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AND A HIGHER ATIYAH-PATODI- SINGER INDEX THEOREM
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Abstract. Let F —^ M —^ M be a Galois covering with boundary. In
this paper we develop a 6-pseudodifferential calculus on the noncompact
manifold M. Our main application is the proof of a higher Atiyah-Patodi-
Singer index formula, for a generalized Dirac operator D on M, under the
assumption that the group P is of polynomial growth with respect to a word
metric and that the Z^-spectrum of the boundary operator DQ has a gap at
zero. Our results extend work of Atiyah-Patodi-Singer, Connes-Moscovici
and Lott.

Resume. Soit P —^ M —^ M un revetement Galoisien a bord. Dans cet
article nous developpons un b-calcul pseudodifferentiel sur M. Ceci nous
permet de prouver un theoreme de Pindice superieur d'Atiyah-Patodi-Singer,
pour un operateur de Dirac D sur M, sous Phypothese que Ie groupe P est
a croissance polynomiale par rapport a une metrique des mots et que zero
est un point isole du spectre L2 de Poperateur de bord Do. Notre resultat
generalise des travaux d5 Atiyah-Patodi-Singer, Connes-Moscovici et Lott.
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0. Introduction.

One of the fundamental tools in the development of index theory for elliptic
operators has been the use of heat-kernel techniques. As this introduction
in meant for a wide audience, we briefly recall the main point of this ap-
proach. Suppose, for simplicity, that M is an even dimensional closed spin
compact manifold with a fixed spin structure. Let S = S~^~ © S~ be the
bundle of spinors and let D be the Dirac operator associated to the given
spin structure. The operator D is formally self-adjoint and odd with respect
to the Z2-grading; thus D± : C°°{M, S^ -^ C°°{M, S^) and D- = (^+)*.
The heat operator of the Dirac laplacian, exp(—^D2), is a smoothing op-
erator for each t > 0. Thus the Schwartz kernel of exp(-^Z)2), the heat
kernel, is smooth on M x M and it is therefore trace class acting on the
Hilbert space of L2 sections of S. Consider the supertrace of exp(—^D2),
STr(exp(-tD2)) EE Tr(exp{-tD-D^)) - Tr(exp(-^D+D-)). The vanish-
ing of the trace on commutators implies that this difference does not depend
on t, thus

^{S^r(exp(-tD2)))=0 (0.1).

Moreover, by Lidski's theorem, it is given by the difference of the integrals
of the two heat kernels over the diagonal A of M x M. It is well known that
as t —^ +00 the heat operator converges exponentially to the orthogonal
projection onto the null space of D2. This implies that STr(exp(—^D2))
converges exponentially to the supertrace of the projection onto the null
space of D2 which is easily seen to be the index of D^. On the other hand
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2 E. LEICHTNAM AND P. PIAZZA

as t —^ 0+ the heat kernel restricted to the diagonal converges itself to a
density on A =. M which is explicitly computable. We denote this density by
AS[yi], n being the dimension of the manifold M and AS being an explicit
differential form constructed out of the riemannian curvature tensor . The
index theorem for D^ then follows by equating the integral over A ^ M of
this explicit geometric expression with the supertrace of the projection onto
the null space of D2 (which is the index of D+). Here formula (0.1) has been
used. Thus

ind(D+)= / AS.
JM

What we have just explained is a sketch of the proof of the local index
theorem for Dirac operators (see [ABP][G][BGV]).

The fascinating idea of using the heat equation to investigate the index
of Dirac operators (due to McKean and Singer in its first formulation) opened
the way to a variety of extensions of the original results of Atiyah and Singer,
some of which will be now recalled.

In a fundamental series of articles, Atiyah, Patodi and Singer [APS
1,2,3] extended the results of [AS 1,3] to Dirac operators on manifolds with
boundary.

Thus suppose now that M has a boundary 9M and that the rieman-
nian metric is of product type near the boundary. The Dirac operators D"^
can be written, near the boundary, as ± 9/9u + DQ with u equal to the
normal variable to the boundary and DQ the Dirac operator on 9M. The
operator DQ is elliptic and essentially self-adjoint. Let II> be the spectral
projection corresponding to the non-negative eigenvalues of jDo and let

(^(M,̂ ,!̂ ) = {s € C°°(M,S^ | H>{s\9M) =0}.

