for the projection onto ker.DC
V / follows

by the operator ‰).
The operator DL;U (V C 1U ˝ C is invertible. Let f .DL;U / be any smoothing

function of DL;U which is the identity on a sufficiently large neighborhood of zero
in the spectrum of DL;U so that

DC ´ DL;U (V C f .DL;U /˝ C

becomes invertible. This will be our perturbation; notice that since we have found
a smoothing perturbation of DL;U (V which is invertible, we conclude that
Ind.DL;U (V / D 0 in Kdim M .A/, as required.
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We want to show that the degree 0 eta-invariant of this perturbation DC vanishes.
Since L2+.V / is an ordinary Hilbert space where orthogonal complements exist, we
get another orthogonal decomposition into projective Hilbert A-modules:

L2+.U # V I L/ D .L2+.U I L/˝ ker.DV //˚ .L2+.U I L/˝ ker.DV /
?/:

The operator DL;U (V as well as f .DL;U /˝ C preserves the splitting

L2+.U I L/˝ ker.DV /˚ L2+.U I L/˝ .ker.DV /
?/:

Moreover, the second operator is zero on the second summand. Therefore, the in-
tegrand in the definition of $Œ0$.DC / splits into two summands. We continue by
investigating the two summands separately. We will use freely from equation (6.2):
DL;U (V D DL;U ˝ , C 1U ˝ DV . We restrict to L2+.U I L/ ˝ ker.DV /

?. We
denote the restriction of DC to this space by .DC /r and the restrictions of , andDV

to ker.DV /
? by ,r and .DV /r . Then

.DC /r e
"t.DC /2

r D DL;U (V e
"tD2

L;U ˝ e"t.DV /2
r

D DL;U e
"tD2

L;U ˝ .,/re
"t.DV /2

r C e"tD2
L;U ˝ .DV /re

"t.DV /2
r :

(6.3)

We claim that the degree zero trace with values in Aab of both summands vanishes.
Note that TR is multiplicative for tensor products. Here, we get TR of the first factor
multiplied with the ordinary complex-valued trace of the second factor.

For the first summand
Tr..,/re"t.DV /2

r / D 0

by the McKean–Singer formula (we restrict to the orthogonal complement of the
kernel, so the index is zero); therefore

TR.DL;U e
"tD2

L;U ˝ .,/re
"t.DV /2

r / D TR.DL;U e
"tD2

L;U /Tr..,/re"t.DV /2
r / D 0:

For the second summand, the same argument applies since TR.e"tD2
L;U / D 0 on the

odd dimensional manifold U by the usual symmetry argument.
Now we restrict DC toL2+.U I L/˝ ker.DV / (and we again denote the relevant

restriction with . /r ).
We will finish by showing that this summand also is identically equal to zero, which

then implies immediately that $Œ0$.DC / D 0. To see this, consider the operator

B ´ 1U ˝ ., B C/ W L2+.U I L/˝ ker.DV / ! L2+.U I L/˝ ker.DV /:

This is an isometry which anticommutes withDL;U ˝, (sinceC anticommutes and ,
commutes with , ) and which anticommutes with 1U ˝C (sinceC commutes and , an-
ticommutes with C ). Similarly, B anticommutes with f .DL;U /˝C . Consequently,
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B anticommutes with the restriction of DC to L2+.U I L/˝ ker.DV /, which is just
given by DL;U ˝ , C f .DL;U /˝ C . Of course, this implies also that B commutes
with e"t.DL;U "V /2

r . Therefore (everything restricted to L2+.U I L/˝ ker.DV /)

TR..DC /re
"t.DC /2

r / D TR.B"1B.DC /re
"t.DC /2

r /

D " TR.B"1.DC /re
"t.DC /2

rB/

D " TR..DC /re
"t.DC /2

r / 2 Aab:

The last equality follows from the trace property. Consequently, the integrand also
vanishes identically.

Putting everything together, we get

$Œ0$.DC / D 1p
%

Z 1

0

t"1=2 TR.DC e
"tD2

C / D 1p
%

Z 1

0

0 D 0: !

As a special case of the theorem, we obtain the following corollary.

6.4 Corollary. Assume that M D U # V , where V is a simply connected oriented
4k-dimensional Riemannian manifold such that hL.V /; ŒV #i D 0, and U is any
oriented Riemannian manifold of odd dimension. Let r W U ! B! be a continuous
map. Then there exists a smoothing perturbation C such that D C C is invertible
and $Œ0$.D C C/ vanishes, where D is the Mishchenko–Fomenko signature operator
associated to r#1. In particular, if the Baum–Connes map is surjective, then the stable
rho-invariant is defined in C #!ab=hŒ1#i and is equal to zeroW &s

Œ0$.U # V; r # 1/ D 0.

There are similar results in the spin context:

6.5 Theorem. Assume thatM D U #V , whereV is a simply connected spin manifold
of dimension divisible by 4 with yA.V / D 0, and U is any spin manifold of odd
dimension. LetA be a real C*-algebra and let L be a flat finitely generated projective
HilbertA-module bundle onU .defining a bundle, also called L, onM by pullback/.
There is a product metric on U # V such that for the resulting twisted spin Dirac
operator DL we get

$Œ0$.DL/ D 0 2 Aab:

Proof. By Stephan Stolz’s solution [62] of the Gromov–Lawson–Rosenberg conjec-
ture for simply connected manifolds, V admits a metric with positive scalar curvature.
If we shrink this metric appropriately, the corresponding product metric onU #V will
still have positive scalar curvature. The Lichnerowicz formula then implies that its
spin Dirac operatorDL is invertible (here we use that the bundle is flat). In particular,
we do not need a perturbation and can define $Œ0$.DL/.
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Secondly, we can use the product structure (of the Dirac operator) and argue in a
way similar to the proof of Theorem 6.4 (but with the simplification that the operator
on V has no kernel) to conclude that

$Œ0$.DL/ D 0 2 .C #!/ab: !

7. Vanishing of stable rho-invariants

7.1 Theorem. LetM be an odd dimensional oriented closed compact manifold and let
u W M ! B! be a continuous map, classifying a Galois !-covering zM ! M . If the
max-Baum–Connes map 'max W K#.B!/ ! K#.C #!/ is bijective and the signature
index class of .M; u W M ! B!/ vanishes in Kdim M .C

#!/ then

&s
Œ0$.M; u/ D 0: (7.2)

Proof. We use the injectivity of the max-Baum–Connes map, the assumption
Ind.D/ D 0 and Proposition 5.2 in order to conclude that there exists a bordism
.W; F W W ! B!/ between .dM; du W M ! B!/ and

k[

j D1

.Aj # Bj ; rj # 1 W Aj # Bj ! B!/

with %1.Bj / D 1 and hL.Bj /; ŒBj #i D 0. Denote briefly

k[

j D1

.Aj # Bj ; rj # 1 W Aj # Bj ! B!/

by .N; v W N ! B!/ . By cobordism invariance, the index of the signature oper-
ator associated to .N; v W N ! B!/ is zero in Kdim M .C

#!/. From the surjec-
tivity of the max-Baum–Connes map we know that there are well-defined stable
rho-invariants &s

Œ0$.M; u/, &
s
Œ0$.N; v/. Fix allowable perturbations CM , CN . Then

there exists a well-defined signature b-index class, inKdim W .C
#!/, associated to the

bordism .W; F W W ! B!/ and to the perturbations dCM , CN , which give rise to
a Mishchenko–Fomenko b-smoothing operator AW on W . We denote this b-index
class by Indb.DW C AW / 2 Kdim W .C

#!/. Now we proceed as in the proof of
Lemma 4.6. On the one hand, by the surjectivity of 'max we have

Ind&b.DW C AW / D 0 2 .C #!/ab=h1iI

on the other hand by applying the APS index Theorem 3.3 we get

Ind&b.DW C AW // D "1
2
.d&s

Œ0$.M; u/ " &s
Œ0$.N; v// 2 .C #!/ab=h1i;
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from which we deduce that

&s
Œ0$.M; u/ D 1

d
&s

Œ0$.N; v/ D 1

d

kX

j D1

&s
Œ0$.Aj # Bj ; rj # 1/:

We finish the proof by applying Corollary 6.4. !

7.3 Theorem. Let M be an odd dimensional closed compact spin manifold and
let u W M ! B! be a continuous classifying map. Let D= ´ D=L be the asso-
ciated Mishchenko–Fomenko spin Dirac operator. If the max-Baum–Connes map
'max W K#.B!/ ! K#.C #!/ is bijective and the index class Ind.D= / D 0 2
Kdim M .C

#!/ vanishes, then
&s

Œ0$.M; u/ D 0: (7.4)

Proof. The proof follows exactly the same pattern of the proof of Theorem 7.1. More
details in Subsection 13.2 (see in particular the proof of Theorem 13.9). !

8. Unstable rho-invariants

In this section, letAbe a von Neumann algebra. LetZ be a commutative von Neumann
algebra, and , W A ! Z a positive and normal trace on A with values in Z.

In Section 4 we managed to define, if the index class is zero and the Baum–Connes
map is surjective, the stable rho-invariant &Œ0$. In Section 7 we showed that, under
the additional assumption of injectivity of the Baum–Connes map, it is zero.

We now introduce unstable rho-invariants which are potentially more interesting,
since they are defined under much more general hypothesis.

Assume that M is a closed manifold of odd dimension and let D be a Dirac type
operator on M , acting on sections of a bundle E. Let L be a bundle of finitely
generated projective Hilbert A-modules on M , with a connection preserving all the
structure. Let DL be the corresponding twisted Dirac operator. Each fiber of L
is a finitely generated projective module; Lx D im.px/, with px a projection in
Mk(k.A/ for some k; let ,.Lx/ ´ ,.px/ where we extend the trace , to Mk(k.A/
in the obvious way. We assume that ,.Lx/ is constant in x.

8.1 Definition. We define the , -eta-invariant as

$( .DL/ ´ 1p
%

Z 1

0

,.TR.DL exp."tD2
L///

dtp
t

2 Z: (8.2)

We have to check that this integral converges. For t ! 0, this follows from the
usual local heat expansion. Since , is positive and normal, the estimates of Cheeger
and Gromov [10] can be used to obtain convergence for large times.
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8.3 Definition. Let A1 and A2 be von Neumann algebras; let L1;L2 be two Hilbert
Aj -module bundles overM ; let ,j W Aj ! Zj be positive normal traces with values in
commutative von Neumann algebras Zj . Let ǰ W Zj ! V be homomorphisms to a
fixed target spaceV (a vector space). Assume thatˇ1.,1..L1/x//Cˇ2.,2..L2/x// D
0 2 V . The unstable rho-invariant ofDL with respect to ǰ , ,j and Lj is defined as

&. ǰ ;(j ;Lj /.D/ ´ ˇ1.$(1.DL1
//C ˇ2.$(2.DL2

// 2 V:

The definition can be extended to a finite number of summands in the obvious way.

We give examples showing the interest of such a definition.

General example. Let M be a closed oriented Riemannian manifold of odd dimen-
sion. Assume that ! is a discrete group; let u W M ! B! be a map classifying a
covering zM D u#E! . Let j̨ W C #! ! Aj be homomorphisms to unital von Neu-
mann algebras Aj (with j D 1; 2), and ,j W Aj ! Zj positive normal traces with
values in abelian von Neumann algebras Zj . Let Lj ´ zM #! Aj be the associ-

ated Hilbert Aj -module bundle, where ! acts on Aj via ! ! C #!
j̨"! Aj . Then

,j ..Lj /x/ D ,j . j̨ .1//. If ǰ W Zj ! V satisfy

ˇ1.,1.˛1.1///C ˇ2.,2.˛2.1/// D 0 2 V

then the unstable rho-invariant &. ǰ ;(j ;Lj /.D/ 2 V is well defined and equal to

ˇ1.$(1.DL1
//C ˇ2.$(2.DL2

// 2 V: (8.4)

8.5 Example (Atiyah–Patodi–Singer rho-invariant). We refer to the general example.
The relevant von Neumann algebras here are A1 D Md .C/ D A2, with two homo-
morphisms j̨ W C #! ! Md .C/ induced by two representations "1;"2 W ! ! U.d/.
The relevant trace is (in both cases) the usual trace , W Md .C/ ! C on matrices.
Then ,.˛1.1// D d D ,.˛2.1//, so that, with V D C, we can choose ˇ1 D id and
ˇ2 D " id. By equation (D.1), the eta-invariants appearing in the definition of the
APS-rho-invariant and those appearing in formula (8.4) coincide. Thus with these
choices &. ǰ ;(j ;Lj /.D/ D &"1""2

.D/.

8.6 Example (center-valued rho-invariant). We refer to the general example. Let
A1 ´ N ! be the group von Neumann algebra of ! and Z its center. Let A2 D C.
Let ˛1 be induced by the natural map C #! ! N ! and let ˛2 W C #! ! C be
induced by the trivial representation. Then (by definition) L1 D N ´ zM #! N !
and L2 D M # C.

We take V D Z, ,1 D , W N ! ! Z equal to the canonical center-valued trace
(compare [26, Chapter 8]); ,2 W C ! Z given by ,2.z/ ´ z $ 1. Note that both are
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positive and normal traces. Here ,1.˛1.1// D 1 D ,2.˛2.1//, so that we can choose
again ˇ1 D id, ˇ2 D " id. By Lemma C.8,

&. ǰ ;(j ;Lj /.D/ D $( .DN / " $.D/ $ 1 2 Z: (8.7)

We define this element in Z to be the center-valued rho-invariant of M .

8.8 Example (L2-rho- and delocalized eta-invariants). Let hgi be a finite conjugacy
class in ! . This defines a trace

,hgi W N ! ! C;
X

h2!
"hh 7!

X

h2hgi
"h: (8.9)

By the universal property of the central-valued trace , , ,hgi D ,hgi B , , where we use
the restriction of ,hgi to the centerZ on the right-hand side. We now apply ,hgi to both
sides of Equation (8.7). If g ¤ 1, ,hgi.1/ D 0, and we obtain (using Proposition E.11)

,hgi.&. ǰ ;(j ;Lj /.D// D $hgi. zD/:

If g D 1, then ,hgi µ ,! is the canonical trace, and we obtain by Proposition E.11,
using ,!.1/ D 1,

,!.&. ǰ (j Lj /.D// D &.2/. zD/:

Our goal is to prove vanishing results for such generalized unstable rho-invariants
and, due to the examples just given, derive the assertions of the Introduction as special
cases.

9. Special perturbations of the signature operator

Let f W M ! M 0 be a smooth orientation-preserving homotopy equivalence between
two closed manifolds. Let A be a C*-algebra and V 0 be a be flat bundle of finitely
generated Hilbert A-modules onM 0. We consider the signature operator onM 0 with
values in V 0. We denote this operator by D0

V 0 . Next, we consider the signature
operator on M with values in the flat bundle V ´ f #V 0 and we denote it by DV .
These two operators come from the de Rham complexes and the Hodge star operator
on M 0 and M with values in the flat bundles V 0 and f #V 0, respectively. We denote
these de Rham differentials by d 0

V 0 and dV .
In this section we shall construct an explicit trivializing perturbation for the

Mishchenko–Fomenko signature operator

D ´
"
DV 0
0 "D0

V 0

#
(9.1)

on M t ."M 0/.
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Recall that, since f is an orientation-preserving homotopy equivalence, the index
inK#.A/ of D is zero.6 Thus, we already know that there exists a smoothing pertur-
bation of the operator which is invertible, see [68], [38, Theorem 3]. In this section we
shall sharpen this result, showing that we can construct certain special perturbations
which are spectrally concentrated near zero (definition below). We will use these
special perturbations in Section 10 in order to show that, in this situation, the stable
rho-invariant of D in (9.1) coincides with the unstable one, getting a more precise
result about their eta-invariants in that case.

9.2 Theorem. Letf W M ! M 0 be a smooth orientation-preserving homotopy equiv-
alence between two closed manifolds, with dim.M/ D dim.M 0/ odd. Then, for each
" > 0we can find a special self-adjoint smoothing perturbation B" such that D CB"

is invertible and with the additional property that B" is "-spectrally concentrated,
that is,

B" B (.D/ D 0 D (.D/ B B"

for each function ( W R ! R with (.t/ D 0 for jt j < ".

9.3 Remark. We expect that a corresponding result holds if dim.M/ is even. In
this case we will also need that B" is an odd operator with respect to the signature
grading (where we use onM 0 the reverse orientation). Since we do not need the even
dimensional case in this paper, we leave this for further investigation.

Proof. In order to prove Theorem 9.2, we must carefully recall the definition of the
signature operator for odd dimensional manifolds. This is done in Appendix B.

We denote the Hilbert A-module L2.M;ƒ#M ˝ f #V 0/ by L2.M/#. Similarly
we set L2.M 0; ƒ#M 0 ˝ V 0/ µ L2.M 0/#. We would like to compare L2.M/# with
L2.M 0/# using the pull-back map f #; but this is in general not L2-bounded. As in
Hilsum–Skandalis [22, p. 90], we modify f # in order to obtain aL2-bounded cochain
map between L2.M 0/# and L2.M/# as follows. From [22, p. 90], for suitably large
N , there is a submersion F W DN # M ! M 0 such that F.0;m/ D f .m/. Here
DN is an open ball in an Euclidean space of dimension N . Fix v 2 +N

c .D
N / withR

DN v D 1. Define a bounded cochain map

T W L2.M 0/# "! L2.M/#; ! !
Z

DN

v ^ F #.!/:

6This result, the homotopy invariance of the signature index class, has been established by several
people and with different techniques. Mishchenko and Kasparov prove it by showing its equality with the
C*-algebraic Mishchenko symmetric signature, an a-priori homotopy invariant. Kaminker–Miller give a
more analytical treatment, adapting to the noncommutative context the proof that Lusztig gives in the case
! D Zk ; Hilsum–Skandalis prove the homotopy invariance in a purely analytical fashion; we shall follow
their approach. For a thorough treatment of the homotopy invariance of the signature index class and its
connections with surgery theory we refer the reader to the recent papers by Higson and Roe [18], [19],
[20].
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Let DV and D 0
V 0 be the signature operators on M and M 0, as introduced above.

