Geometria. Corso di Laurea in Fisica. Prof. P. Piazza. a.a. 2023-24.

Magiche notazioni

Informazioni primarie.

Siano V e W due spazi vettoriali e sia $T:V\to W$ un'applicazione lineare. Fissiamo una base $\mathcal B$ per V ed una base $\mathcal E$ per W. Scriviamo per esteso $\mathcal B=\{\underline b_1,\ldots,\underline b_n\}$ e $\mathcal E=\{\underline e_1,\ldots,\underline e_m\}$. Denotiamo la matrice associata a T con questa scelta di basi,

$$\mathcal{B} = \text{base di partenza}; \quad \mathcal{E} = \text{base di arrivo}$$

tramite il simbolo

$$M_{\mathcal{E},\mathcal{B}}(T)$$
.

Memorizzate a questo punto la posizione delle due basi: la base a sinistra in $M_{\mathcal{E},\mathcal{B}}(T)$ è la base di arrivo e cioè la base dello spazio vettoriale che si trova a destra della notazione $T:V\to W$; la base a destra è la base di partenza e cioè la base dello spazio vettoriale che si trova a sinistra della notazione $T:V\to W$. Detto diversamente, la posizione delle due basi nella notazione $M_{\mathcal{E},\mathcal{B}}(T)$ è opposta a quella che compare in $T:V\to W$. Vedremo fra poco il perché di questa scelta.

Avete visto che $M_{\mathcal{E},\mathcal{B}}(T)$ è la matrice che ha come j-ma colonna le coordinate di $T(\underline{b}_i)$ nella base \mathcal{E} .

Una volta che le basi \mathcal{B} ed \mathcal{E} sono fissate, possiamo riguardare $M_{\mathcal{E},\mathcal{B}}(\)$ come un'applicazione dall'insieme delle applicazioni lineari tra V e W e l'insieme delle matrici $m\times n$:

$$M_{\mathcal{E},\mathcal{B}}(\)\colon \mathcal{L}(V,W)\to M_{\dim W,\dim V}(\mathbb{K})$$

 $T\longrightarrow M_{\mathcal{E},\mathcal{B}}(T)$

Sappiamo che questi due insiemi hanno ognuno un'ulteriore struttura: sono spazi vettoriali. Abbiamo enunciato a lezione che l'applicazione $M_{\mathcal{E},\mathcal{B}}(\): \mathcal{L}(V,W) \to M_{\dim W,\dim V}(\mathbb{K})$ è **lineare** e che è un **isomorfismo di spazi vettoriali.** Abbiamo dato uno sketch della dimostrazione, che trovate data in dettaglio nel libro di testo ¹.

Se \underline{x} sono le coordinate di \underline{v} nella base $\mathcal B$ e se \underline{y} sono le coordinate di $T(\underline{v})$ nella base $\mathcal E$ allora si ha

$$T(\underline{v}) = T(x_1\underline{b}_1 + \dots + x_n\underline{b}_n) = x_1T(\underline{b}_1) + \dots + x_nT(\underline{b}_n)$$

A sinistra, per definizione, c'è il vettore

$$y_1\underline{e}_1 + \cdots y_m\underline{e}_m$$

Poniamo per semplicità di notazione $A := M_{\mathcal{E},\mathcal{B}}(T)$; allora a destra, per definizione di matrice associata a T nelle basi scelte, c'è il vettore

$$x_1(a_{11}\underline{e}_1 + \cdots + a_{m1}\underline{e}_m) + \cdots + \cdots + x_n(a_{1n}\underline{e}_1 + \cdots + a_{mn}\underline{e}_m)$$

e facendo qualche semplice conto otteniamo, a destra,

$$(a_{11}x_1 + \dots + a_{1n}x_n)\underline{e}_1 + \dots + (a_{m1}x_1 + \dots + a_{mn}x_n)\underline{e}_m$$

1

¹Proposizione 8.1

Ma le coordinate sono univocamente determinate, e quindi

$$y_1 = a_{11}x_1 + \dots + a_{1n}x_n$$
, \dots $y_m = a_{m1}x_1 + \dots + a_{mn}x_n$