The Atiyah-Patodi-Singer theorem [APS 1] states that the operator D^~
acting on Sobolev completions of C°°(M^ 54', II>) (we denote this operator
by D^) is a Fredholm operator with index

ind(Dn ) = / AS - ̂ (A)) +dimnullZ?o).
- JM z

Here rj(Do) is the eta invariant of the self-adjoint operator Do. It is a
spectral invariant that measures the asymmetry of the spectrum of Do. It
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 3

is defined as the value at s = 0 of the meromorphic continuation of the
complex function

^signAIA]"6 SSts»0
A^O

with A running over the eigenvalues of -Do- Equivalently, using the Mellin
transform,

00 00

7?(A)) = —— ^GDoe-^0)2)^ EE tr,{Do)(t)dt. (0.2)
0 0

The proof of the Atiyah-Patodi-Singer theorem relies heavily on the heat-
kernel method.

The Atiyah-Patodi-Singer index theorem has seen a number of refor-
mulations and alternative proofs. Among the latest contributions to the
subject we mention here the b-calculus approach of Melrose [Me] (see also
[Pl][MeNi]). In this new approach microlocal techniques are used in order
to give an elegant and conceptually simple proof of the original result of
Atiyah-Patodi-Singer (in fact for metrics which are more general then those,
product-like near the boundary, considered in [APS 1]). We refer the unini-
tiated reader to the introduction of [Me] for a very readable summary of the
main ideas surrounding the &-calculus proof.

We come now to Bismut's fundamental proof of the local family index
theorem for Dirac operators on closed manifolds [B]. Given a smooth family
of Dirac operators D = (Dz}z^B acting on C°°{Mz',Sz) and parametrized
by a compact manifold B, we can consider the associated (regularized) index
bundle Ind(7?) = [null^)] - [null(£)-)], an element in the K-theovy K°{B)
of the base B, and the associated Chern character Ch(Ind(D)), a cohomology
class in H^^^B^ R). From an algebraic point of view the index bundle can
be seen as the formal difference of two finitely generated projective C°(B)
modules, C°{B) denoting the algebra of continuous functions on B (see [A]).
Thus Ind(D) G Ko(C°(B)), with Ko{C°{B)) equal to the Oth algebraic K-
group of C° (5). This point of view will be exploited later

The problem is once again to give a geometric formula for Ch(Ind(2?)),
an a priori analytic object. The cornerstone of Bismuths treatment of the
family index theorem is the use of the superconnection formalism (see also
[Q]). Instead of considering the family of Dirac laplacians (2?j) one considers
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4 E. LEICHTNAM AND P. PIAZZA

a family of generalized laplacians with differential form coefficients. This new
family is manufactured out of a superconnection on the infinite dimensional
bundle, over By whose fiber at z G B is equal to C°°{Mz^Sz). The fiber
supertraces of the heat-kernels associated to this new family of generalized
laplacians combine to give a smooth differential form on B. We denote by
Kt the family of heat-kernels and by STr{Kf) this smooth differential form.
Bismut then proves that STr(Kt) satisfies the following properties

(i) It is a closed differential form W > 0.
(ii) It does not depend on t modulo exact forms: d/dt(STr(Kt)) = dp o^.

(iii) It is explicitly computable as t —^ 0^.
(iv) It represents Ch(Ind(25)) in H^^B).