There is a well-defined functional calculus associated to these regular operators on
Hilbert modules. In particular, if ( W R ! R is a rapidly decreasing (i.e. Schwartz)
function, then (.DV / 2 ‰"1

A .

9.4 Definition. We define

C';f ´ (.DV / B T B (.D 0
V 0/ W L2.M 0/# ! L2.M/#:

If ( is an even function, (.DV / is a function of the Laplacian D2
V D * and therefore

preserves the degree of the differential forms. Consequently, the same is true for C';f .

9.5 Lemma. The operator C';f is an integral A-linear operator with smooth kernel
on M #M 0. Moreover, if ( is even then dV B C';f D C';f B d 0

V 0 .

Proof. Since T is bounded and (.DV /;(.D
0
V 0/ 2 ‰"1

A we immediately get that
C';f is an A-linear smoothing operator. We know that dVg

#! D g#.d 0
V 0!/ for any

smooth map g. Moreover, dV commutes with .dV C d#
V /

2 D D2
V and therefore also

with (.DV / since ( is even; similarly d 0
V 0 commutes with (.D 0

V 0/. Since

C';f .!/ D (.DV / B
"Z

DN

v ^ F #(.D 0
V 0/.!/

#

we also get dV B C';f D C';f B d 0
V 0 as required and explained in [22, Proof of

Theorem 3.3 on p. 90], where we use that the form v is closed. !

9.6 Definition. We use the usual inner product (coming from a fixed Riemannian
metric) on the space of differential forms. We use # for the adjoint with respect to
this inner product.

The involution , coming from the Hodge-& operator (compare Appendix B) and
the above inner product define the signature quadratic form on the space of differential
forms, we use ) for the adjoint with respect to this quadratic form. Recall that

A# D ,A),; A) D ,A#,:

Let now(" be a smooth even function(" W R ! R such that(".t/ D 1 if jt j ' "=4,
and (".t/ D 0 if jt j ( "=2. Recall that f W M ! M 0 was an orientation-preserving
homotopy equivalence and write

T" ´ C'";f W +#.M 0;V 0/ ! +#.M;V/:

Clearly T" extends to an L2-bounded A-linear operator. Let T #
" be the adjoint of

T" and define T )" ´ , 0T #
" , , with , and , 0 denoting the involutions defined by the

Hodge &-operators on M and M 0 (see Appendix B). Introduce a new differential d
by setting d˛ ´ i j˛jdV˛ and similarly for d 0.
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9.7 Lemma. The bounded operator T" verifies the following propertiesW
(a) T".dom.d// % dom.d 0/I T"d

0 D dT".
(b) T" induces an isomorphism in cohomology, with inverse induced by T )" .
(c) There exists a bounded operator y" of degree "1 on L2.M 0/#, with y)" D "y"

and such that y".dom.d 0// % dom.d 0/ and 1 " T )" T" D d 0y" C y"d
0.

(d) y" D y1 C y2 where y1 is "-spectrally concentrated and y2 commutes with *0.
(e) T" is "-spectrally concentrated.

Proof. The results (a) to (c) for the operator T are proved by Hilsum–Skandalis. We
need first of all to extend them toT". Observe that Lemma 9.5 is precisely assertion (a).

Next, we observe that the T of Hilsum–Skandalis and our T" are chain homotopic.
Indeed, recall that T" D (".dV C d#

V / B T B (".d
0
V 0 C .d 0

V 0/
#/. Here, we can replace

DV by dV C d#
V , since D2

V D .dV C d#
V /

2, and ( is even. Choose a homotopy (t
" of

even functions with (0
" D (", (1

" D 1 and such that (t
".x/ D 1 for all t 2 Œ0; 1# and

jxj < "=4. Then d
dt (t .x/ D xgt .x/ D gt .x/x with a suitable smooth odd family of

functions gt W R ! R. Observe that

T " T" D
Z 1

0

d

dt
.(t .dV C d#

V / B T B (t .d
0
V C .d 0

V 0/
#// dt

D .dV C d#
V /

Z 1

0

.gt .dV C d#
V / B T B (t .d

0
V 0 C .d 0

V 0/
#// dt

C
Z 1

0

.(t .dV C d#
V / B T B gt .d

0
V 0 C .d 0

V 0/
#// dt B .d 0

V 0 C .d 0
V 0/

#/

D dVz C zd 0
V 0 D dw C wd 0

(9.8)

with

z D
Z 1

0

gt .dV C d#
V / B T B (t .d

0
V 0 C .d 0

V 0/
#/ dt

C
Z 1

0

(t .dV C d#
V / B T B gt .d

0
V 0 C .d 0

V 0/
#/ dt;

w.!/ D i1"j!jz.!/:

The last but one equality in (9.8) is true since d#
Vgt .dV C d#

V / D gt .dV C d#
V /dV

and dVT D Td 0
V . Since by [22] T induces an isomorphism in homology, and T" is

chain homotopic to T , so does T", proving (b).
Apply now $ ) to equation (9.8) and use that d ) D "d to get

T ) " T )" D "w)d 0 " dw):
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Let now y be an operator such that 1" T )T D dy C yd 0, as constructed in [22].
Then

1 " T )" T" D 1 " T )T C .T ) " T )" /T C T )" .T " T"/

D dy C yd 0 C ."dw) " w)d 0/T C T )" .dw C wd 0/

D d.y " w)T C T )" w/C .y " w)T C T )" w/d
0;

(9.9)

using that T and T" are chain maps, and therefore in particular T )" d 0 D "T )" .d 0/) D
"d )T )" D dT

)
" . Equation (9.9) means that we get (c) with Qy" D y " w)T C T

)
" w.

We will now modify Qy" in such a way that it splits as required in (d). To do this,
we make the following general observation. Assume that  1 W R ! R vanishes in a
neighborhood of 0 and write  1.x/ D x 2.x/ with a smooth function  2. Define

u ´ .d 0
V 0/

# 2.*
0/ D  2.*

0/.d 0
V 0/

#: (9.10)

Then

d 0
V 0uC ud 0

V 0 D d 0
V .d

0
V 0/

# 2.*
0/C .d 0

V 0/
#d 0

V 0 2.*
0/ D  1.*

0/: (9.11)

Choose  W R ! R with support contained in Œ"=2;1/ and such that  .x/ D 1 for
x ( ". Define now

y1 ´ .1 "  /.*0/ B Qy" B .1 "  /.*0/:

By construction, this operator is "-spectrally concentrated. Set y2 ´  .*0/ Qy".1 "
 /.*0/, y3 ´ Qy" .*

0/. We compute (since T )" and T" are "=2-spectrally concen-
trated)

d 0y2 C y2d
0 D d 0 B . .*0/ Qy".1 "  /.*0//C . .*0/ Qy".1 "  /.*0// B d 0

D  .*0/.d 0 Qy" C Qy"d
0/.1 "  /*0/

D  .*0/ B .1 "  /.*0/
D d 0 B u1 C u1d

0

with a suitable operator u1 defined as in (9.10) and (9.11) which commutes with *0.
Similarly,

d 0y3 C y3d
0 D d 0 B Qy" .*

0/C Qy" .*
0/ B d 0 D d 0u2 C u2d

0

with a u2 which also commutes with *0. Consequently,

1 " T )" T" D d 0 Qy" C Qy"d
0

D d 0.y1 C y2 C y3/C .y1 C y2 C y3/d
0

D d 0.y1 C u1 C u2/C .y1 C u1 C u2/d
0:
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We now set y" ´ y1 Cu1 Cu2 and observe that .u1 Cu2/ commutes with*0. This
proves (d).

(e) is an immediate consequence of the construction of T". !

Following closely [22], consider now the operators on L2.M 0/# ˚ L2.M/#:

R" D
"

1 0
"T") 1

#
; L";˛ D

"
1 " T )" T" .) C ˛y"/T

)
"

T".") " ˛y"/ 1

#
;

ı";˛ D
"
d 0 ˛T

)
"

0 "d

# (9.12)

with )! ´ ."1/j!j! and ˛ a real number.7 Note that ) anticommutes with d and ,
and commutes with T and T ), and that )) D ") . It is clear that R" and L";˛ are
bounded. The crucial relation is L";˛ı";˛ D "ı)";˛L";˛.

We notice that R" is invertible and that R)"R" D L";0. Thus L";˛ is invertible for
j˛j small enough. Let S";˛ ´ (BL";˛

j(BL";˛ j , with , D
%
( 0 0
0 (

&
. Then S";˛ is an involution.

We now endow +#.M 0;V 0/˚+#.M;V/ with the new inner product

h!1; !2i";˛ ´ h!1; j, B L";˛j!2i:

Notice that j, BL";˛j is positive and self-adjoint with respect to both scalar-products.
Let !D";˛ ´ "i.ı";˛S";˛ C S";˛ı";˛/ be the signature operator associated to ı";˛

and to the grading S";˛. Using [22, Lemme 2.1], !D";˛ is invertible and self-adjoint
with respect to h $; $ i";˛. For the adjoint with respect to the original inner product we
therefore get

.!D/#";˛ D .j, B L";˛j/"1 B !D";˛ B .j, B L";˛j/:

9.13 Definition. We define the special perturbed signature operator

D";˛ ´ "i
'
ı";˛,L";˛ C ,L";˛

j,L";˛jı";˛
,L";˛

j,L";˛j,L";˛

(

with

ı";˛ D
"
d 0 ˛T

)
"

0 "d

#
; L";˛ D

"
1 " T )" T" .) C ˛y"/T

)
"

T".") " ˛y"/ 1

#
:

Then D";˛ ´ bD";˛ B j, B L";˛j is self-adjoint with respect the original inner
product and is invertible for ˛ ¤ 0 sufficiently small (depending on "). We complete
the proof of the theorem with the following result.

7The differences in signs between these operators and the ones appearing in [22] are due to the fact that
we take ( 0 for the grading on M 0, whereas Hilsum–Skandalis take "( 0.
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9.14 Lemma. Consider the operators of Definition 9.13. Then Qı";˛ ´ ı";˛ "
%

d 0
0 "d 0

&

and ,L";˛ ", are "-spectrally concentrated. Consequently, (L";˛

j(L";˛ j ", and D";˛ "D

are "-spectrally concentrated .recall that j, j D 1/.
Moreover, all these differences belong to ‰"1

A , in particular D";˛ " D 2 ‰"1
A .

Proof. First of all, using the definition of L";˛ and Lemma 9.7 we claim that L";˛ D
1C‚";˛ with ‚";˛ 2 ‰"1

A and "-spectrally concentrated. Indeed

L";˛ D 1C
"
"T )" T" )T

)
"

"T") 0

#
C

"
0 ˛y"T

)
"

"T"˛y" 0

#

D 1C‚1
";˛ C

"
0 ˛y1T

)
"

"T"˛y1 0

#
C

"
0 ˛y2T

)
"

"T"˛y2 0

#

D 1C‚1
";˛ C‚2

";˛ C C
"

0 ˛y2T
)
"

"T"˛y2 0

#

with‚j
";˛, j D 1; 2 smoothing and "-spectrally concentrated because of Lemma 9.7.

It remains to be checked that the last term appearing in the above formula is also
smoothing and "-spectrally concentrated: but since y2 commutes with *0, it also
commutes with (.D 0

V 0/ if ( is even; using the very definition of T" we then get that

‚3
";˛ D

"
0 ˛(".DV / B y2;" B T ) B (".D

0
V 0/

"˛(".D
0
V 0/T B By2;" B (".DV / 0

#

is smoothing and "-spectrally concentrated. Our claim now follows with ‚";˛ D
‚1

";˛ C‚2
";˛ C‚3

";˛.
Thus , B L";˛ D , Cˆ";˛, with ˆ";˛ 2 ‰"1

A and "-spectrally concentrated. Let
us now consider j, B L";˛j D

p
., B L";˛/2. We can write

j, B L";˛j D i

2%

Z

C

"
1
2 .., B L";˛/

2 " "/"1d"

with C equal to a circle of radius larger than the norm of ., B L";˛/
2. From this

integral representation it follows that j, B L";˛j D 1 C ƒ";˛ with ƒ";˛ 2 ‰"1
A and

"-spectrally concentrated; indeed, ., BL";˛/
2"" is equal to .1""/ plus a "-spectrally

concentrated smoothing operator. Thus by Lemma A.12 its inverse will be of type
.1""/"1.1C„";˛."//with„";˛."/ 2 ‰"1

A and "-spectrally concentrated; carrying
out the integral we obtain immediately that j, BL";˛j D 1CF";˛ with F";˛ 2 ‰"1

A and
"-spectrally concentrated. It then follows that the same is true for j, BL";˛j"1. Thus
forS";˛ we obtainS";˛ D ,CG";˛ with G";˛ smoothing and "-spectrally concentrated.
Consider now zD ; this equals"i.ı";˛BS";˛CS";˛Bı";˛/j,BL";˛j. By its very definition
and Lemma 9.7, ı";˛ D d C E";˛ with E";˛ smoothing and "-spectrally concentrated.
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Thus

D";˛ D "i..d C E";˛/ B ., C G";˛/C ., C G";˛/ B .d C E";˛// B .1C F";˛/;

which is equal to D plus a smoothing operator "-spectrally concentrated. !

Theorem 9.2 is proved. !

10. From stable to unstable eta-invariants

We continue with the setting of Section 9. In this section, we analyze the , -eta-
invariant of the special perturbations D";˛ of D , where we use the notation and
conventions of Section 8. In particular, A is a von Neumann algebra and , W A ! Z
a positive normal trace with values in the commutative von Neumann algebra Z.

10.1. Limits of eta-invariants

10.1 Theorem. Let f W M 0 ! M be a smooth oriented homotopy equivalence be-
tween closed Riemannian oriented manifolds as in Section 9. This gives rise to
twisted signature operators DL on M and D0

L0 on M 0, with L0 ´ f #L. Consider
the .unperturbed/ , -eta-invariants $( .DL/, $( .D0

L0/ 2 Z, see 8.1.
Assume, in addition to the above, that the von Neumann algebra A admits a

positive faithful normal trace ,A W A ! C.
There are sequences "k > 0 and ˛k > 0 such that ˛k is small enough for D"k ;˙˛k

to be an invertible perturbation of D and such that

lim
k!1

$( .D"k ;˛k
/C $( .D"k ;"˛k

/

2
D $( .D/:

Here D";˛ is the special smoothing perturbation of the signature operator D on the
manifoldMq."M 0/ as defined in Definition 9.13. Note that on the left-hand side we
have a sequence of averaged perturbed eta-invariants, converging to the unperturbed
eta-invariant on the right-hand side.

Proof. We shall prove that there are sequences "k > 0 and ˛k > 0 such that

lim
k!1

$( .D"k ;˛k
/ D $( .D/C -; lim

k!1
$( .D"k ;"˛k

/ D $( .D/ " -; - 2 R:

Let p" ´ .Œ"";"$.*/, where .Y is the characteristic function of a set Y .
Since D";˛ is an "-perturbation of D , we get

D";˛ D p"D";˛p"C.1"p"/D";˛.1"p"/; .1"p"/D";˛.1"p"/ D .1"p"/D.1"p"/:
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Consequently, by the spectral theorem and the definition of $( ,

$( .D";˛/ D $( .p"D";˛p"/C $( ..1 " p"/D.1 " p"//: (10.2)

To analyze $( of the compressed operators, we will make use of the following
translation into simple functional calculus.

10.3 Lemma. Let p and B be self-adjoint bounded Hilbert A-module morphisms on
a Hilbert A-module H , p a projection such that ,.p/ < 1 and B D pBp. Let
q W R ! R be defined by q.x/ D 1 for x > 0, q.0/ D 0 and q.x/ D "1 for x < 0.
We define sgn( .B/ ´ ,.q.B//. Then

$( .B/ D sgn( .B/: (10.4)

Proof. We simply observe that

q.x/ D 1p
%

Z 1

0

x exp."tx2/
dtp
t

D 2

%

Z 1

0

x exp."t2x2/ dt;

and jq.x/j ' 1, therefore q.B/ D 1
*

R1
0 B exp."tB2/ dt=

p
t . Here we observe

that
R T

0 B exp."t2B2/ dt is defined for each T ( 0 since B is bounded and is equal
to the functional calculus of B applied to

R T
0 x exp."t2x2/ dt . The latter family of

functions, depending on the parameter T , converges pointwise to q, therefore the
limit

R1
0 B exp."t2B2/ dt exists in the von Neumann algebra of Hilbert A-module

morphisms onH and equals q.B/. Finally observe that we can throughout writepBp
instead ofB . By assumptionp is of , -trace class. Since those operators form an ideal,
it follows that both pBp and pBp exp."t2B2/ are , -trace class. Normality implies
that for a strongly convergent sequence Xn of operators, ,.pXn/

n!1""""! ,.pX/.
We can now interchange in the above argument integration, passage to limit and
application of , , and the statement follows. !