Quindi, scritto diversamente,

$$\begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{vmatrix} = \begin{vmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{vmatrix}$$

Ma

$$\begin{vmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & \dots & \dots & \dots \\ \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}$$

Concludiamo che si ha $\underline{y} = A \cdot \underline{x}$ dove a destra c'è il prodotto righe per colonne di A con la colonna $n \times 1$ data da \underline{x} . Quindi, riassumendo,

Proposizione. Se \underline{x} sono le coordinate di \underline{v} nella base \mathcal{B} e se \underline{y} sono le coordinate di T(v) nella base \mathcal{E} allora

$$(1) y = M_{\mathcal{E},\mathcal{B}}(T) \cdot \underline{x}.$$

Nel caso particolare in cui V=W, possiamo considerare l'applicazione lineare identità $\mathrm{Id}_V\colon V\to V\colon \mathrm{Id}_V(\underline{v})=\underline{v}.$

Date due basi \mathcal{B} e \mathcal{B}' di V, avremo una matrice $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ che rappresenta l'identità di V rispetto a queste due basi. Osserviamo che, per definizione, la matrice $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ è la matrice che ha come j-ma colonna le coordinate di $\mathrm{Id}_V(\underline{b}'_j)$, e cioè di \underline{b}'_j , nella base \mathcal{B} . Quindi $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ è la matrice che nel testo di Abate-de Fabritiis è denotata B e che è ivi chiamata la matrice del cambiamento di <u>base</u>, dalla base \mathcal{B} alla base \mathcal{B}' .

Osserviamo anche che da (1) abbiamo

(2)
$$\underline{x} = M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)\underline{x}'$$

e quindi $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ trasforma le coordinate nella base \mathcal{B}' nelle coordinate rispetto alla base \mathcal{B} , come già sappiamo. Alcuni testi 2 , sulla base di (2), chiamano $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ la matrice del cambiamento di <u>coordinate</u>, dalla base \mathcal{B}' alla base \mathcal{B} . Le due diciture sono compatibili: la prima si basa sulla relazione fra basi data da

(3)
$$|\underline{b}'_1 \ \underline{b}'_2 \ \dots \ \underline{b}'_n| = |\underline{b}_1 \ \underline{b}_2 \ \dots \ \underline{b}_n| \cdot M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$$

la seconda si basa invece (come già osservato) su (2), che riguarda le coordinate e va nella direzione opposta.

Analogamente,

(4)
$$\underline{x}' = M_{\mathcal{B}', \mathcal{B}}(\mathrm{Id}_V)\underline{x}.$$

e quindi $M_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_V)$ trasforma le coordinate rispetto alla base \mathcal{B} nelle coordinate rispetto a \mathcal{B}' .

²ad esempio, l'ottimo *Geometria 1* di Edoardo Sernesi

Ulteriori informazioni. Gli isomorfismi $M_{\mathcal{E},\mathcal{B}}$ godono di un'importante proprietà rispetto alla composizione:

Proposizione. Se V, W ed U sono tre spazi vettoriali dotati di basi \mathcal{B}, \mathcal{E} e \mathcal{F} rispettivamente, e $T: V \to W$ e $S: W \to U$ sono applicazioni lineari allora

(5)
$$M_{\mathcal{F},\mathcal{B}}(S \circ T) = M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T)$$

dove a destra compare il prodotto righe per colonne.

N.B.: le due basi al centro si "elidono" 3.

La dimostrazione della formula, che abbiamo visto in dettaglio a lezione, si ottiene tramite il metodo dei diagrammi in Abate-de Fabritiis.

Dimostrazione alternativa, senza diagrammi. Siano \underline{z} le coordinate associate alla base \mathcal{F} . Sappiamo che

$$y = M_{\mathcal{E},\mathcal{B}}(T) \cdot \underline{x}, \quad \underline{z} = M_{\mathcal{F},\mathcal{E}}(S) \cdot y.$$

Quindi sostituendo la prima nella seconda, abbiamo:

$$\underline{z} = M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T) \cdot \underline{x}$$
.