This last property can be proved directly as in Bismut's original argument
or by showing, as in [BV][BGV], that the limit as t -> +00 of STr(J^)
converges as a differential form on B to the Chern character of the index
bundle.
Using these properties the local version of the family index theorem follows.
In particular

Ch(Ind(D)) = t AS inff*(B).
Jfibre

Among the many implications of Bismuths heat-kernel treatment of
the family index theorem we concentrate now on the family version of the
Atiyah-Patodi-Singer index theorem. The first result in this direction is due
to Bismut and Cheeger [BC 1,2,3]; {Dz) is now a family of Dirac operators
on manifolds with boundary, parametrized by a compact smooth manifold
B. In order for the family D^^ to define a smooth (or even continuous)
family of Fredholm operators it is necessary that the null spaces of the
boundary operators DQ^ are of constant dimension in z € B. Notice that
under this assumption they form a smooth vector bundle over B, null(I?o) ~^
J3. Moreover the index bundle Ind(I?n>) is well defined and the following
formula holds

Ch^nd^nJ)- / AS - ^{fj + Ch(null(Po))) inff*(B) (0.3)
./fibre 2

(the formula is fully proved in the invertible case in [BC 1,2] and stated in
the constant rank case in [BC 3]; see [MP 1] for a complete proof of (0.3)).
In this formula i) is the eta form of Bismut-Cheeger; it is a higher version of
the eta invariant, in the sense that the 0-degree component of ff computed
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 5

at z G B is equal to rj(Do^). The Bismut-Cheeger eta form is defined in
terms of the superconnection formalism by a formula similar to (0.2). The
assumption that the operators of the family Do have null spaces of constant
dimension plays a crucial role in the proof of the convergence of the integral.

The results of Bismut-Cheeger were improved in [MP 1,2]. The use of
a new notion, that of spectral section associated to a self-adjoint family of
elliptic operators (like Do), together with the pseudodifferential fc-calculus,
allowed for the formulation and the proof of a general Atiyah-Patodi-Singer
family index theorem, both in the even and in the odd dimensional case.

Suppose now, as in the beginning of this introduction, that M is a
closed compact spin manifold. Let us denote by F the fundamental group
Ti-i (M) of M and by M —^ M the universal covering of M. The F-manifold
M is again spin with a F-invariant Dirac operator D acting on the section
of a r-invariant spinor bundle S. It is clear that M will be in general
non-compact. There are two sets of objects that are determined by the
appearance of the fundamental group of M.

First we can consider the classifying map v : M —^ BF associated to
the r-bundle F -^ M -^ M. For each cohomology class [/3] e H*(BF, C) we
can then consider z/*[/3] G H^{M) and the complex numbers

/ ASA^*[/3].
J M

Recall also that there is a canonical isomorphism between H^^BT^C) and
the group cohomology -ff*(F, C).

The second set of objects determined by the discrete group 71-1 (M) is
more analytic in nature. We can consider the reduced G*-algebra C^ (F), i.e.
the closure in B(^(F)) of the image of CF by the left regular representation,
and the infinite dimensional bundles

S±=S±S{MxrC^(^)).

These are bundles on M with fibres that are finitely generated projective
C^(F)-modules. The operator D defines operators P^ : C^^M.S^ —^
C°°{M,S^) which are ^(F)-Fredholm as maps ̂ (M,^) -> ̂ (M,^),
in the sense that [null(P+)j - [null(P-)] (really [null^ +7Z+)] - [null(P- +
^~)] ^ W ~ W] fo1' suitable compact perturbations 7?^, see [R]) is a
formal difference of finitely generated projective (^(F^modules. Thus, as
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6 E. LEICHTNAM AND P. PIAZZA

in the algebraic reinterpration of the index bundle for families explained
above, we obtain an index class Ind(P) € KQ(C^(T)). The proof of the
(7^(r)-Fredholm property for V is a consequence of the Mishenko-Fomenko
C^ (r)-pseudodifferential calculus [M-F]. Alternatively Kasparov KK-theoTy
can be employed [BJ][K].