10.5 Lemma.
lim
"!0

$( ..1 " p"/D.1 " p"// D $( .D/;

where existence of the limit is part of the statement.

Proof. We have discussed in Section 8 that each of the integrals defining the eta-
invariants exists in the above statement. Moreover, for 0 < " < 1,

$( ..1 " p"/D.1 " p"// D $( ..1 " p1/D.1 " p1//C $( ..p1 " p"/D.p1 " p"//:

Observe that ,.p1/ ' ,.5 exp."D/2/ < 1 and p1.p1 " p"/D.p1 " p"/p1 D
.p1 " p"/D.p1 " p"/. Then Lemma 10.3 implies that $( ..p1 " p"/D.p1 " p"// D
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sgn( ..p1 " p"/D.p1 " p"//. Finally, p" strongly converges to p0 so that
q..p1"p"/D.p1"p"// strongly converges to q..p1"p0/D.p1"p0//. By normality
of , , therefore

sgn( ..p1 " p"/D.p1 " p"//

D ,.q..p1 " p"/D.p1 " p"///
"!0"""! sgn( ..p1 " p0/D.p1 " p0//:

Finally, by definition and Lemma 10.3,

$( .D/ D $( ..1 " p1/D.1 " p1//C sgn( ..p1 " p0/D.p1 " p0//: !

10.6 Lemma. There are sequences "k > 0 and ˛k > 0 such that ˛k is small enough
for D"k ;˛k

to be smoothing invertible perturbations of D and such that

sgn( .p"k
D"k ;˙˛k

p"k
/

k!1""""! sgn( .D0;˙1/:

Here

D0;˛ ´ "ip0

'
ı0;˛,L0 C ,L0

j,L0jı0;˛
,L0

j,L0j,L0

(
p0

with

ı0;˛ D p0

"
0 ˛T

)
0

0 0

#
p0; L0 D

"
1 " T )0 T0 )T

)
0

"T0) 1

#
; T0 D p0Tp0:

In particular, D0;˛ D ˛D0;1 and therefore

sgn( .D0;1/ D " sgn( .D0;"1/: (10.7)

Assuming Lemma 10.6, we can now finish the proof of Theorem 10.1. Observe
that

$( .D"k ;˙˛k
/ D $( ..1 " p"k

/D"k ;˙˛k
.1 " p"k

//
„ ƒ‚ …
D+! .1"p"k

/D.1"p"k
/

k!1""""!+! .D/

C $( .p"k
D"k ;˙˛k

p"k
/

„ ƒ‚ …
k!1""""!+! .D0;˙1/

where we use Lemma 10.5 for the first convergence statement, and Lemma 10.6
for the second. Averaging the two resulting equations for ˛k and "˛k and using
equation (10.7) gives the statement of the theorem. !

10.8 Remark. We leave it to the reader to check directly that $( .D0;1/ D 0. Using
the same proof as above, this gives the following stronger version of Theorem 10.1:

lim
k!1

$( .D"k ;˛k
/ D $( .D/:
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10.2. Proof of Lemma 10.6. Define for ˛ ¤ 0

C";˛ ´ j˛j"1p"D";˛p"

and observe that sgn( .C";˛/ D sgn( .p"D";˛p"/. Set for ˛ ¤ 0

zC";˛ ´ "i j˛j"1 p"

'
Qı";˛,L";˛ C ,L";˛

j,L";˛j
Qı";˛

,L";˛

j,L";˛j,L";˛

(
p"

with

Qı";˛ D
"
0 ˛T

)
"

0 0

#
; L";˛ D

"
1 " T )" T" .) C ˛y"/T

)
"

T".") " ˛y"/ 1

#
:

Note that zC";˛ is in general neither self-adjoint nor invertible.

10.9 Lemma. There is a constant K > 0 such that the following holds. For each
" > 0 there exists ˛" > 0 such that

k˛"y"k < "; kL"1
";˙˛"

k ' K:

Proof. We first observe that there is a uniform bound for kT"k. This implies a uniform
bound for kL";0k and for kL"1

";0k, usingL";0 D
%

1 #T "
"

0 1

& %
1 0

"T"# 1

&
, so that .L";0/

"1 D
%

1 0
T"# 1

& %
1 "#T "

"
0 1

&
. Since each y" is bounded and L";˛ D L";0 C˛

%
0 y"T "

"
"T"y" 0

&
, we

can now choose ˛" such that all the assertions are fulfilled. !

10.10 Lemma. Choose a sequence "k > 0 with "k
k!1""""! 0, and choose ˛k ´

˛"k
> 0 as given by Sublemma 10.9. Then zC"k ;˙˛k

strongly converges to D0;˙1.

Proof. For " ! 0, p" strongly converges to p0, T" strongly converges to T0, and

T
)
" strongly converges to T )0 ; k˛"y"k

"!0"""! 0. Since products of strongly convergent
sequences strongly converge to the product of the limits, by its construction L"k ;˛k

strongly converges to L0. Moreover, since k.,L"k ;˛k
/"1k ' K independent of

k 2 N,
(L"k;˛k

j(L"k;˛k
j D f .,L"k ;˛k

/ (and (L0;0

j(L0;0j D f .,L0;0/) for any continuous function
f with f .x/ D "1 for x ' "1=K, f .x/ D 1 for x ( 1=K. Since bounded
continuous functions of strongly convergent sequences strongly converge by [55,
Theorem VIII.20],

(L"k;˛k

jL"k;˛k
j strongly converges to (L0;0

j(L0;0j . Putting everything together,

and using in particular that j˛j"1 Qı";˛ D j˛j"1
'

0 ˛T "
"

0 0

(
D

'
0 ˙T "

"
0 0

(
, the result

follows. !

10.11 Lemma. There is a sequence "k > 0, with corresponding ˛k as in Sub-
lemma 10.10, such that C"k ;˙˛k

converges in the strong resolvent sense to D0;˙1.
Here we will use the positive finite faithful normal trace ,A W A ! C.
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Proof. We will construct a sequence of monotonously increasing projections Q1 '
Q2 ' $ $ $ with supk Qk D p1. The latter property will be ensured by showing that for

all k,Qk ' p1 and that ,A.Qk/
k!1""""! ,A.p1/ < 1, hence ,A.p1 ".supk Qk// D 0

so that p1 D supk Qk , using faithfulness and normality of ,A.
The main property of the Qk will be that

zC"n;˙˛nQk D C"n;˙˛nQk for all n ( k: (10.12)

The assertion then follows from Sublemma 10.10. To see this, we can represent A as
bounded operators on a Hilbert spaceH . Since zC"k ;˙˛k

.1"p1/ D C"k ;˙˛k
.1"p1/ D

D0;˙1.1 " p1/ D 0, it suffices to study the restriction to im.p1/. Now all operators
in question are bounded, therefore

S
k2N.im.Qk// will be a common core for all of

them (since supk Qk D p1,
S

k2N im.Qk/ is dense in im.p1/). A reference for the
lattice of projections and properties of it we are using here is [25], [26], in particular
Section 2.5. Finally, for each v 2 Sk im.Qk/ there is a k 2 N such that v 2 im.Qk/.

Then, for n ( k, C"n;˙˛nv D zC"n;˙˛nv
n!1""""! D0;˙1v. By [55, Theorem VIII.25],

C"n;˙˛n converges in the strong resolvent sense to D0;˙1.
We now tackle the construction of the projections Qk . Choose "k such that

,A.p"k
" p0/ < 10

"k .
Restrict now all operators in question to im.p"k

/. Note that Ak ´ ,L"k ;˛"k

now is an invertible operator, mapping im.p"k
/ to itself, and the same is true for

Bk ´ L"k;˛"k

jL"k;˛"k
jL"k ;˛"k

. Choose maximal projections QAk
and QBk

such that

p0AkQAk
D AkQAk

and p0BkQBk
D BkQBk

: (10.13)

In other words,QAk
is the projection onto the inverse image underAk of im.p0/. Set

Q0
k ´ inffp0;QAk

;QBk
g.

Observe that, by construction, Qı";˛p0 D ı";˛p0. Consequently,

QC"k ;˛k
Q0

k D C"k ;˛k
Q0

k for all k 2 N: (10.14)

Finally, we setQk ´ .inf l*k Q
0
l /Cp1 "p"k

. Observe that (10.12) immediately
follows from (10.14) and the fact that zC"k ;˛k

.p1 " p"k
/ D C"k ;˛k

.p1 " p"k
/ D 0.

Note that ,A.QAk
/ D ,A.p0/ D ,A.QBk

/. This follows since instead of QAk
we

can first construct the idempotent ek ´ A"1
k p0Ak; it satisfies the relation (10.13)

and ,A.ek/ D ,A.p0/. Use then the standard construction of a self-adjoint projection
QAk

with ekQAk
D QAk

and QAk
ek D ek (compare e.g. [7, Theorem 2.1]), then

,A.QAk
/ D ,A.ekQAk

/ D ,A.QAk
ek/ D ,A.ek/, and p0AkQAk

D p0AkekQAk
D

AkekQAk
D AkQAk

.
Note that each of the projections QAk

, QBk
, p0 are bounded above by p"k

, with
,A.QAk

/ D ,A.QBk
/ D ,A.p0/, ,A.p"k

/ < ,.p0/C 10"k . The Kaplansky formula
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[26, Theorem 6.1.7]

p0 " inffQAk
; p0g D supfp0;QAk

g "QAk
' p"k

"QAk
;

the linearity and positivity of ,A imply ,A.Q0
k/ ( ,A.p0/ " 2 $ 10"k , and similarly,

,A.inf
l*k

Q0
l / ( ,A.p0/ " 2 $ 10"k

1X

lD0

10"l ( ,A.p0/ " 4 $ 10"k :

It follows that

,A.Qk/ ( ,A.p0/"4 $10"k C,A.p1 "p"k
/

k!1""""! ,A.p0/C,A.p1 "p0/ D ,A.p1/:

Since Qk ' p1, the properties of Qk and therefore Sublemma 10.11 follow. !

10.15 Sublemma. Assume that self-adjoint operators An converge in the strong re-
solvent sense to the self-adjoint operatorA. Assume that .f0g.An/ strongly converges
to .f0g.A/. Then q.An/ strongly converges to q.A/, where q D ..0;1/ " .."1;0/.

Proof. By assumption, .f0g.An/ C An converges in the strong resolvent sense to
.f0g.A/CA (this is best seen using the Trotter criterion [55, Theorem VIII.21]). Thus
by [55, Theorem VIII.24] we know that .Œ0;1/..f0g.An/ C An/ strongly converges
to .Œ0;1/..f0g.A/ C A/ and similarly for .."1;0$. Hence ..0;1/.An/ C .f0g.An/
converges strongly to ..0;1/.A/C.f0g.A/, which implies that ..0;1/.An/ converges
strongly to ..0;1/.A/. Similarly, .."1;0/.An/ converges strongly to .."1;0/.A/.
The proof of the sublemma is complete. !

With all the sublemmas in place, it is now easy to finish the proof of Lemma 10.6.
We can restrict to im.p1/ (by multiplication with p1 from the left) since all operators
in question commute with p1 and vanish on the complement of im.p1/ (i.e. when
multiplied with .1"p1/). Observe that , , restricted to im.p1/, is strongly continuous
(because ,.p1/ < 1).

Since D";˛ is invertible and "-spectrally concentrated near zero, .f0g.C";˙˛p1/ D
p1 " p". In the same way, when restricted to im.p0/, D0;˛ is invertible and there-
fore .f0g.D0;˛p1/ D p1 " p0. Consequently, .f0g.C"k ;˙˛k

/ converges strongly to
.f0g.D0;˙1/. Sublemmas 10.11 and 10.15 imply that q.C"k ;˙˛k

/ converge strongly
to q.D0;1/ so that finally, using Lemma 10.3,

$( .p"k
D"k ;˙˛k

p"k
/ D ,.q.C"k ;˙˛k

//
k!1""""! ,.q.D0;˙1// D $( .D0;˙1/:

10.16 Remark. We want to observe that if 0 is isolated in the spectrum of D , the
proof of Lemma 10.6 is almost trivial. By construction, for sufficiently small " in this
case D";˛ is equal to D0;˛ .
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11. Homotopy invariance of unstable rho-invariants

We are now in the position to prove the statements concerning homotopy invariance
of the introduction, along with some more general results.

11.1 Theorem. Let M be a closed oriented Riemannian manifold of odd dimension.
Assume that ! is a torsion-free discrete group such that the maximal Baum–Connes
map

'max W K#.B!/ ! K#.C #!/

is an isomorphism. Let u W M ! B! be a map classifying a covering zM D u#E! .
Let Aj be unital von Neumann algebras admitting positive finite faithful normal
traces ,j W Aj ! C. Let j̨ W C #! ! Aj be homomorphisms .with j D 1; : : : ; r/,
and ,1; : : : ; ,r W Aj ! Zj positive normal traces with values in abelian von Neumann
algebras Zj . Assume that ˇ1; : : : ; ˇr W Zj ! V are continuous homomorphisms to
a fixed topological vector space V such that

rX

j D1

ǰ ,j . j̨ .1// D 0 2 V: (11.2)

Let Lj ´ zM #! Aj be the associated Hilbert A-module bundle, where ! acts

on Aj via ! ! C #!
j̨"! Aj .

Then &.(j ; ǰ ;Lj /.M/ 2 V is a homotopy invariant.

11.3 Remark. We leave it to the reader to remove the hypothesis that the Aj admit a
finite faithful trace in Theorem 11.1.

Proof. Let f W M 0 ! M be a homotopy equivalence, L0
j ´ f #Lj . Let V ´

zM #! C #! be the Mishchenko–Fomenko line bundle associated to u on M . Then
f #V µ V 0 is the Mishchenko–Fomenko line bundle associated to f B u on M 0.

Let D"k ;˙˛k
be the smoothing perturbation of DV q "D 0

V 0 on M q ."M 0/ as
in Theorem 10.1. Associated to these perturbation we define the stable rho-invariant

&s
Œ0$.M q "M 0/ D Œ$Œ0$.D"k ;˙˛k

/# 2 .C #!/ab=hŒ1#i;

where we recall that .C #!/ab ´ .C #!/=ŒC #!; C #!#. By Theorem 7.1, &s does not
depend on the particular perturbation and vanishes identically.

From Lemma C.8 we conclude that

j̨ .$Œ0$.D"k ;˙˛k
// D $Œ0$.D

Aj

"k ;˙˛k
/ 2 Aj =ŒAj ; Aj #; (11.4)
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where D
Aj

"k ;˙˛k
is the perturbation of theAj -twisted signature operatorDLj

qD0
L0

j

on

M q ."M 0/ given by the corresponding recipe. On the other hand, by Theorem 10.1,

$(j .D
Aj
"k ;˛k

/C $(j .D
Aj
"k ;"˛k

/

2

k!1""""! $(j .D
Aj / D $(j .DLj

/ " $(j .D0
L0

j
/:

Therefore

rX

j D1

ǰ

$(j .D
Aj
"k ;˛k

/C $(j .D
Aj
"k ;"˛k

/

2

k!1""""!
rX

j D1

ǰ$( .DLj
/ "

rX

j D1

ǰ$( .D
0
L0

j
/:

(11.5)
By Equation (11.4), for the left-hand side we can write

rX

j D1

ǰ$(j .D
Aj

"k ;˙˛k
/ D

' rX

j D1

ǰ ,j j̨

(
.$Œ0$.D"k ;˙˛k

//:

The maps ,j j̨ W C #! ! Zj are traces. Therefore, they factorize through .C #!/ab.
After composing with ǰ and summing up, we get that

Pr
j D1 ǰ ,j j̨ W C #! ! V

maps 1 to 0, therefore this map factorizes through C #
ab=hŒ1#i.

But the projection of $Œ0$.D"k ;˙˛k
/ to .C #!/ab=hŒ1#i is the stable rho-invariant

of M q ."M 0/ which is identically zero.
The assertion of the theorem follows now from (11.5). !

11.6 Corollary. The statements about the signature operator in Theorem 1.4, Theo-
rem 1.11 and Theorem 1.15 are true.

Proof. It suffices to specialize the result of our main theorem to the Examples 8.5
and 8.8. Notice that in this way we have established the result about the delocalized
eta-invariant only under the Baum–Connes assumption for the maximal C*-algebra.
In order to sharpen this result to the reduced C*-algebra we simply observe that if
in the statement of Theorem 11.1 we take j D 1, A D N ! , ˛ W C #

r ! ! N ! the
natural map,Z D C, , D ,hgi andˇ1 D 1, then the basic condition (11.2) is satisfied,
&.(;ˇ;L/.M/ D $hgi. zDsign/ and the proof carries over. !

11.7 Remark. Let M be a closed odd-dimensional manifold. We want to stress
here that the mere vanishing of the signature index class inK1.C

#!/ does not imply
the vanishing of the corresponding L2-rho-invariant: we wish to clarify this point.
There certainly exist allowable perturbations to define the corresponding stable rho-
invariant (by [38])); under our standard assumptions on the fundamental group and
the Baum–Connes map this stable rho-invariant will be equal to zero. However, in this
generality it cannot be guaranteed that stable D unstable. Indeed, there are examples
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where the index class is trivial but where the rho-invariants are non-trivial (even for
a fundamental groups as simple as Z); we shall construct them in Section 15. From
this point of view, the case M D X t ."X 0/, with X and X 0 homotopy equivalent,
is indeed very special.