D'altra parte, per definizione,

$$\underline{z} = M_{\mathcal{F},\mathcal{B}}(S \circ T) \cdot \underline{x}$$
.

Ne deduciamo che

$$M_{\mathcal{F},\mathcal{B}}(S \circ T) \cdot \underline{x} = M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T) \cdot \underline{x}$$

e questo vale $\forall \underline{x} \in \mathbb{K}^n.$ Ma allora

$$M_{\mathcal{F},\mathcal{B}}(S \circ T) = M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T)$$

dove abbiamo utilizzato il fatto generale, ben noto ⁴, che

$$B \cdot \underline{x} = C \cdot \underline{x} \ \forall \underline{x} \in \mathbb{K}^n$$
 se e solo se $B = C$.

La Proposizione è dimostrata.

Iterando la formula (5), si ottiene la formula per la composizione di un numero arbitrario di applicazioni lineari. Ad esempio se $F: U \to Z$ è un'ulteriore applicazione lineare, e \mathcal{G} è una base di Z, allora

$$M_{\mathcal{G},\mathcal{B}}(F \circ S \circ T) = M_{\mathcal{G},\mathcal{B}}((F \circ (S \circ T))$$

$$= M_{\mathcal{G},\mathcal{F}}(F) \cdot M_{\mathcal{F},\mathcal{B}}(S \circ T)$$

$$= M_{\mathcal{G},\mathcal{F}}(F) \cdot M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T)$$

Notare che continua a valere l'elisione delle basi al centro.

Un'applicazione particolare della formula composizione/prodotto riguarda la matrice associata all'applicazione inversa di un'applicazione invertibile $\varphi\colon V\to W$. Sia $n=\dim V=\dim W$. Abbiamo

$$M_{\mathcal{B},\mathcal{E}}(\varphi^{-1}) \cdot M_{\mathcal{E},\mathcal{B}}(\varphi) = M_{\mathcal{B},\mathcal{B}}(\varphi^{-1} \circ \varphi) = M_{\mathcal{B},\mathcal{B}}(\mathrm{Id}_V) = \mathrm{Id}_n$$

L'ultima identità esprime il fatto che la matrice corrispondente all'applicazione identica $\mathrm{Id}_V \colon V \to V$, rispetto ad una stessa base \mathcal{B} , scelta sia come base di partenza

 $^{^3}$ È per ottenere questa elisione che si scambia la posizione delle basi nella notazione di $M_{\mathcal{E},\mathcal{B}}$.

⁴Proposizione 5.4 in [A-dF]

che di arrivo, è la matrice identità di rango $\dim V$ (segue immediatamente dalla definizione). Analogamente otteniamo

$$M_{\mathcal{E},\mathcal{B}}(\varphi) \cdot M_{\mathcal{B},\mathcal{E}}(\varphi^{-1}) = M_{\mathcal{E},\mathcal{E}}(\varphi \circ \varphi^{-1}) = M_{\mathcal{E},\mathcal{E}}(\mathrm{Id}_W) = \mathrm{Id}_n$$

Otteniamo così la formula

$$M_{\mathcal{B},\mathcal{E}}(\varphi^{-1}) = (M_{\mathcal{E},\mathcal{B}}(\varphi))^{-1}$$

In particolare, per l'applicazione identica $\mathrm{Id}_V:V\to V$, che ha come inversa se stessa, $\mathrm{Id}_V^{-1}=\mathrm{Id}_V$, otteniamo la relazione

(6)
$$M_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_V) = (M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V))^{-1}$$

Scriveremo $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)^{-1}$ per $(M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V))^{-1}$. In parole: la matrice del cambiamento di base, da \mathcal{B}' a \mathcal{B} è l'inversa della matrice del cambio di base da \mathcal{B} a \mathcal{B}' , fatto a noi già noto.