To obtain characteristic numbers out of this index class one must pass
to cyclic (co)homology. In order to make use of the cyclic (co)homology
machinery it is necessary to fix a certain dense subalgebra B of C^(F), con-
taining OF and stable under holomorphic functional calculus of C^F), and
then show that T> defines index classes Ind(^) G Ko(B) ̂  Ko(C^(r)). This
step should be thought as a "smoothing" of the index class Ind('D), quite
analogous to the passage from a continuous to a smooth index bundle in
the family case. The Chern character of Ind('D) is now well defined in the
topological noncommutative de Rham homology of 23, Ch(Ind('D)) G H^(B\
and can be paired with topological cyclic cocycles so as to get complex num-
bers. The Connes-Moscovici higher index theorem on F-coverings can then
be stated as follows. Let us fix a group cocycle (3 G Z^F.C); in a purely
algebraic way f3 defines a cyclic cocycle r^ in ZC^CF) ; assume that this
cyclic cocycle extends to a cyclic cocycle 7/3 e ZC^Z?00). Then

< Ch(Ind(P)),r^ >= Ci ! AS A ^[{3} (0.4)
JM

with Ci a nonzero Z-dependent constant. When I = 0 this is the Von Neu-
mann index theorem of Atiyah and Singer [A] [S] on F-coverings.

A spectacular application of (0.4), given by Connes and Moscovici, is
the proof of the homotopy invariance of Novikov's higher signatures when
the group F is hyperbolic.

Notice that index theoretic methods for establishing this homotopy
invariance were pioneered by Lustzig [Lu] who established it when F = Z^.
In this case the higher index theorem (0.4) reduces to a family index theorem
with parameter space B equal to the dual group to F (i.e. a torus T^).

One could regard the higher index theorem of Connes-Moscovici as a
noncommutative family index theorem.

Recall now Bismuths heat-kernel treatment of the genuine family index
theorem. One is then led to speculate that there should exist a local heat-
kernel approach to the higher index theorem. This idea is pursued by Lott
in [LI], where a Bismut superconnection proof of (0.4) is given. The main
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 7

tool in [LI] is the use of a correspondence between B smoothing operators
on M and ordinary smoothing operators on M with Schwartz kernel rapidly
decreasing, in an appropriate sense, at oo.

Using this correspondence it is possible to define and effectively ma-
nipulate a noncommutative superconnection heat kernel Kf, an appropri-
ate supertrace STR and the noncommutative [Ka] closed differential form
STR(ATt). The higher index theorem follows as in Bismut by the equality

< Ch(Ind(25)),r^ >=< STR(^),T^ >

and the short time behaviour of STR(^):

J™ <STR{Kt),Tf3>=< I ASAo;,T^>= f ASA^*[/?]. (0.5)
J M J M

The form cu can be explicitly described. Notice that both equations in (0.5)
need to be justified. In [L2], using the above superconnection formalism,
Lott introduces the definition of the higher eta invariant 77. It is a non-
commutative 5-differential form essentially defined by an integral similar to
(0.2). The existence of the integral, in the present context, is far from being
obvious and two assumptions are needed in order to ensure the convergence
of the integral of i](t} at t = 0 and t = +00. First that the group F is of
polynomial growth with respect to a word metric. Second that the Dirac
operator on M admits a bounded Z^-inverse. These two assumptions are
needed in order to use finite propagation speed estimates on the noncompact
manifold M. When F = Z^ Lott's higher eta invariant reduces to the eta
form of Bismut-Cheeger.

In [L2] it is conjectured that such a higher eta invariant should enter
in a natural way into a higher Atiyah-Patodi- Singer F-index theorem on
manifolds with boundary having a product structure near the boundary.

In this paper we have two goals in mind. First we develop a b-
pseudodifferential calculus on Galois coverings; second we apply this an-
alytic machinery to the geometric problem presented above and show that
Lett's conjecture holds true. The proof of the conjecture rests more precisely
on such an extension of the fr-calculus, on Loft's superconnection proof of
the Connes-Moscovici higher index theorem and on a ^-fc-calculus on the
compact manifold with boundary M.

The same hypothesis that are needed to define the higher eta invariant
must be assumed in order to formulate and prove the higher index theorem.
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8 E. LEICHTNAM AND P. PIAZZA

Actually, by using an idea of Berline and Vergne, we extend the results
of [L2] and show the convergence of the integral defining the higher eta
invariant only assuming that the Z^-spectrum of the Dirac operator on the
covering has a gap at zero. Consequently we prove a higher Atiyah-Patodi-
Singer index theorem more general than the one conjectured by Lott. This
improvement opens the way to several possible geometric applications of the
higher index formula. The precise statement of our result is given at the
beginning of Sect. 14.