12. Vanishing results on spin manifolds with positive scalar curvature

Let .M; g/ be a Riemannian manifold. We assume thatM is spin and that dimM D
m D 2k " 1, k ( 1. We fix a spin structure and we let D= be the associated Dirac
operator.

12.1 Theorem. Assume that M has positive scalar curvature. Under the same as-
sumptions on ! , Aj , j̨ , ,j and ǰ as in Theorem 11.1 we have

&.(j ; ǰ ;Lj /.M/ D 0 2 Z: (12.2)

Proof. The proof is parallel to the proof of Theorem 11.1, but much easier since
under the assumption of positive scalar curvature the unstable rho-invariant coincides
by definition with the stable one. !

12.3 Corollary. The statements about the spin Dirac operator in Theorem 1.4, Theo-
rem 1.11 and Theorem 1.15 are true.

Proof. The proof is word by word parallel to the proof of Corollary 11.6, with the same
remark applying in order to pass from C #! to C #

r ! for the delocalized eta-invariant.
!

12.4 Remark. Let M be a closed oriented odd dimensional manifold and let ! !
zM ! M be a Galois covering, with ! torsion-free. Let us assume that the signature

operator on zM is L2-invertible; thanks to the work of Farber–Weinberger [15] and
Higson–Roe–Schick [21] we know that there are plenty of examples of such coverings.
Then our arguments imply that

&"1""2
.Dsign/ D 0 and &.2/. zDsign/ D 0;

provided that the max-Baum–Connes map is bijective, and

$hgi. zDsign/ D 0

if hgi is of polynomial growth, and the reduced-Baum–Connes map is bijective.
Conclusion: for such L2-invisible coverings our signature-rho-invariants are zero,
just as are the spin rho-invariants in the presence of positive scalar curvature.
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13. Further remarks on delocalized invariants

13.1. Infinite conjugacy classes. Let hgi be a non-trivial conjugacy class in ! , not
necessarily of finite cardinality.

13.1 Definition. If the limit

lim
T !C1

1p
%

Z T

0

t"1=2 Trhgi. zD exp."t zD2/dt (13.2)

exists, then its value is, by definition, the delocalized eta-invariant $hgi. zD/ associated
to zD and hgi.

Lott [41], [43] establishes the convergence if the operator zD on zM has a gap near
zero in its spectrum (i.e. zero is isolated in the spectrum) and if the trace ,hgi W C! ! C
associated to hgi has a certain extension-property. Let us recall his results. Let B1

! ,
C! % B1

! % C #
r ! , be the Connes–Moscovici algebra [12] and let D1 denote the

Dirac operator on M twisted by the flat bundle zM #! B1. First of all, if zD has a
gap in its spectrum, then the integral defining the 0-degree eta-invariant of D1,

$Œ0$.D
1/ ´ 1p

%

Z 1

0

t"1=2 TR.D1 exp."t .D1/2/dt

2 B1
! =ŒB

1
! ;B

1
! #;

(13.3)

converges in the natural Fréchet topology induced by B1
! . We set as usual .B1

! /ab ´
B1
! =ŒB

1
! ;B

1
! #. Next, if the trace ,hgi W C! ! C extends from C! to a continuous

trace on B1
! , then one can prove (see Remark E.12 in Appendix E.2) that

,hgi.TR.D1 exp."t .D1/2/// D Trhgi. zD exp."t zD2//:

It is now clear that if zD has a gap in its spectrum and if ,hgi extends, then the integral
in (13.2) converges and the delocalized eta-invariant $hgi. zD/ is well defined. Notice
that under our two assumptions

$hgi. zD/ D ,hgi.$Œ0$.D
1//: (13.4)

For example, groups of polynomial growth have the property that ,hgi extends for
each conjugacy class hgi. More generally:

13.5 Proposition. If hgi is of polynomial growth with respect to a word metric, then
,hgi has the extension property.
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Proof. This follows from [12, Lemma 6.4] and the Hölder inequality. Compare
also [24] !

13.6 Remark. It is in general very hard to check when a conjugacy class has poly-
nomial growth. In particular, it is known that a group which has exponential growth
will have a conjugacy class whose growth is not polynomial. On the other hand,
the conjugacy classes of commutators in a metabelian group are in many cases of
polynomial growth. For these results compare [67].

13.7 Theorem. Assume that ! is torsion-free, 'red W K#.B!/ ! K#.C #
red!/ is an

isomorphism and that hgi is a non-trivial conjugacy class in ! of polynomial growth.
IfD D D= is the spin Dirac operator on a spin manifold with positive scalar curvature,
then $hgi. zD=/ is defined and $hgi. zD=/ D 0.

Proof. We shall freely use a .B1
! /ab-valuedAPS-index theory. This is the zero-degree

part of the higher theory developed in [34].8 Since we are in the presence of positive
scalar curvature, the fact that $hgi. zD= / is well defined follows from Lott’s results and
Proposition 13.5. The vanishing of $hgi. zD= / follows from (13.4) and from the proof of
Theorem 7.3 and Theorem 13.9 below, which show that Œ$Œ0$.D=

1
/# 2 .B1

! /ab=hŒ1#i
vanishes. Notice that ,hgi W .B1

! /ab ! C factors through .B1
! /ab=hŒ1#i. !

13.8 Remark. For the signature operator one can prove the following statement:
If D D Dsign is the signature operator of an oriented Riemannian manifold, and

if 0 is isolated in the L2-spectrum of zDsign, then $hgi. zDsign/ is defined for each pair
.M 0; u0 W M 0 ! B!/!-homotopy equivalent toM , and it is an oriented!-homotopy
invariant.

That the delocalized eta-invariants are well defined follows from Lott’s results,
from Proposition 13.5 and from the homotopy invariance of the Novikov–Shubin
numbers, see Gromov–Shubin [17]. The proof of the homotopy invariance given in
the previous sections can be modified so as to cover this case as well. We omit the
details. In fact, under the gap assumption one can argue in the following alternative
and more general way.

Because of the gap assumption the signature index class associated to .M; u W M !
B!/ is zero in K1.B

1
! / D K1.C

#
r !/. Since the Baum–Connes assembly map

is by assumption bijective, we conclude from Theorem 7.1 that the stable rho-
invariant &s

Œ0$.M; u/ is equal to zero in .B1
! /ab=hŒ1#i. However, in this case there is

8The B1
# higher APS-index theory developed in [34] assumes the group to be of polynomial growth.

Arbitrary groups are treated in [35] in the invertible case, based on results of Lott [42]. In order to extend
the general B1

# -theory of [34] from groups of polynomial growth to arbitrary groups one simple needs
to prove that if Ind.D1/ D 0 in K1.B1

# / D K1.C #
r !/ then there exist trivializing perturbations in

the B1
# -Mishchenko–Fomenko calculus. However, this is the consequence of a simple density argument.

We thank Victor Nistor for pointing this out.
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a very natural perturbation available for the definition of the stable rho-invariant,
namely the projection …ker.D1/ onto the null space of D1, which is a finitely gen-
erated projective B1

! -module because of the gap assumption. Thus &s
Œ0$.M; u/ D

Œ$Œ0$.D
1 C…/# D 0. On the other hand, in general, it can be proved [34] that

$Œ0$.D
1 C…/ D $Œ0$.D

1/C Œker.D1/#Œ0$ ! $Œ0$.D
1/C TR.…ker.D1// in B1

! :

We conclude that under our three assumptions (gap C Baum–Connes C polynomial
growth of hgi) the following formula holds:

$hgi. zD/ D ",hgi.TR.…ker.D1///:

On the other hand, because of the gap assumption, one can establish a Hodge theorem,
proving that the whole null space ker.D1/ is in this case a homotopy invariant, being
isomorphic to the cohomology ofM with values in the local system zM #!B1

! . Thus,
under our assumption, the homotopy invariance of $hgi. zDsign/ is a consequence of a
much more general result.

13.2. Higher rho-invariants. Let us consider .M; u W M ! B!/ withM spin and
with a metric with positive scalar curvature. In this section M is not necessarily of
odd dimension. Let D= be the Dirac operator twisted by the Mishchenko–Fomenko
bundle u#E! #! B1

! . In this case, Lott’s higher eta-invariant

Q$.D= / 2 .+#.B1
! //ab ´ +#.B1

! /=Œ+#.B1
! /;+#.B1

! /#

is well defined, see [42], [34, Appendix]. Higher rho-invariants are obtained by
pairing this noncommutative differential form with suitable closed graded traces on
+#.B1

! /. Let us describe these traces. We start with a closed graded trace ˆ on
+#.C!/; we assume that ˆ is identically zero on the noncommutative differential
forms concentrated at the identity conjugacy class, i.e. on elements of the form

X

#0;:::;#k I#0:::#kD1

!#0;#1;:::;#k
)0d)1 : : : d)k :

There are examples of such traces, see [40, p. 209]. We briefly refer to ˆ as a
delocalized closed graded trace. We assume that ˆ extends to a closed graded trace
ˆ1 on +#.B1

! /. The higher rho-invariant associated to D= and ˆ is by definition
the complex number

Q&ˆ.D= / ´ hQ$.D= /;ˆ1i:
It is clear that the delocalized eta-invariant of Lott is a special case of this construction.
We shall also use the notation Q&ˆ.M; u/ ´ Q&ˆ.D= /.

It is proved in [37, Proposition 4.2] that the higher rho-invariants defines maps
Q&ˆ W Posspin

n .B!/ ! C. If! has torsion, the latter information is used in [37] in order
to distinguish metrics of positive scalar curvature (under suitable assumptions on !).
In the torsion-free case, on the other hand, we can prove the following result.
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13.9 Theorem. Assume that ! is torsion-free and that the assembly map
'red W K#.B!/ ! K#.C #

red!/ is an isomorphism. Let ˆ W +#.C!/ ! C be a de-
localized closed graded trace. Assume that ˆ extends to a closed graded trace on
+#.B1

! /. IfM is a spin manifold with positive scalar curvature and u W M ! B! is
a classifying map, then for the associated Dirac operator D= the higher rho-invariant
vanishesW

Q&ˆ.M; u/ ´ Q&ˆ.D= / D 0:

Proof. Since M has positive scalar curvature the index class of D= is equal to zero.
Thus, using Proposition 5.3 and the injectivity of 'red, we conclude that for some
d 2 N n f0g, d.M; u W M ! B!/ is bordant to

k[

j D1

.Aj # Bj ; rj # 1 W Aj # Bj ! B!/

with dimBj D 4bj , %1.Bj / D 1 and h yA.Bj /; ŒBj #i D 0. We denote the latter
manifold with classifying map by .N; v W N ! B!/ . We can and we shall endow
N with a metric of positive scalar curvature. Let .W; F W W ! B!/ be the mani-
fold with boundary realizing the bordism. Since there is a metric of positive scalar
curvature on @W , the b-index class Indb.D=W / is well defined in K#.C #

r !/. By the
surjectivity of 'red we know that Indb.D=W / D Ind.D=X / with X a closed spin man-
ifold with classifying map r W X ! B! . In particular, using Lott’s treatment of the
Connes–Moscovici higher index theorem [12], [40], we see that the Karoubi–Chern
character of Indb.D=W / is concentrated in the trivial conjugacy class. This means that
hCh.Indb.D=W //; ˆ1i D 0. On the other hand, by the higher APS-index theorem
in [33] we know that

hCh.Indb.D=W //; ˆ1i D d Q&ˆ.M; u/ "
kX

j D1

Q&ˆ.Aj # Bj ; rj # 1/;

since the local part in the index formula is concentrated in the trivial conjugacy class
and it is thus sent to zero by ˆ1. Hence using the bijectivity of 'red we have proved
that

Q&ˆ.M; u/ D 1

d

kX

j D1

Q&ˆ.Aj # Bj ; rj # 1/:

Using now the product formula for higher eta-invariants proved in [37, Proposi-
tion 2.1] we see that Q&ˆ.Aj #Bj ; rj # 1/ D 0 for all j . Thus Q&ˆ.M; u/ D 0 and the
theorem is proved. !
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14. The center-valued L2-signature formula for manifolds with boundary

In this section we relate the eta- and rho-invariants of the signature operator, which
show up in the APS-index theorem for the signature operator, to the signature of
the manifold with boundary (the signature of some possibly degenerate intersection
form).

Note that, even in the compact case, the ordinary signature formula for manifolds
with boundary does not immediately follow from the Atiyah–Patodi–Singer index
theorem for the signature operator. It is a non-trivial result of [2] to connect the APS-
index of the signature operator to the signature of the manifold with boundary. This is
much more complicated in theL2-case, since in [2] eigenvalue decompositions of the
space ofL2-sections on the boundary are used, which are not available in our setting.
This is overcome in [46] together with [64] for the numerical L2-signature. We now
explain how this is done and how it generalizes to the situation we are considering in
Section 15.

Therefore, let W be a compact oriented Riemannian manifold of dimension 4k
with boundary @W D M . Let A be a von Neumann algebra and , W A ! Z a finite
positive normal trace with values in an abelian von Neumann algebra Z. We are
thinking here in particular of the von Neumann algebra of a discrete group ! with its
canonical trace or with its center-valued trace.

Let L be a flat bundle of finitely generated projective Hilbert A-modules on W
(giving rise to a local coefficient system of such modules). Recall that L is given
by a representation of ! in a finitely generated projective Hilbert A module (which
we call Lx here). We assume that everything involved (Riemannian metric, bundle,
connection) is of product type near the boundary.

We can now define three kinds of intersection forms on W , using the twisting
bundle L, and with a signature in K0.A/.

The most computable one is obtained combinatorially: we consider a triangulation
(or more generally a CW-decomposition) ofW . This defines a cellular chain complex
C#.W I L/ of finitely generated free Hilbert A-modules, with coefficients in the local
coefficient system L. There is a Poincaré duality chain homotopy equivalence to the
relative cochain complexC 4k"#.W; @W I L/. From there we can restrict toW to get a
map to C 4k"#.W I L/. Since the second map is not a chain homotopy equivalence in
general, neither is the composition. But it is self-dual (note that the cochain complex
is dual to the chain complex).

Now one can pass to the projective part of the homology and cohomology of these
Hilbert A-module (co)chain complexes. This passage to the projective part involves
some additional consideration in homological algebra – special to finite von Neumann
algebras –, developed in different languages and independently by Farber [14] and
Lück [44]. We will later only look at the special example where the homology and
cohomology in middle degree is itself a finitely generated free Hilbert A-module (in
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fact equal to the chain- and cochain-module). Then the projective part in middle
degree is equal to the whole (co)homology. The Poincaré duality chain homotopy
equivalence composed with restriction to the boundary will then define a self-dual
map

H2k.W I L/ ! H 2k.W I L/ ! HomA.H2k.W I L/;A/:

In the special situation we are going to consider this will be given as follows:
There is a free finitely generated Z!-module V Š .Z!/l with (possibly singular)
self-dual map - W V ! V # ´ HomZ!.V;Z!/ of the form - D  C ."1/k #

(i.e., - has a quadratic refinement). Identifying V # with V using the given basis,
- is represented by a matrix B D A C A# with A 2 Mn.Z!/. The self-dual map
H2k.W I L/ ! H2k.W I L/# is then obtained by tensoring - W V ! V # with the
!-representation Lx , i.e. H2k.W I L/ Š V ˝Z! Lx Š Ll

x , and the map is given as
B 0 ´ B ˝ idLx .

The combinatorial signature sgn.W;L/ 2 K0.A/ is then defined by

sgn.W;L/ ´ sgnA.B
0/ ´ ..0;1/.B

0/ " .."1;0/.B
0/ 2 K0.A/:

Note that, for manifolds with boundary, this can only be defined for a von Neumann
algebra, where measurable functional calculus is available, since 0 might well be
contained in the spectrum of B 0 (in contrast to the closed case, where the topology
implies that an intersection form is necessarily invertible).

Using the trace , W A ! Z, we can then define the Z-valued combinatorial
signature

sgn( .W;L/ ´ sgn( .B
0/ ´ ,.sgnA.B

0//:

The second version ofA-signature is obtained by replacing the combinatorial chain
complex by the chain complex of differential forms with values in the flat bundle L.
Here the cup product of forms together with the A-valued inner product in the fibers
of L induces anA-valued intersection pairing on the de Rham cohomology in middle
degree with coefficients in L. This intersection pairing is again defined by a self-
adjoint operatorBdR, and then sgnA.BdR/ ´ ..0;1/.BdR/".."1;0/.BdR/ 2 K0.A/
defines the de Rham signature of W with coefficients in L.

Finally, we can attach infinite cylinders to the boundary of W , and then carry
out the construction as above, but now with square integrable differential forms (with
values in L) on the enlarged non-compact manifold. We get a third signature invariant
in K0.A/.

Application of , gives three signatures in Z.
One can now use the arguments of [45] in order to show that these three invariants

in fact always coincide. In [45], the corresponding result is proved for the ordi-
nary L2-signature, i.e., where L D N is the Mishchenko–Fomenko line bundle, and
, W N ! ! C is the canonical trace. The techniques carry over. The relevant prop-
erties are that , is a positive and normal trace. Note that in [45] one works with
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A-Hilbert spaces instead of the Hilbert A-modules used here. However, one can
translate between these two settings as explained in [60, Section 8.6].

Let DL be the signature operator on W twisted by L. It has boundary operator
DM;L. Then we can express the three equal higher signature of the bordismW which
were defined above using the signature operator.