Un corollario immediato di quanto visto è la formula che lega le matrici che rappresentano un endomorfismo $T\colon V\to V$ rispetto a basi diverse \mathcal{B} e \mathcal{B}' (scelte ogni volta sia come basi di partenza che come basi di arrivo). Se indichiamo con A la matrice che rappresenta T nella base \mathcal{B} (scelta quindi come base di partenza e base di arrivo), con A' la matrice che rappresenta T nella base \mathcal{B}' (scelta quindi come base di partenza e base di arrivo) e con B la matrice $M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$ allora

$$A' = B^{-1} \cdot A \cdot B$$
 e quindi $A = B \cdot A \cdot B^{-1}$

Questa è la formula (8.5) del libro di testo, pagina 154.

La dimostrazione di una di queste due (equivalenti) formule a partire dalla formula (5) è particolarmente semplice. Dimostriamo ad esempio la seconda. Iniziamo con l'osservare che si ha:

$$A = M_{\mathcal{B},\mathcal{B}}(T);$$
 $A' = M_{\mathcal{B}',\mathcal{B}'}(T);$ $B = M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V);$ $B^{-1} = M_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_V)$
Dunque,

$$A = M_{\mathcal{B},\mathcal{B}}(T)$$

$$= M_{\mathcal{B},\mathcal{B}}(\mathrm{Id}_{V} \circ T \circ \mathrm{Id}_{V})$$

$$= M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_{V}) \cdot M_{\mathcal{B}',\mathcal{B}'}(T) \cdot M_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_{V})$$

$$= B \cdot A' \cdot B^{-1}$$

che è la formula (8.5) del libro di testo.

Analogamente si dimostra la formula più generale a pagina 153 del libro (formula (8.4)), relativa ad un omomorfismo $T: V \to W$ fra due differenti spazi vettoriali. Fissiamo una base \mathcal{B} in partenza e una base \mathcal{E} in arrivo.

Fissiamo un'altra base \mathcal{B}' in partenza e una base \mathcal{E}' in arrivo.

Vogliamo confrontare

$$M_{\mathcal{E},\mathcal{B}}(T)$$
 e $M_{\mathcal{E}',\mathcal{B}'}(T)$

Dalla formula magica abbiamo

$$M_{\mathcal{E}',\mathcal{B}'}(T) \equiv M_{\mathcal{E}',\mathcal{B}'}(\mathrm{Id}_{W} \circ T \circ \mathrm{Id}_{V})$$

$$= M_{\mathcal{E}',\mathcal{E}}(\mathrm{Id}_{W}) \cdot M_{\mathcal{E},\mathcal{B}}(T) \cdot M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_{V})$$

$$= M_{\mathcal{E},\mathcal{E}'}(\mathrm{Id}_{W})^{-1} \cdot M_{\mathcal{E},\mathcal{B}}(T) \cdot M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_{V})$$

e questa è precisamente la formula (8.4) in Abate-deFabritiis,

$$A' = C^{-1} \cdot A \cdot B,$$

con

$$A' = M_{\mathcal{E}',\mathcal{B}'}(T)$$
, $A = M_{\mathcal{E},\mathcal{B}}(T)$, $C = M_{\mathcal{E},\mathcal{E}'}(\mathrm{Id}_W)$, $B = M_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_V)$.

 ${\bf Conclusione:} \ {\bf invece} \ {\bf di} \ {\bf fare} \ {\bf uso} \ {\bf dei} \ {\bf diagrammi,} \ {\bf possiamo} \ {\bf fare} \ {\bf uso} \ {\bf della} \ {\bf notazione} \ {\bf introdotta} \ {\bf in} \ {\bf queste} \ {\bf note} \ {\bf e} \ {\bf della} \ {\it formula} \ {\it magica}$

$$M_{\mathcal{G},\mathcal{B}}(F \circ S \circ T) = M_{\mathcal{G},\mathcal{F}}(F) \cdot M_{\mathcal{F},\mathcal{E}}(S) \cdot M_{\mathcal{E},\mathcal{B}}(T)$$

La formula magica è particolarmente utile negli esercizi.