14.1 Theorem.

sgn( .W I L/ D
"Z

W

AS.D/ $ ,.Lx/

#
" $( .DM;L/

2
2 Z:

The Atiyah–Singer integrand AS.D/ for the signature operator is of course given by
the Hirzebruch L-form of the Riemannian manifold W . ,.Lx/ is the trace of the
projection onto the finitely generated projective fiber Lx , this is a locally constant
A-valued function on W .

Proof. This is proved for the “ordinary” cylindrical endL2-signature by Vaillant [64],
using the L2-Atiyah–Patodi–Singer index formula. His proof only uses the formal
properties of the canonicalL2-trace of being positive and normal and therefore carries
over to prove the asserted equality. As explained above, from the work in [45] it follows
that the formula also holds for the combinatorially defined signature. !

15. Examples of non-trivial rho-invariants

In this section we show that there are many examples where the rho-invariants con-
sidered in this paper (known to be homotopy invariants) show that certain manifolds
are not homotopy equivalent. The fundamental group can be as simple as Z. Similar
explicit calculations (without using the notion of rho-invariant) have been carried out
in [11, Section 5]. In the latter paper these invariants are used to detect certain knots
which do not have the slice property (which implies that certain types of bordisms
can not exist).

We use the surgery construction of [46] employed there to construct manifolds
with boundary with very general intersection form.

Recall from Section 14 that the combinatorially defined L2-signatures of a trian-
gulated manifold M (with or without boundary) is obtained as follows. Assume that
! D %1.M/. We have an “intersection form” on the combinatorial chain complex.
This can be understood as a matrix B with entries in Z! . Actually, because of the
symmetry properties of the intersection form, B D A C A# for A 2 Mn.Z!/. We
now use A D N ! and L D N D zM #! N ! . In this situation, since Z! is a subset
of N ! , we understand the matrices A and B to be matrices also over N ! (i.e., we
write B instead of B 0 in the notation of Section 14).

Then sgn.M;N / D sgnN!.B/ D ..0;1/.B/ " .."1;0/.B/.
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Applying the center-valued trace , W N ! ! Z, we get then sgn.M;N ; ,/ D
,.sgn.M;N //. Set sgn( .B/ ´ ,.sgnN!.B//. Applying the canonical trace, from
this we get sgn.2/.B/ 2 C, and applying the delocalized traces corresponding to a
finite conjugacy class hgi, we get sgnhgi.B/ 2 C.

Moreover, if " W ! ! U.d/ is a finite dimensional representation of ! , set
".B/ 2 Mn.Md .C// D Mnd .C/, the matrix obtained by applying " entrywise.
Then sgn.".B// is the "-twisted signature of M . Recall that ".B/ is a possibly in-
definite self-adjoint matrix; sgn.".B// is the difference of the number of positive and
negative eigenvalues, the eigenvalue 0 is ignored.

We will use the following Proposition 1.1 of [45].

15.1 Proposition. Fix a dimension 4k ( 6 and a finitely presented group ! . Let X
be a closed .4k"1/-dimensional manifold with fundamental group! and with Morse
decomposition without a k-handle. Choose A 2 Mn.Z!/. Let B D AC A#.

Then there is a compact manifold with boundary .W IX; Y / of dimension 4k
with boundary @W D X q Y and fundamental group ! such that the Morse chain
complex C#.$W / of the universal covering $W is isomorphic to C#. zX/˚ V , where V
is considered as trivial chain complex concentrated in the middle dimension k, and
with inverse Poincaré duality homomorphism

C4k"#.$W / ! C4k"#.$W ; @$W / PD!1

""""! C #.$W /;

which in the middle dimension is given by B ´ ACA#, as explained in Section 14.
Here PD"1 is a chain homotopy inverse to the cup product with ŒW; @W #.

In particular, sgn( .W;N / D ,...0;1/.B//",.."1; 0/.B//, where , W N ! ! Z
is the center-valued trace.

Recall that, on the other hand, for the constructed manifold W the ordinary sig-
nature is the signature of &.B/, where & W ! ! f1g is the trivial representation.

Using theL2-signature Theorem 14.1, we therefore get in principle a large number
of examples of manifolds with interesting difference of rho-invariants.

15.2 Corollary. Given any A 2 Mn.Z!/, set B ´ A C A#. Then there exist
manifolds X; Y with %1.X/ D %1.Y / D ! such that

&.2/.X/ " &.2/.Y / D sgn.2/.B/ " sgn.&.B//:

If "1;"2 W ! ! U.d/ are two representations, then

&"1""2
.X/ " &"1""2

.Y / D sgn."1.B// " sgn."2.B//:

If g 2 ! has finite conjugacy class hgi, then

&hgi.X/ " &hgi.Y / D sgnhgi.B/:
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15.3 Remark. Note that X q "Y with the reference map to BZ is a boundary and
therefore has signature class 0 2 K0.C

#Z/. Nevertheless, our construction shows
that the rho-invariants ofXq"Y are non-zero. In particular, for such a manifold the
stable and the unstable rho-invariant can differ (we know that the stable one vanishes
in such an example).

This theorem implies that we have a great freedom of constructing manifolds X
and Y such that the various rho-invariants differ. There is of course a problem in
explicitly calculating these invariants for a given matrix B . Let us therefore recall
how this can be done in the easiest case, i.e., if ! D Z.

In this case N Z Š L1.S1/ using Fourier transform. The subring ZŒZ# % N Z
corresponds to Laurent polynomials on S1.

Therefore, B D A C A# 2 Mn.Z!/ can be understood as an n # n-matrix
with entries in Laurent polynomials on S1, or alternatively as a function (a Laurent
polynomial) B.z/ on S1 with values in Mn.C/. To compute sgnN Z.B/, one then
computes pointwise sgn.B.z//, getting an integer-valued function on S1. Considered
as an element of L1.S1/ D N Z D Z, this is exactly sgn( .B/ (since N Z is abelian
the center-valued trace is the identity).

If " W Z ! U.1/ is a 1-dimensional representation, sending the generator z to
" 2 U.1/ D S1, then sgn".B/ D sgn.B."//, i.e., we have to evaluate the function
sgn.B.z// at the point ". In particular, for the trivial representation, sgn1.B/ D
sgn.B.1//.

If, on the other hand, g D zn 2 Z, then sgnhgi.B/ is the Fourier coefficient of g
for the function sgn.B.z//, i.e.,

sgnhgi.B/ D
Z

S1

sgn.B.z//z"n dz; in particular sgn.2/.B/ D
Z

S1

sgn.B.z// dz:

Let us look at a particular example. If A D z C z"1 C 1 (a 1 # 1-matrix),
then B.z/ D 2.z C z"1 C 1/, and sgn.B.z// D 0 for z D z1;2 D exp.˙2% i=3/,
sgn.B.z// D 1 if z is contained in the connected component of 1 of S1 n fz1; z2g,
and sgn.B.z// D "1 for the remaining points of z.

Observe that this is the general pattern: sgn.B.z// jumps (at most) at those points
on S1 where an eigenvalues of B.z/ crosses 0, i.e., where the rank of B.z/ is lower
than the maximal rank. It follows e.g. that sgn.2/.B/ D 1=3, but sgn1.B/ D 1

and sgnhzi.B/ D 2.exp.2% i=3/ " exp."2% i=3// D 2i
p
3. In particular, since

sgn.2/.B/ " sgn1.B/ ¤ 0 (or since sgnhzi.B/ ¤ 0), if we use the matrix A in the
construction of Proposition 15.1, the resulting closed manifolds X and Y satisfy

&.2/.Y / " &.2/.X/ D sgn.2/.B/ " sgn1.B/ D "2=3;

and are therefore not homotopy equivalent.
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Note that we can apply Theorems 1.4, 1.11 or 1.15 since Z is torsion-free and
satisfies the Baum–Connes conjecture for the maximal C*-algebra.

Unfortunately, this conclusion has one flaw: by [65, Lemma 2.2] and the proof of
[65, Theorem 5.8],

Hk.Y I Z!/ Š ker.B/˚Hk.X I Z!/;

Hk"1.Y I Z!/ Š coker.B/˚Hk"1.X I Z!/;
(15.4)

whereas the homology of X and Y in all other degrees coincides. This implies that
we might as well distinguishX and Y using their homology, which is of course much
easier to compute that the rho-invariants.

One can easily construct more interesting examples as follows: consider a diag-
onal matrix A with entries A1.z/; : : : ; Am.z/, and a second diagonal matrix A0 with
entries "1A1.a/; : : : ; "nAn.z/, with "i 2 f"1; 1g. Starting with a manifold X as in
Proposition 15.1, we then get two manifolds Y and Y 0. By [65, Lemma 2.2] and the
proof of [65, Theorem 5.8], the homology of Y and Y 0 is isomorphic in all degree
and with arbitrary coefficients.

However, the signatures and therefore the difference of rho-invariants changes
sign if the matrix A changes sign. This means that we can easily arrange that certain
rho-invariants of Y and Y 0 do not coincide, we have even enough freedom to make
sure that there are examples where they neither coincide nor are negative of each
other.

The conclusion is that although the homology of Y and Y 0 is isomorphic in all
degrees and with arbitrary coefficients, there is no homotopy equivalence between Y
and Y 0 (not even one which reverses the orientations). This result has been obtained
using rho-invariants, it can be recast in terms of Blanchfield forms (also called linking
forms), i.e. in terms of classical methods of advanced algebraic topology.

It is evident that with other matricesA.z/, we can get all kinds of further interesting
examples.

This was all done for a group as simple as Z. One is often interested to get examples
for more complicated groups, compare also the problem of constructing knots; see
e.g. [11]. We can “induce up” these examples by embedding Z in an arbitrary torsion-
free group ! and then use the fact that the signature calculations happen entirely in
the subgroup Z and therefore are unchanged, as long as the L2-signature and the
ordinary signature are involved. The relevant result is stated and proved e.g. in [11,
Proposition 5.13]. The following happens: when we have an inclusion i W Z ,! ! ,
then this induces inclusions l2.Z/ ,! l2.!/ and i W N Z ,! N ! . The latter one being
an inclusion of von Neumann algebras, it is compatible with functional calculus. If
we therefore start withB D A# CA 2 Mn.Z!/, then ..0;1/.i.B// D i...0;1/.B//.
It is not clear to us how the classical methods of algebraic topology mentioned above
could to be used in this general setting.
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Finally, if we want to compute a delocalized trace of an element i.x/, we observe
that by definition for g 2 ! with jhgij < 1,

,hgi.i.x// D
X

h2hgi
he $ i.x/; hil2.!/:

But since e 2 l2.Z/, also e $ i.x/ 2 i.l2.Z//, and therefore the inner product is zero
if h … i.l2.Z//, and

,hgi.i.x// D
X

h2hgi\i.Z/

he $ i.x/; hil2.!/ D
X

h2hgi\i.Z/

,i!1.h/.x/:

In particular, if g D e then tr.2/.i.x// D tr.2/.x/, and if g ¤ e, one has to analyze
which conjugates of g lie in i.Z/. If hgi is finite, then g"1 can be the only power
of g contained in hgi. It follows that if g generates i.Z/, we understand hgi \ i.Z/
completely.

For example, if one embeds Z into the center of ! , all delocalized invariants with
respect to elements of this embedded Z will be the same, independent of the question
whether the corresponding matrix is considered as a matrix over Z or over ! . With
a little extra care one can use the same “induction process” to obtain examples of
non-trivial delocalized rho-invariants for finite conjugacy classes with more than one
element.

A. Index theory: proofs

This first appendix is devoted to the proof of the two index theorems stated in Section 2.

A.1. Proof of the A=ŒA; A!-valued Atiyah–Singer index formula. First of all we
need to deal with the existence of the heat kernel for the Dirac Laplacian D2

L and its
perturbation D2

L;C ! .DL C C/2.

A.1 Lemma. For each t > 0 there exists a well-defined operator e"tD2
L;C 2 ‰"1

A .

If v 2 C1.M;E ˝ L/ then u.t; $ / ´ e"tD2
L;Cv is a solution of the heat equation

.@t CD2
L;C /u D 0 with initial condition v at t D 0. The operators e"tD2

L;C form a
semigroup.

Proof. We begin with the Dirac Laplacian D2
L. The best way to prove the above

lemma is by use of the heat space of Melrose; see [49], Chapter VII. First we make
a general comment. Microlocal analysis can be viewed as a geometrization of op-
erator theory, the operators of interest being certain distributions on M # M with
precise singularities on the diagonal (conormal distributions). Smoothing operators,
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for example, are given as smooth functions onM #M , or, more generally, as smooth
sections of suitable homomorphism bundles onM#M . It is not difficult to understand
that the Mishchenko–Fomenko pseudodifferential calculus can be easily developed by
simply considering A-valued conormal distributions. For example, smoothing oper-
ators in the Mishchenko–Fomenko calculus acting for simplicity on the trivial bundle
C` ˝A are nothing but C1 functions onM #M with values in M`(`.A/. From the
microlocal point of view the presence of the C*-algebraA does not affect in a signifi-
cant way all the usual arguments culminating in the existence of the pseudodifferential
calculus. (Needless to say, operators in the Mishchenko–Fomenko calculus act on
A-Hilbert modules and not on Hilbert spaces, it is at this point that much more care
is needed.) This general philosophy will be applied here to the construction of the
heat semigroup e"tD2

L . The advantage of the treatment given by Melrose through the
heat space (a certain blow-up ofM #M # Œ0;1/t ) is that it is as geometric as it can
be, thus generalizing without any difficulty to operators acting on sections of bundles
of A-modules (such as E ˝ L). This general principle has been already applied in
[33] in the case A D C #

r ! but it is clear that it extends readily to an arbitrary unital
C*-algebra A.

Summarizing: By following closely the treatment given by Melrose for ordinary
Dirac operator we can prove the lemma for the heat kernel associated to D2

L. A
standard argument involving a Volterra series can be applied in order to obtain the
lemma for the perturbed operator D2

L;C . See [5]. !

The problem we encounter with the heat kernel in the C*-algebraic context is that it
does not behave well for t ! 1, since our operators are in general not invertible in the
Mishchenko–Fomenko calculus. For this reason, we introduce suitable perturbation
which make them invertible.

A.2 Definition. Instead ofM considerMC, the disjoint union of the manifold with an
additional point &. The Dirac type operator on the additional point is by definition the
0 operator on C. Recall the finitely generated projective modules IC, I" appearing
in the Mishchenko–Fomenko decomposition theorem. We define LC, the twisting
bundle on MC to be L q .IC ˚ I"/, where we view I˙ as an abstract finitely
generated projective Hilbert A-module (therefore a bundle over the point).

Following [40], Section VI, we now define for ˛ 2 R the perturbed operators (of
DL, but we suppress the L in the notation)

DC
˛ ´

0

@
DC

L jI?
C

0 0

0 DC
L jIC ˛

0 ˛ 0

1

A ;
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and D"
˛ as the (formal) adjoint of DC

˛ . The description with respect to the Mish-
chenko–Fomenko decomposition of Theorem 2.4 is given by

C1.MC; .E ˝ L/CC/ D I?
C ˚ IC ˚ I";

C1.MC; .E ˝ L/"C/ D DL.I
?
C/˚ I" ˚ IC:

Note that I˙ has two roles here: first as subset of the section ofE˝L onM , secondly
as possible values of the sections at the additional point &, where the fiber is I" ˚IC.

A.3 Lemma. The operator e"tD2
˛ is defined for each t > 0 and each ˛ 2 R, and

is a smoothing operator in the Mishchenko–Fomenko calculus on MC. In particular
STR.e"tD2

˛ / 2 Aab is defined.

Proof. The heat operator e"tD2
˛ is defined by Duhamel’s expansion, using the fact

that D˛ " D0 is finite rank as A-linear operator, see [40, Section VI]. Since the
heat operator of D2

0 is smoothing on MC, the lemma follows. In fact, by using the
information that the orthogonal projection onto IC and the projection onto I" along
DL.I

?
C/ are smoothing operators, it is possible to check that D˛ "D0 is smoothing

on MC, i.e. an element in ‰"1
A .MC; .E ˝ L/C; .E ˝ L/C/. !

The following lemma is clear.

A.4 Lemma. Let ˛ D 0, then

STR.e"tD2
0 / D STRM .e

"tD2
L/C ŒI"#Œ0$ " ŒIC#Œ0$ 2 Aab:

A.5 Lemma. For˛ sufficiently large,D˛ is invertible in the MF-calculus and therefore

STR.e"tD2
˛ /

t!1"""! 0 2 Aab: (A.6)

Proof. The invertibility is explained in [40], Section VI, after formula (107). One
can proceed as in [49] and show that the heat kernel defined through the heat space
is indeed expressible in terms of the usual integral involving the resolvent. Using the
invertibility of D2

˛ one then gets (A.6). !

A.7 Lemma. For each ˛ 2 R and t > 0

STR.e"tD2
˛ / " STR.e"tD2

0 / D 0 2 Aab:

Proof. Use Duhamel’s formula to compute the derivative with respect to ˛ of
STR.e"tD2

˛ /. The usual calculations show that this is the supertrace of a super-
commutator and therefore vanishes in Aab. Details are as in [5], Chapter 3. !
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As a corollary we obtain Proposition 2.13:

A.8 Corollary.

lim
t!1 STRM .e

"tD2
L/ D ŒIC#Œ0$ " ŒI"#Œ0$ ! IndŒ0$.DL/ 2 Aab;

where part of the assertion is that the limit exists.

Proof. By Lemmas A.4 and A.7 we have in Aab, for each ˛ 2 R and t > 0:

STRM .e
"tD2

L/ D STR.e"tD2
0 /" ŒI"#Œ0$C ŒIC#Œ0$ D STR.e"tD2

˛ /" ŒI"#Œ0$C ŒIC#Œ0$:

Taking ˛ large enough we get the corollary by applying Lemma A.5. !

A.1.1. The integral operator index. Next we tackle the problem of connecting
the index IndŒ0$.DL/ 2 Aab defined using the index class and the algebraic trace
tralg W K0.A/ ! Aab to the integral-kernel-trace, TR, of the projection operators
given by the Mishchenko–Fomenko decomposition.

A.9 Definition. Define a second smoothing perturbation of D by

BC
˛ ´ DC

L " ˛P"DC
LPC;

for ˛ 2 R, with B"
˛ the (formal) adjoint of BC

˛ and with PC ´ …IC , P" ´ …I! .

A.10 Remark. Observe that

B˛ D
"
0 B"

˛

BC
˛ 0

#

is a smoothing perturbation of DL. Note that PC is self-adjoint, but P" is not
necessarily. Thus we will also use its adjoint P #

" . Note, finally, that im.1 " P"/ D
DC

L.I
?
C/.

A.11 Lemma. We have decompositions

C1.M; .E ˝ L/"/ D im.P"/˚ im.1 " P"/ D im.P #
"/˚ im.1 " P"/:

The second decomposition is an orthogonal decomposition since

im.1 " P"/? D ker.1 " P #
"/ D im.P #

"/:

Let pr be the orthogonal projection onto im.P #
"/. Then pr is also a smoothing operator.
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Proof. P #
"P"C.1"P"/ D 1C.P #

"P""P"/ is an isomorphism ofC1.M;E˝L/"/
which is diagonal with respect to the two decompositions (it is an isomorphism, since
P #

" has kernel im.P"/? and is surjective, so that P #
" W im.P"/ ! im.P #

"/ is an
isomorphism by the open mapping theorem). Then

pr D .1C .P #
"P" " P"//"1P".1C .P #

"P" " P"//

is smoothing by Lemma A.12 below. !

A.12 Lemma. If P is smoothing and 1C P is invertible in the sense of Hilbert-A-
module morphisms .on the completed space of sections/, then

.1C P /"1 D 1CQ with Q smoothing:

Proof. Write .1CP /"1 D 1CQ; thenQ satisfiesQ D "P "P 2 "PQP and it is
therefore smoothing. Here we are using the fact that smoothing operators in L2 are
a semi-ideal (a subring R of a ring R is a semi-ideal if i; j 2 I; r 2 R, then irj 2 I
for all i; j 2 I and for all r 2 R). !

In the next lemma we shall suppress the L subscript in the notation of DL.

A.13 Lemma. For ˛ D 0, B˛ D DL; for ˛ D 1 we have

BC
1 D

 
DjI ?

C
0

0 0

!

with respect to the decomposition

C1.M; .E ˝ L/C/ D I?
C ˚ IC; C1.M; .E ˝ L/"/ D im.1 " P"/˚ im.P #

"/:

Observe that this operator decomposes as an invertible operator plus .direct sum/
the zero operator between two finitely generated projective modules.

Since the decompositions of domain and range are both orthogonal, the adjoint
B#

1 decomposes .with respect to the same decomposition/ as

B"
1 D

 
D#jI ?

C
0

0 0

!
;

and again the left upper corner is an isomorphism. From this

B2
1 D

0

BBB@

D#
I ?

C
DI ?

C
0 0 0

0 0 0 0
0 0 DI ?

C
D#

I ?
C

0 0 0 0

1

CCCA
;
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where we use the same decomposition as before.
It follows that

e"tB2
1

t!1"""! PC ˚ pr;

where PC is the even part of the operator and pr the odd part. For the supertraces
this implies

STR.e"tB2
1 /

t!1"""! TR.PC/ " TR.pr/ 2 Aab:

Here the trace is always taken in the sense of integration over the diagonal. Note that
pr is a smoothing operator by Lemma A.11.

A.14 Lemma. Z

M

tralg
x pr.x; x/ D

Z

M

tralg
x P".x; x/ 2 Aab:

Proof. By the proof of Lemma A.11 (using Lemma A.12),

pr D .1 " P /"1P".1 " P / D .1 "Q/P".1 " P /;

whereP andQ are smoothing operators. The assertion follows from the trace property
for the integral trace for smoothing operators. !

A.15 Lemma. STR.e"tB2
˛ / is independent of ˛.

Proof. The independence follows, as before, from Duhamel’s formula. !

We are now in the position to prove Proposition 2.14, which is stated once again
here for the convenience of the reader.

A.16 Corollary. The algebraic trace ŒIC#Œ0$ " ŒI"#Œ0$ of ŒIC#" ŒI"# ! Ind.DL/, i.e.
the image under the induced map tralg W K0.A/ ! Aab of the index class Ind.DL/,
can be calculated as

ŒIC#Œ0$ " ŒI"#Œ0$ D
Z

M

tralg PC.x; x/ "
Z

M

trP".x; x/ ! TRPC " TRP" 2 Aab;

where PC and P" are the projections onto IC and I" as given by the Mishchenko–
Fomenko decomposition.

Proof. Both expressions are limits for t ! 1 of STR.e"tD2
L/ by Lemma A.15 and

Lemma A.7. !

A.17 Remark. Note that the proof shows that ŒIC#Œ0$ " ŒI"#Œ0$ can also be expressed
by means of many of the other integral operators we have used throughout the proof.
In fact it might be useful to observe that the following general proposition holds.
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A.18 Proposition. Let DL as above and let Q 2 ‰"1
A .M;E" ˝ L; EC ˝ L/ be a

parametrix for DC
L with remainders S˙ 2 ‰"1

A . Then

indŒ0$.DL/ D TR.SC/ " TR.S"/:

The proof of the proposition is standard.

Having analyzed the large-time behavior of the Aab-valued supertrace of the heat
kernel, we now turn our attention to the short-time behavior.

A.19 Lemma. The local supertrace

stralg
x .e

"tD2
L.x; x// vol.x/

has a limit for t ! 0 which is precisely the differential form

.x 7! AS.D/.x/ ^ ch.E/.x/ ^ ch L.x/Œdim M $/ 2 +dim M .M;Aab/;

where the Chern forms are defined as usual using Chern–Weyl theory and the curvature
of the connections.

Proof. We use Getzler’s proof, as in the book by Berline, Getzler and Vergne [5]. !

A.20 Remark. In fact, the same statement holds for the smoothing perturbationDL;C

since, as already remarked, for the heat kernel

e"t.DLCC/2 D e"tD2
M;L C tC1.Œ0;1/; ‰"1

A .M;E ˝ L; E ˝ L//

(a consequence of Duhamel’s formula together with the fact that C 2 ‰"1
A .M;E ˝

L; E ˝ L/).

A.21 Lemma.
d

dt
STR.e"tD2

L/ D 0 in Aab:

Proof. This is, once again, a consequence of Duhamel’s formula. !

We can finally give a complete proof of the Aab-valued Atiyah–Singer index The-
orem 2.15:

Proof. Only the index formula itself remains to be established. We integrate from
0 < " < 1 to 1=" the derivative d

dt STR.e"tD2
L/; we apply the fundamental theorem

of calculus, we let " # 0 and use the large and short time behavior of STR.e"tD2
L/ as

in A.19 and in A.8. !
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A.2. Proof of the A=ŒA; A!-valued APS index formula. In this subsection we
shall recall and complement (a special case of) the Atiyah–Patodi–Singer index the-
ory developed by Leichtnam and the first author in [34], [38]. In order to simplify
the exposition we shall only consider even dimensional manifolds with boundary.
Fundamental in our treatment is the extension of Melrose’s b-calculus to the C*-
algebraic setting. This is developed in [33], [34] when the C*-algebra A is equal to
the reduced C*-algebra of a discrete group; exactly the same arguments work when
A is an arbitrary (unital) C*-algebra. We shall not enter into the precise definition of
the Mishchenko–Fomenko b-calculus with bounds ‰#;"

b;A, " > 0; we only recall that
operators in ‰#;"

b;A are characterized by their behavior, as distributions, on W # W
or, more precisely, by the behavior of their lifts on the so-called b-stretched product
W #b W (the manifold with corners obtained by blowing up @W # @W in W #W ).
The b-calculus with bounds is the sum of three spaces of operators

‰#;"
b;A D ‰#

b;A C‰"1;"
b;A C‰"1;"

A :

The first space on the right-hand side is the small b-calculus; it is an algebra and
contains as a subalgebra the space of b-differential operators. The elements in the
second space are called (smoothing) boundary terms whereas the operators in the
third space are called residual and are directly characterized onW #W . The residual
elements play the role of the smoothing operators in the closed case. There are natural
composition rules for elements in the b-calculus with bounds. Finally, elements in
the b-calculus are bounded on suitable b-Sobolev Hilbert modules:

P 2‰m;"
b;A.W;E˝L; F˝L/)P W H `

b .W;E˝L/!H `"m
b .W; F˝L/ is bounded;

where the subscript b in the Sobolev modules indicates that these modules are defined
using a b-metric and b-differential operators. We set H1

b ´ T
k2NH

k
b . It is

also important to consider weighted b-Sobolev modules xıHm
b , with x a boundary

defining function; in fact the inclusion xıH `C"
b ,! H `

b is an A-compact operator for
all " > 0 and all ı > 0 .

A short guide to the literature. The basic reference for the b-calculus and its ap-
plications to index theory on manifolds with boundary is the book by Melrose [49].
Short but rather complete introductions to the theory are given in the surveys [48] and
[16] and also in the appendix of [50]. The existence of spectral sections, and thus of
trivializing perturbations, for anA-linear Dirac-type operatorDM;L on a closed mani-
foldM with vanishing index class inKdim M .A/ (see 2.17) is established in [68], [38],
building on work of Melrose–Piazza [50]. The b-calculus in the C*-algebraic context
(including b-Sobolev modules) is studied in [33]. IfM D @W and C is a trivializing
perturbation forD@W;L, then the lifted perturbation CW 2 ‰"1

b;A is defined in [50] for
families and in [34] in the C*-context. Using the b-calculus and the invertibility of
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D@W;L C C one proves that the operator DW;L C CW is invertible modulo residual
operators; since a residual operator extends to an A-compact operator on b-Sobolev
modules we see thatDW;L C CW has a well-defined index class inK0.A/ (see below
for more on this point).

Our main interest is thus in the perturbed b-operator DL C CW 2 ‰1
b;A.M;E ˝

L; E ˝ L/. We begin with the existence of the heat kernel.

A.22 Lemma. The operator H.t/ ´ e"t.DLCCW /2
is a smoothing operator in the

.small/ Mishchenko–Fomenko b-calculus on W ; e"t.DLCCW /2 2 ‰"1
b;A . The heat

operator H. $ / satisfies the heat equation with initial condition limt#0H.t/ D id.

Proof. The result for the (unperturbed) b-differential operator D2
L is obtained by

employing the b-heat space as in [49] and applying the same reasoning as in the proof
of LemmaA.1. For the perturbed operator .DL CCW /

2 we apply the same arguments
used in the proof of Proposition 8 in [50]. !

The following result is fundamental in developing a higher APS-index theory.

A.23 Lemma. There is a Mishchenko–Fomenko decomposition of the space of sec-
tions of E ˝ L with respect to DC

L C CC
W , i.e.,

H1
b .W; .E ˝ L/C/ D IC ˚ I?

C; H
1
b .W; .E ˝ L/"/ D I" ˚ .DC

L C CC
W /.I

?
C/:

In this decomposition, I˙ % x"H1
b , with " > 0. By completion, this decomposition

gives a decomposition of the Hilbert A-modules Hm
b .W; .E ˝ L/˙/, m 2 N.

The second decomposition is not a priori orthogonal. However,DC
L CCC

W induces
an isomorphism .in the Fréchet topology/ between I?

C and .DC
L C CC

W /.I
?
C/. More-

over, IC and I" are finitely generated projective HilbertA-modules. The projections
…IC onto IC .orthogonal/ and…I! onto I" .along .DC

L C CC
W /.I

?
C// are residual,

i.e. belong to ‰"1;"
A .W IE ˝ L; E ˝ L/. The I˙ are already complete finitely gen-

erated projective Hilbert A-modules, i.e. unchanged when passing to any completion
Hm

b .W;E ˝ L/. The index class associated toDC
L C CC

W , denoted Indb.DL;C/, is
by definition

Indb.DL;C/ ´ ŒIC# " ŒI"# 2 K0.A/: (A.24)

Proof. The lemma is proved in [33, Appendix B] for an operator DL with invertible
boundary operator. As explained in [34], Theorems 6.2 and 6.5, the same proof applies
to perturbed operators, such as DL C CW , with invertible indicial family. !

A.25 Remark. Suppose now that C is defined from a spectral section P associated
to D@W;L: thus C ! CP for some P . Then

Indb.DL;CP / D IndAPS.DL;P / in K0.A/
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where on the right-hand side a suitable generalization of the Atiyah–Patodi–Singer
boundary condition appears. See [68], [38].

Recall that our goal is to prove an index formula for

tralg.Indb.DL;C// ´ Indb;Œ0$.DL;C/ ! ŒIC#Œ0$ " ŒI"#Œ0$ 2 Aab:

A.2.1. The algebraic index perturbation

A.26 Definition. Instead of W consider WC, the disjoint union of the manifold with
an additional point. The Dirac type operator on the additional point is by definition
the 0 operator on C. Note that the boundary of WC is still M . We define LC, the
twisting bundle onWC to beLq .IC ˚I"/, where we view I˙ as an abstract finitely
generated projective Hilbert A-module (therefore a bundle over the point).

Now we define for ˛ 2 R the perturbed operators (ofDC
L C CC

W , but we suppress
L and CW in the notation of the perturbation)

DC
˛ ´

0

@
.DC

L C CC
W /jI?

C
0 0

0 .DC
L C CC

W /jIC ˛
0 ˛ 0

1

A ;

and D"
˛ as the (formal) adjoint of DC

˛ . The description with respect to the b-Mish-
chenko–Fomenko decomposition of Lemma A.23 is given by

H1
b .WC; .E ˝ L/CC/ D I?

C ˚ IC ˚ I";

H1
b .WC; .E ˝ L/"C/ D .DC

L C CC
W /.I

?
C/˚ I" ˚ IC:

Note that I˙ has two roles here: first as subset of the section ofE˝L onW , secondly
as possible values of the sections at the additional point &, where the fiber is I" ˚IC.

A.27 Lemma. For each ˛ 2 R,D˛ is a bounded perturbation ofD0. More precisely,
D˛ "D0 belongs to the residual space‰"1;"

A .MC; .E˝L/C; .E˝L/C/ for some
" > 0.

It follows by Duhamel expansion that e"tD2
˛ is defined for each t > 0 and each

˛ 2 R, and is an element in ‰"1;"
b;A .MC; .E ˝ L/C; .E ˝ L/C/. In particular the

b-supertrace bSTR.e"tD2
˛ / 2 Aab is defined. Let us recall the definition of the b-

supertrace from [49]. First we recall the definition of the regularized integral on the
manifold W endowed with a product b-metric. Let volb;W be the associated volume
form. Let us fix once and for all a trivialization / 2 C1.@W;NC@W / of the inward
pointing normal bundle to the boundary and let x 2 C1.W / be a boundary defining
function for @W such that dx $ / D 1 on @W . For any function f 2 C1.W / we set

/Z

W

f ´ lim
"!0C

h Z

x>"

f volb;W C log "
Z

@W

f j@W vol@W

i
:
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Consider now an element K 2 ‰"1;"
b;A and its restriction to the lifted diagonal

*b % M #b M . Using the identification *b ! W and taking the Aab-valued
supertrace of the endomorphism of .E ˝ L/x , denoted strx , we define

bSTR,.K/ ´
/Z

W

stralg
x Kj-b

.x/:

One can easily compute the effect of changing the trivialization /; from now on we
shall suppress the subscript / in the notation of the b-supertrace. Needless to say, in
the ungraded case we can similarly define the b-trace. The b-trace does not vanish
on commutators; however, there is an explicit formula due to Melrose, see [49], for
computing the defect. The formula involves the indicial families of the two operators:

A.28 Proposition. For any K;K 0 belonging to ‰"1;"
b;A one has

bSTRŒK;K 0# D
p

"1
2%

Z

R
STR

' @j
@"
I.K;"/ B I.K 0;"/

(
d": (A.29)

If we replaceK by a differential operator in Diff#
b;A andK 0 by the composition ofK 0

with an element of the calculus with bounds‰#;"
b;A then the same commutator formula

is valid.

A.30 Lemma. The following formula is clear from the definitionW

bSTR.e"tD2
0 / D bSTRW .e

"t.DLCCW /2
/C ŒI"#Œ0$ " ŒIC#Œ0$ 2 Aab:

A.31 Lemma. For ˛ sufficiently large, D˛ is invertible in the MF b-calculus with
bounds, and therefore

bSTR.e"tD2
˛ /

t!1"""! 0:

Proof. Directly from the b-Mishchenko–Fomenko decomposition theorem we prove
the invertibility of D˛ , ˛ large, exactly as in the closed case, see [40], Section VI.

!

A.32 Lemma.

bSTR.e"tD2
˛ / " bSTR.e"tD2

0 / D F.˛; t/ .D 0/;

where for each fixed ˛ and t , F.˛; t/ D 0 in Aab.

Proof. Use Duhamel’s formula to compute the derivative of bSTR.e"tD2
˛ / with re-

spect to ˛. The usual calculations show that this is the b-supertrace of a supercom-
mutator. Using A.29 we see that this is an explicit term F.˛; t/, localized on the
boundary. As explained in [33], formula (14.16), one can show that F.˛; t/ D 0 in
Aab; this is a consequence of the particular structure of the two projections onto I˙,
namely, that they are residual. !
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A.33 Corollary.

lim
t!1 bSTRW .e

"t.DLCCW /2
/ D ŒIC#Œ0$ " ŒI"#Œ0$ ! Indb;Œ0$.DL;C/;

where part of the assertion is that the limit exists.

A.2.2. The integral operator b-index. As in the closed case, we wish to connect
the index Indb;Œ0$.DL;C/ 2 Aab defined using the index class and the algebraic trace
tralg W K0.A/ ! Aab to the integral-kernel-trace, TR, of the projection operators given
by the b-Mishchenko–Fomenko decomposition.

A.34 Definition. We set PC ´ …IC , P" ´ …I! . We define a second smoothing
perturbation of .DL C CW /

C by

BC
˛ ´ .DC

L C CC
W / " ˛P".DC

L C CC/PC;

for ˛ 2 R; define B"
˛ as the (formal) adjoint of BC

˛ .

A.35 Remark. Observe that

B˛ D
"
0 B"

˛

BC
˛ 0

#

is a residual perturbation of DL C CW in the b-calculus. We shall also use pr ´
orthogonal projection onto imP #

" .

A.36 Lemma. STR.e"tB2
˛ / is independent of ˛.

Proof. The result follows from Duhamel’s formula, the formula for the b-supertrace
of a commutator and the fact that the perturbation involved in the definition of B˛ is
residual. !

Proceeding exactly as in the closed case one proves the analog of lemma A.11 and,
in particular, that pr is a residual operator; the analog of lemma A.12 is established
using the semi-ideal property of the residual operators (see [49], formula (5.23) and
Proposition 5.38). Then, as in the closed case,

bSTR.e"tB2
1 /

t!1"""! bTR.PC/ " bTR.pr/ D TR.PC/ " TR.pr/ 2 Aab;

with the last equality following once again from the fact that PC and pr are residual.
Finally, from the trace property we get TR.pr/ D TR.P"/, exactly as in the closed
case. Using Lemma A.36 we finally get
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A.37 Corollary. The Aab-valued b-index Indb;Œ0$.DL;C/, i.e., the image under the
induced map tralg W K0.A/ ! Aab of the index class Indb.DL;C/ can be calculated
as Z

M

tralg PC.x; x/ "
Z

M

tralg P".x; x/ 2 Aab;

where PC and P" are the projections onto IC and I" as given by the b-Mishchenko–
Fomenko decomposition.

Proof. Both expressions are limits for t ! 1 of bSTR.e"t.DLCCW /2
/ by Lemma

A.36 and Corollary A.33. !

A.2.3. Local expansion

A.38 Lemma. The local supertrace stralg.e"t.DLCCW /2
.x; x// volb.x/ has a limit

for t ! 0 which is exactly the differential form

.x 7! AS.D/.x/ ^ ch.E/.x/ ^ ch L.x/Œdim w$/ 2 +dim W .W;Aab/;

where the Chern forms are defined as usual using Chern–Weyl theory and the curvature
of the connections.

Proof. The formula holds for str.e"tD2
L.x; x// volb.x/, with proof employing the

rescaled b-heat calculus. See [49], Chapter VIII. For the perturbed operator we
simply observe that

e"t.DLCCW /2 D e"tD2
L C tC1.Œ0;1/; ‰"1

b;A /;

see [50], Proposition 8. !

A.2.4. The index formula. The index formula, as stated in Subsection 2.2, follows
from the large and short time limits for bSTR.e"t.DLCCW /2

/ together with the com-
mutator formula A.28, with details as in [50], [34]:

A.39 Proposition.

lim
t!1 bSTR.e"t.DLCCW /2

/ " lim
t!0

bSTR.e"t.DLCCW /2
/

D
Z 1

0

d

bSTR
.e"t.DLCCW /2

/ D "1
2
$Œ0$.DM;L C C/ 2 Aab:

Notice that the derivative with respect to t of bSTR.e"t.DLCCW /2
/, as given by

the commutator formula, is not precisely the eta integrand

"1
2

1p
%
t"1=2 TR..DM;L C C/e"t.DM;LCC/2

/:
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However, as explained in [50], its integral from 0 to C1 is indeed equal to

"
Z 1

0

1

2

1p
%
t"1=2 TR..DM;LCC/e"t.DM;LCC/2

/ dt ! "1
2
$Œ0$.DM;LCC/ 2 Aab:

The Aab-valued APS index theorem, as stated in 2.24, now follows immediately from
the above results.

B. Graded Hermitian complexes and the signature operator

In this appendix we shall make precise our conventions for the signature operator.
We follow [22, Section 3.1] and also [32], giving the general definition of graded
regular n-dimensional Hermitian complex and its associated signature operator. The
only difference between our conventions and those of [22] is that we deal with left
modules, whereas [22] deals with right modules. The following material is taken
directly from [32].

Let A be a C*-algebra with unit.

B.1 Definition. A graded regular n-dimensional Hermitian complex consists of the
following data:

! a Z-graded cochain complex .E#; d / of finitely-generated projective left A-
modules,

! a nondegenerate quadratic form Q W E# # En"# ! A, and
! an operator , 2 HomA.E

#;En"#/ such thatQ.bx; y/ D bQ.x; y/,Q.x; y/# D
Q.y; x/, Q.dx; y/CQ.x; dy/ D 0, ,2 D I , and hx; yi ´ Q.x; ,y/ defines
a Hermitian metric on E .

Let M be a closed oriented n-dimensional Riemannian manifold. Let V be a flat
A-vector bundle on M . We assume that the fibers of V have A-valued Hermitian
inner products which are compatible with the flat structure.

Let +#.M I V/ denote the vector space of smooth differential forms with coeffi-
cients in V . If n D dim.M/ > 0 then +#.M I V/ is not finitely-generated over A,
but we wish to show that it still has all of the formal properties of a graded regular
n-dimensional Hermitian complex. If ˛ 2 +#.M I V/ is homogeneous, denote its de-
gree by j˛j. In what follows, ˛ and ˇ will sometimes implicitly denote homogeneous
elements of+#.M I V/. Givenm 2 M and ."1 ˝ e1/; ."2 ˝ e2/ 2 ƒ#.T #

mM/˝Vm,
we define ."1 ˝ e1/ ^ ."2 ˝ e2/

# 2 ƒ#.T #
mM/˝ A by

."1 ˝ e1/ ^ ."2 ˝ e2/
# D ."1 ^ x"2/˝ he1; e2i:

Extending by linearity (and antilinearity), given !1; !2 2 ƒ#.T #
mM/˝ Vm, we can

define !1 ^ !#
2 2 ƒ#.T #

mM/˝ A.
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Define an A-valued quadratic form Q on +#.M I V/ by

Q.˛; ˇ/ D i"j˛j.n"j˛j/
Z

M

˛.m/ ^ ˇ.m/#:

It satisfies Q.ˇ; ˛/ D Q.˛; ˇ/#. Using the Hodge duality operator &, define
, W +p.M I V/ ! +n"p.M I V/ by

,.˛/ D i"j˛j.n"j˛j/ & ˛:

Then ,2 D 1, and the inner product h $; $ i on +#.M I V/ is given by h˛; ˇi D
Q.˛; ,ˇ/. Let dV be the de Rham differential with values in the flat bundle V ;
define d W +#.M I V/ ! +#C1.M I V/ by

d˛ D i j˛jdV˛: (B.2)

It satisfies d2 D 0. Its dual d ) with respect to Q, i.e., the operator d ) such that
Q.˛; dˇ/ D Q.d )˛; ˇ/, is given by d ) D "d . The formal adjoint of d with respect
to h $; $ i is d# D ,d ), D ",d, .

B.3 Definition. If n is even, the signature operator is

D sign ´ d C d# D d " ,d,: (B.4)

It is formally self-adjoint and anticommutes with the Z2-grading operator , . If we
denote by +˙.M;V/ the ˙1-eigenspaces of , then

D sign D
"

0 D sign
"

D
sign
C 0

#
:

The index class of the signature operator in K0.A/ is, by definition, the index class
of the elliptic operator D

sign
C . If n is odd, the signature operator is

D sign D "i.d, C ,d/: (B.5)

It is formally self-adjoint and defines an index class in K1.A/.

Now suppose that M is a compact oriented manifold of dimension n D 2m with
boundary @M . We fix a non-negative boundary defining function x 2 C1.M/ for
@M and a Riemannian metric on M which is isometrically a product in an (open)
collar neighborhood U ! .0; 2/x # @M of @M . The signature operator D sign is a
well-defined differential operator; it is associated to the graded regular n-dimensional
Hermitian complex defined by+#

c .int.M/I V/ and the Riemannian metric onM . Let
V0 denote the pullback of V from M to @M ; there is a natural isomorphism

V jU Š .0; 2/ # V0:
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Let Q@M , ,@M , d@M and D sign.@M/ denote the expressions defined above on
+#.@M I V1

0 /. One can decomposeQ, , , d and D sign, when restricted to compactly-
supported forms on .0; 2/ # @M , in terms of Q@M , ,@M , D@M and D sign.@M/. This
computation is given in great detail in [32]; one proves in particular that with the
definitions given above the operator D sign.@M/ is the boundary operator of D

sign
C in

the sense of Atiyah–Patodi–Singer [APS, (3.1)].

B.6 Remark. Let .X; g/ be closed oriented and of dimension 2m " 1. Assume that
V D X # C is the trivial complex line bundle. We wish to compare the eta-invariant
of the signature operator defined with our sign-conventions, denoted Dsign, and the
eta-invariant of the operator B appearing in the work of Atiyah–Patodi–Singer, see
[3]. In order to simplify the notation we set D ´ Dsign.

Recall thatB( D .
p

"1/m."1/pC1."&d "d&/( with " D 1 if ( 2 +2p.X/ and
" D "1 if ( 2 +2p"1.X/. The operatorD is given instead byD( D ."1/m..

p
"1&

d " d&//( if ( 2 +2p.X/ andD( D "& d( "
p

"1d & ( if ( 2 +2p"1.X/. Each
operator preserves the parity of the form-degree. Moreover, both commute with the
following self-adjoint odd involution: „ ´ $‚ with‚ D ."1/p& on both+2p and
+2p"1 and $ D 1 if m D 2k; $ D

p
"1 if m D 2k " 1. Thus B D Beven ˚ Bodd,

D D Deven ˚ Dodd, with Beven D .„/"1Bodd„ and similarly for D.9 The Hodge
theorem implies the following orthogonal decomposition of the space of differential
forms on X , where H stands for the space of harmonic forms:

+# D +0 ˚+1 ˚ $ $ $ ˚ d+m"2

˚Hm"1 ˚ d#+m ˚ d+m"1 ˚Hm

˚ d#+mC1 ˚ $ $ $ ˚+2m"1:

Consider now the following two subspaces of +#:

V D Hm"1 ˚ d#+m ˚ d+m"1 ˚Hm;

W D +0 ˚+1 ˚ $ $ $ ˚ d+m"2 ˚ d#+mC1 ˚ $ $ $ ˚+2m"1:

Both operators B and D are block diagonal with respect to the orthogonal decom-
position +# D V ˚ W ; we denote their restrictions by DV ; BV and DW ; BW .
Notice that both V and W are invariant under the action of „ so that, as above,
BV D Beven

V ˚Bodd
V , BW D Beven

W ˚Bodd
W and similarly forDV andDW . It is easy to

check from the explicit expression given above that Beven
V D "Deven

V . We will show
that

$.BW / D 0 D $.DW / (B.7)

which implies immediately that

$.B/ D "$.D/: (B.8)
9Notice that there is a sign mistake in [36]: the ‚ given there in Section 1 must be replaced with the

„ given here.
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In order to establish (B.7) we argue as follows. Define

+< D +0 ˚+1 ˚ $ $ $ ˚+m"2 ˚ d+m"2;

+> D d#+mC1 ˚+mC1 ˚ $ $ $ ˚+2m"1

so that W D +< ˚+>. There is a natural involution ˛ on W defined as follows:

˛ D id on +<; ˛ D " id on +>:

It is immediate from the structure of D and B that

DW B ˛ C ˛ BDW D 0; BW B ˛ C ˛ B BW D 0:

In other words ˛ gives a grading to W , W C D +<, W " D +> and both DW and
BW are odd with respect to such a grading; thus $.BW / D 0 D $.DW / as required.
Conclusion: the odd-signature operator considered here and the odd signature operator
considered in the work of Atiyah–Patodi–Singer are different. However, their eta-
invariants are equal up to a sign.

C. Pseudodifferential operators and morphisms of C*-algebras

Let A and B be unital C*-algebras. We assume that there exists a morphism of unital
C*-algebras " W A ! B . Let EA ! M be a bundle of finitely generated projective
Hilbert A-modules, with fibers isomorphic to a fixed finitely generated projective
Hilbert A-module V . In particular, there exists N 2 N and W , a Hilbert A-module,
such that V ˚ W D AN as Hilbert A-modules; moreover V is the image of a self-
adjoint projectionp 2 M.N#N;A/,p D .p.ij //, i; j D 1; : : : ; N . The morphism"
induces in a natural way a morphism of matrix algebrasM.N#N;A/ ! M.N#N;B/
that will be still denoted by ". If we define p" ´ .p".ij //with p".ij / ´ ".p.ij //,
briefly p" D " B p, then p" is still a self-adjoint projection in M.N # N;B/ so
that ".V / ´ im p" is a finitely generated projective Hilbert B-module. Applying
this reasoning to a more global situation, we see that " induces a bundle of finitely
generated projective Hilbert B-modules, E"B , with fibers diffeomorphic to ".V /: in
fact, if EA is defined by p 2 C1.M;MN (N .A// with p D p# D p2, then E"B is
simply defined by p" ´ " B p 2 C1.M;MN (N .B//. Alternatively, if fU˛g is a
trivializing covering for EA ! M , with transition function gA

˛;ˇ WU˛ \Uˇ ! IsoA.V /

then E"B ! M is defined by gB
˛;ˇ ´ " B gA

˛;ˇ W U˛ \ Uˇ ! IsoB.".V //.
If EA ! M is endowed with a connection rA, then EB ! M inherits in a

natural way a connection rB;" defined as follows. If rA is equal to p B d B p then
rB;" is simply equal to p" B d B p"; if, on the other hand, rA is arbitrary, then
rA D p B d B p C !, with ! 2 C1.M;EndA.EA// and we then define

rB;" D p" B d B p" C !"
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with !" 2 C1.M;EndB.E
"
B// the 1-form induced by ! and ". Alternatively, if rA

is defined by a collection of local 1-forms f!˛g associated to the trivializing cover
fU˛g, with

!˛ 2 +1.U˛;EndA.V //; !ˇ D g"1
˛;ˇdg˛;ˇ C g"1

˛;ˇ!ˇg˛;ˇ

then we define the connection rB;" through the local 1-forms f!"˛ g where, once again,
!"˛ 2 +1.U;EndB.".V /// is defined in a natural way by !˛ and the extension of "
to a morphism M.N #N;A/ ! M.N #N;B/.

Consider now the graded vector space of pseudodifferential Hilbert A-module
bundle operators ‰#

A.M;EA;FA/, with FA a second bundle of finitely generated pro-
jective Hilbert A-modules. This space, defined for the first time in [53], is nothing
but

‰#.M/˝C 1.M(M/ C
1.M #M;HOMA.FA;EA// (C.1)

where we are considering the bundle HOMA.FA;EA// "! M#M with fiber at .x; y/
equal to HomA..EA/y ; .FA/x/. Here we are using theC1.M #M/-module structure
of both‰#.M/ andC1.M#M;HOMA.FA;EA//. The morphism" induces in a nat-
ural way a morphism of graded vector spaces"\W‰#

A.M;EA;FA/ ! ‰#
B.M;E

"
B ;F

"
B /

which is simply induced by the natural map

C1.M #M;HOMA.FA;EA// "! C1.M #M;HOMB.F
"

B ;E
"
B//:

If FA D EA then "\ is in fact a morphism of graded algebras; we shall often denote
‰#

A.M;EA;EA/ by ‰#
A.M;EA/ or, more simply, by ‰#

A. Thus the following simple
conclusion is true.

C.2 Corollary. If Q 2 ‰#
A is invertible as an element in‰#

A, then "\.Q/ is invertible
in ‰#

B .

As an important example we shall consider twisted Dirac operators. Thus EA D
E˝ VA withE a vector bundle overM and VA a line bundle with typical fiberA and
endowed with a flat connection rA. We can then choose trivializations of VA with
locally constant transition functions fa˛;ˇ 2 U1.A/ % Ag. Let D 2 Diff1.M;E/ be
a Dirac-type operator acting on the sections ofE and considerDVA

2 Diff1
A.M;EA/,

the twisted Dirac operator defined by the connection rA. Then "\.DVA
/ D DV$

B

with V"B the flat bundle induced by ". Notice that the transition functions of the flat
bundle V"B will only involve the image ".A/.

Let now . 2 C1
c .R;R/. The operator DVA

defines a self-adjoint unbounded
regular operator on the (full) Hilbert A-module L2

A.M;EA/. It is well known that
there is a continuous functional calculus for regular operators on (full) Hilbert A-
modules; in particular ..DVA

/ is a well-defined bounded A-linear endomorphism on
L2

A.M;EA/. As observed in [34], following the arguments in [63, p. 300], one can
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show that ..DVA
/ is in fact a smoothing operator: ..DVA

/ 2 ‰"1
A .M;EA/. Since

..DVA
/ is defined through a functional integral, we see immediately that

"\...DVA
/ D .."\.DVA

// D ..DV$
B
/: (C.3)

The same is true for other functions and other operators for the same reason. E.g. if
C is a smoothing operator, then

"]..DVA
C C/ exp.t.DVA

C C/2// D .DV$
B

C "]C/ exp.t.D
V

]
B

C "]C/
2/: (C.4)

C.5 Remark. Let ( 2 C1
c .R; Œ0; 1#/ be any real function equal to 1 on Œ""; "# and

equal to 0 on ."1;"2"# [ Œ2";1/. Let CA 2 ‰"1
A and let C"B ´ "\.CA/. Then

the following implication holds:

if .id "(.DVA
// B CA D 0 then .id "(.DV$

B
// B C"B D 0: (C.6)

Notice that if .id "(.DVA
// B CA D 0 then, taking adjoints, CA B .id "(.DVA

// D 0.

Let nowK 2 ‰"1
A .M;EA/ be a smoothing operator, and let us consider TR.K/ 2

Aab. As an immediate consequence of the definitions,

".TR.K// D TR."\K/ 2 Bab: (C.7)

If now C"B D "\.CA/, then

C.8 Lemma.

".$Œ0$.DVA
C CA// D $Œ0$.DV$

B
C C"B// in Bab (C.9)

Proof. This simply follows from the definition of $Œ0$ as a convergent integral. Then,
using for the second equality (C.7),

"$Œ0$.DVA
C CA/ D 1p

%
"

Z 1

0

TR..DVA
C CA/ exp.t.DVA

C CA/
2//

dtp
t

D 1p
%

Z 1

0

TR."]..DVA
C CA/ exp.t.DVA

C CA/
2///

dtp
t

D 1p
%

Z 1

0

TR..DV$
B

C C"B/ exp.t.DV$
B

C C"B/
2//

dtp
t

D $Œ0$.DV$
B

C C"B/: !
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D. Twists with finite dimensional representations

As a particular case of the principles explained in the previous subsection, we
consider a discrete group ! and a finite dimensional unitary representation
" W ! ! U.d/ % M.d # d;C/ . This induces a morphism of C*-algebras (we
also call it ") " W C #! ! M.d # d;C/. Here C #! is the maximal C*-algebra of ! ,
and the extension of " follows from the universal property of C #! .

Given, as in Section 3.1, a classifying map u W M ! B! defined on a closed
manifold M , we obtain the corresponding Mishchenko–Fomenko bundle L and the
twisted Dirac operator DL; thus in this case

A D C #!; VA ! L ´ zM #! C #!; B D M.d # d;C/:

Let V" be the flat vector bundle zM #" Cd and let D" be the Dirac operator twisted
byV". Then it is easy to see that the bundle V"B introduced in the previous subsection is
equal to the direct sum ofd copies ofV" and thatDV$

B
is the diagonal operatorD"˝Id ,

with Id the d # d -identity matrix. If C 2 ‰"1
C #! is a trivializing perturbation, then

"\C D C"˝Id , withC" 2 ‰"1 andD"CC" invertible. Let tr W M.d #d;C/ ! C
be the usual trace and consider trd ´ d"1 tr; let tr" ´ trd B" W C #!ab ! C. Then,
by Lemma C.8,

tr".$Œ0$.DL C C/ D $.D" C C"/: (D.1)

Let us go back to closed manifolds and let X D M t ."M 0/ with M and M 0

homotopy equivalent. Let us fix a unitary representation " W ! ! U.d/ and let
D

sign
X;" be signature operator twisted by the flat vector bundle associated to ". Let

0 < " such that spec.Dsign
";X / \ .""; "/ * f0g. Let ( 2 C1

c .R; Œ0; 1#/ be a real

function equal to 1 on Œ""; "# and equal to 0 on ."1;"2"# [ Œ2";1/. Let D
sign
X

be the Mishchenko–Fomenko signature operator on X . We know from Section 10
that in this situation we can construct a trivializing perturbation C of D

sign
X such that

.id "(.D sign
X // B C D 0. Thus, using (C.6), we see that C" is a smoothing operator

such that .id "(.Dsign
";X // B C" D 0; by Remark 10.16 we can now conclude as in

Section 10.1, but without making use of the limiting procedure of Section 10.2, that
$.D"/ D .$.D"CC"/C$.D""C"//=2. Using Remark 10.8 we can even conclude
that the stable and unstable APS-rho invariants coincide, without making use of the
limiting procedure of Section 10.2.

E. Classical L2-invariants versus N # -invariants

E.1. Classical L2-invariants. In Section 1 we introduced (delocalized) L2-invari-
ants by working directly on a normal covering zM of a closed manifoldM . However,
all the main arguments of this paper are given in terms of A=ŒA;A#-valued invariants
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for Dirac operators twisted by Hilbert A-module bundles. We briefly called these
invariants degree zero invariants. In this appendix, we will explain how the classical
L2-invariants can be derived from these degree zero invariants, where the C*-algebra
A in question is N ! , and the bundle to twist with is the Mishchenko–Fomenko
line bundle N D zM #! N ! . This procedure is well known to the experts. In
this appendix, we will give a detailed description of it, since we are not aware of a
place in the literature where this would be covered, in particular when dealing with
eta-invariants (the focus of interest here).

E.2. Twisting with l2# . The passage from the covering situation to the twist with
the N ! bundle is achieved by using an intermediate step: instead of twisting with
N ´ zM #! N ! we twist with H ´ zM #! l2! .

The typical fiber of this bundle is isomorphic to l2! , which we consider as an
N !-Hilbert space (in the notation of [60]).

We start with giving the basic definitions, repeated from [60, Section 8].

E.1 Definition. A finitely generated projective N !-Hilbert spaceV is a Hilbert space
together with a right action of N ! such that V embeds isometrically preserving the
N !-module structure as a direct summand into l2.!/n for some n. A (general)
N !-Hilbert space V satisfies the same conditions a finitely generated projective
N !-Hilbert space does, with the exception that l2.!/n is replaced byH ˝ l2.!/ for
some Hilbert spaceH with trivial N !-action (the tensor product has to be completed).

E.2 Definition. An N !-Hilbert space morphism is a bounded N !-linear map be-
tween two N !-Hilbert spaces. If it is an isometry for the Hilbert space structure, it
is called N !-Hilbert space isometry. An N !-Hilbert space bundle H on a space X
is a locally trivial bundle of N !-Hilbert spaces, the transition functions being N !-
Hilbert space isometries. A smooth structure is given by a trivializing atlas where all
the transition functions are smooth.

If the fibers are finitely generated projective N !-Hilbert space, the bundle is called
a finitely generated projective N !-Hilbert space bundle.

E.3 Lemma. The L2-sections of an N !-Hilbert space bundle W on a Riemannian
manifold X form themselves an N !-Hilbert space.

Proof. Compare [60, Lemma 8.10] !

E.4 Example. Essentially the only example we will be dealing with is the N !-Hilbert
space l2.!/. This is obviously finitely generated projective. Since the left regular
representation acts by N !-Hilbert space isometries, H ´ zM #! l2.!/ is a finitely
generated projective N !-Hilbert space bundle on M .

The trivial connection on zM # l2.!/ descends to a canonical flat connection on
zM #! l2.!/.
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E.5 Remark. Note that N ! is canonically a subset of l2.!/ (the inclusion given by
b 7! 1 $ b), and l2.!/ is the completion of N ! with respect to the inner product
hb1; b2i ´ tr!.b#

1b2/. In the same way, zM #! l2.!/ is the fiberwise completion of
zM #! N ! . For all of this, compare [60, Section 8.6]

Given a Dirac type operator D W C1.M;E/ ! C1.M;E/ on M , we can now
also form the twisted Dirac operator DH as usual.

If M is closed, this is an elliptic differential operator of order 1 on N !-Hilbert
space bundles in the sense of [8]. In any case, it extends to an unbounded operator on
L2.E ˝ H /. The main point, as observed in [60, Section 8], is now the following:

E.6 Proposition. The operator DH maps the sections of the subbundle E ˝ N of
E˝H to sections ofE˝N , and the restriction is exactly the operatorDN . This holds
for smooth sections and all kinds of completions. Moreover, all the functions of the
operatorDH we are considering .likeDH exp."tD2

H // restrict to the corresponding
functions of DN .

Vice versa, we getDH by applying the procedure of completion of [60, Section 8]
to DN .

The above properties together imply that there is a canonical bijection of algebras

f .DN / j  is a Schwartz functiong and f .DH / j  is a Schwartz functiong:
From now on, making use of this identification, we will writeDH andDN interchange-
ably. Put it differently, we now have defined the invariants $( .DH / ´ $( .DN /,
$(hgi.DH / ´ $(hgi.DN /.

We are now going to explain why it is equivalent to consider zD acting on zE ! zM
andDH , H D zM #! l2.!/, acting onE˝H ! M . In fact, there is a dictionary that
allows to pass back and forth between objects on the covering and twisted objects.

For the sake of completeness we indicate the constructions. Other accounts (where
certain aspects are explained in more detail) can be found e.g. in [40, Section III],
[58, Section 3.1] and [59, Example 3.39].

The translation is summarized in the following table.

no. zM $ ˝ H

1 L2. zM; zE/ L2.M;E ˝ H /

2 fs 2 C1. zM; zE/ j P#2! js.)x/j2 < 1 for all x 2 zM g C1.M;E ˝ H /

3 zD DH .D DN /

4 zD exp."t zD2/ DH exp."tD2
H /

5 Trhgi ,hgi B TR

6 Tr.2/ ,! B TR

7 $hgi. zD/ $(hgi.DH /
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Recall that for an operator zA given by the smooth integral kernel Qk, by definition

Trhgi. zA/ D
X

#2Œg$

Z

zM=!

trx k.x; )x/ dx; (E.7)

and in particular Tr.2/. zA/ D
R

zM=! trx
Qk.x; x/ dx.

We give some explanation how to translate between the two sides.
(1) A section s of zE corresponds to the section Os of E ˝ H with Os.x/ DP
#2! s.) Qx/ ˝ Œ Qx; )#, where Qx 2 zM is an arbitrary lift of x 2 M along the cov-

ering projection. We identify the fibers Ex and QE# Qx . Moreover, by definition
Hx D ! Qx #! l2.!/. This construction is well defined by the very definition of
the twisted bundle H , with fiber identified with l2.!/ using the chosen lift Qx.

(2) The above identification defines an isometry of the spaces of L2-sections.
Moreover, it is compatible with the !-actions. L2. zM; zE/ is well known to be an
N !-Hilbert space, and the identification is an identification of N !-Hilbert spaces.
In addition, it preserves smoothness and continuity, where the condition as given in
the table is used to really get a section of E ˝ H .

(3) The operators zD andDH are conjugated to each other under the isomorphism
of the section spaces. This follows from their local definition as follows. For a
small connected neighborhood U of x 2 M , we can choose a lift zU , a connected
neighborhood of a lift Qx, such that there is a unique section U ! zU of the restriction
of the covering zM ! M to U , and then y 7! Œ Qy; )# is by definition of the connection
a flat section of H jU for each ) 2 ! . Consequently, using the identification of (2)
and this flatness, we see that zD.Qs/ corresponds on the set U to

X

#2!
zD Qs.) Qx/˝ Œ Qx; )# D DH .

X

#2!
Qs.) Qx/˝ Œ Qx; )#/;

i.e. to DH applied to the section corresponding to Qs.
(4) Since the self-adjoint unbounded operators zD andDH are unitarily equivalent,

the same is true for all bounded measurable functions of them, using functional cal-
culus. In particular, this is the case for zD exp."t zD2/, but also for any other bounded
measurable function ( W R ! R.

(5) Choose a subset U % M such thatM nU has measure zero and such that the
restriction of the covering zM ! M to U is trivial. If we choose an appropriate lift
of U then zM jU Š U # ! . This induces a trivialization H jU Š U # l2.!/. Using
this, we identify L2.U;E ˝ H jU / D L2.U;EjU /˝ l2.!/.

On the other hand, using the corresponding trivialization of the covering zM jU Š
U #! we get the identificationL2. zU ; zEjU/ Š L2.U;EjU/˝ l2.!/, and our unitary
isomorphism defined above becomes the identity under these identifications.

So, in this picture, also the operators zD and DH are identical. It remains to
show that the two ways to define the trace are equal. We take traces of operators like
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S D zDe"t zD2
, which have integral kernels Qk. Qx; Qy/ on zM # zM . Note that it is well

known that these operators are of !-trace class, by the results of [1]. They are also
well known to be smoothing operators in the N !-Mishchenko–Fomenko calculus,
and therefore TR.S/ is defined.

Using the identification zU D U # ! , Qk.u; g; v; h/ has the property that for a
section s of EjU and u 2 U , g; ) 2 ! ,

S.s.$/˝ )/.u; g/ D
Z

U

Qk.u; g; x; )/s.x/ dx:

On the other hand, if we look at the integral kernel kH on M # M of S ,
which we now consider as being obtained from DH , using again the identification
L2.U;EjU ˝ H / D L2.U;EjU /˝ l2.!/, we get for a section s of EjU :

S.s. $ /˝ )/.u/ D
Z

U

kH .u; x/.s.u/˝ )/ dx

D
X

g2!

Z

U

kH .u; x/.); g/.s.u/˝ )/˝ g dx:

Here we write the homomorphismkH .u; x/ fromEx˝l2.!/ toEu˝l2.!/ as a matrix
.kH .u; x/.); g//#;g2! of homomorphisms from Ex to Eu, using the orthonormal
basis ! of l2.!/.

Since these are two representations of the same operator S , it follows that

kH .u; x/.); g/ D Qk.u; ); x; g/: (E.8)

Now, by definition of Trhgi, we get

Trhgi.S/ D
X

h2hgi

Z

U

trx
Qk.x; 1; x; h/ dx: (E.9)

On the other hand, by the definition of ,hgi in terms of a matrix decomposition of
elements of N ! % B.l2!/, using the basis ! of l2.!/,

,hgi TR.S/ D
Z

U

,hgi tralg
x .kH .x; x// dx D

Z

U

X

h2hgi
trx.kH .x; x/.1; h// dx:

(E.10)
From equation (E.8), the right-hand sides of equations (E.9) and (E.10) are equal.
Consequently,

Trhgi.S/ D ,hgi B TR.S/;

as claimed.
(6) Since Tr.2/ D Trh1i, this is a special case of (5).
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(7) This is a direct consequence of (4) and of (5), using the definition of the
eta-invariants.

For more details, in particular with respect to the delocalized trace, compare also
[41, Section 4] and [40, Section 3]

We want to single out the relevant proposition which is used in the body of this
paper, using the results of the above table and of Section :

E.11 Proposition. LetM be a compact manifold with !-covering zM , andD a Dirac
type operator onM . Let hgi be a finite conjugacy class in! . If zD is the lift ofD to zM ,
andDN is the twist ofD with the Mishchenko–Fomenko line bundle N D zM #!N ! ,
then

$hgi. zD/ D $(hgi.DN /:

In particular, for g D e we compute the classical L2-eta invariant

$.2/. zD/ D $(# .DN /:

E.12 Remark. There is an alternative route to Proposition E.11, due to John Lott,
and based on particular properties of the heat kernel. We briefly explain the main
ideas, referring to [40] for the details.

There is a sequence of inclusions of algebras

B!
! % B1

! % C #
r ! % N !; (E.13)

where B!
! is the algebra of functions on! which are exponentially rapidly decreasing

and where B1
! is the Connes–Moscovici algebra. A generalized Dirac operator can

be twisted with the corresponding flat bundles

V! ´ zM #!B!
! ; V1 ´ zM #!B1

! ; V ´ zM #!C #
r !; N ´ zM #!N ! (E.14)

producing D! , D1, D ´ DV , DN . There are obvious compatibility conditions
for these operators, coming from the inclusions of vector spaces

C1.M;E ˝ V!/ % C1.M;E ˝ V1/ % C1.M;E ˝ V/ % C1.M;E ˝ N /:

We also have natural inclusions for the corresponding Mishchenko–Fomenko calculi

‰#
B!

#

j!"! ‰#
B1

#

j1""! ‰#
C #

r !

jr"! ‰#
N! :

For the smoothing operators we have natural traces and a commutative diagram

‰"1
B!

#

j! !!

TR!

""

‰"1
B1

#

j1 !!

TR1
""

‰"1
C #

r !

jr !!

TR
""

‰"1
N!

TRN #

""
.B!

! /ab !! .B1
! /ab !! .C #

r !/ab !! .N !/ab:
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Using Proposition 6 and Proposition 7 in [40] we have that

,hgi TR!.D
!e"t.D!/2

/ D Trhgi. zDe"t. zD/2
/:

Since from the commutative diagram and the definition of ,hgi we clearly have

,hgi TR!.D
!e"t.D!/2

/ D ,hgi TRN!.DN e
"tD2

N /;

we see that Proposition E.11 is proved once again. Notice that we have also established
that

,hgi TR1.D1e"t.D1/2
/ D Trhgi. zDe"t. zD/2

/:
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