A final comment on our assumption

3 8 > 0 such that spec(Z?o) H [-6, 8} = {0}

on the boundary operator. This assumption is the precise analogue, in the
noncommutative setting, of the Bismut-Cheeger hypothesis that the null
spaces of the boundary family have constant rank. In the truly family case
this assumption is completely removed from the picture by employing the
notion of spectral section (see [MP 1,2]). The notion of spectral section has
also been successfully used by Dai and Zhang in order to define the higher
spectral flow associated to a one-dimensional deformation of a family of
self-adjoint operators parametrized by a compact space B [DZ]. The higher
spectral flow of [DZ] is a class in K°{B) = Ko{C°(B)). Wu, on the other
hand, has extended the definition of spectral section of [MP 1,2] to the non-
commutative context and, generalizing [DZ], has defined a noncommutative
higher spectral flow associated to a one-parameter family {Df} of operators
on A-Hilbert modules [W], with A a (7*-algebra. Wu's higher spectral flow
is an element in .Ko(A). In a future publication we shall use in an essential
way the analytic tools developed in this paper and the notion of noncommu-
tative spectral section to give a general higher Atiyah-Patodi-Singer index
theorem (i.e. when the I^-spectrum of the boundary operator has no gap
at all).

We shall now briefly describe the contents of the paper and the struc-
ture of the proof. In the first three sections we really deal with higher index
theory on closed manifolds, thus extending some of the results of [LI]. Since
r is of polynomial growth we can fix, as in [L2], 5, the dense "smooth"
subalgebra of C^(r), to be equal to B°°, the convolution algebra of rapidly
decreasing function on I\

In Sect. 1 we show how to explicitly construct "smooth" representa-
tives of the index class associated to V\ this is accomplished by developing in

MEMOIRES 68



A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 9

a rigorous way a ff°°-Mishenko-Fomenko pseudodifferential calculus. Thus
Ind(P) == [Coo] — [Afoo] for suitable finitely generated projective ff°°-modules.
Essential to our treatment are the finite propagation speed estimates of
Cheeger-Gromov-Taylor [CGT] on the covering M. The functional analytic
technicalities of the proofs are gathered in Appendix A (Sect. 16). In Sect.
2 we show how to define higher eta invariants only assuming the existence
of a gap at zero in the I^-spectrum of the Dirac operator D on M. Thus
we assume

3 8 > 0 such that spec(Do) H [-S, 6] = {0}. (0.6)

In Sect.3 we consider higher eta invariants for the operator D + ^?, i9 small,
and study their behaviour as i? —)• 0 G spec (Do)- It is important to point
out that the correspondence between ff^-pseudodifferential operators on the
base M and rapidly decreasing operators on the covering M is fundamen-
tal throughout the paper, especially when we consider /^-operators with
^(Z?°°) ( i.e. noncommutative differential form) coefficients.

Sect. 4 to Sect. 10 are devoted to the extension of the ft-calculus to
Galois r-coverings with boundary, concentrating on the virtually nilpotent
case.

With Sect. 11 we enter in the truly higher case, showing how a b-
Dirac operator D on a F-covering with boundary defines an index class
Ind(D) € Ko{C^(T)). The "smoothing" of the index class is dealt with in
Sect. 12, where a B°°-b-Mishei\ko Fomenko calculus is developed. The b-
superconnection formalism is introduced in Sect. 13, where the definition
of the &- version of Loft's supertrace functional is given and its behaviour
on supercommutators is investigated as in the commutative case treated in
[M][MP].

In Sect. 14 we finally prove Lott's conjecture. The structure of the
proof, for simplicity in the invertible case, is as follows. Let H^{B°°) be the
topological noncommutative de Rham homology of B°° [Ka]. By KaroubFs
theory of characteristic classes for finitely generated projective modules, we
know that the Chern character of the B°° index class of 'D, Ind('D) = [Coo] ~
[.A/ooL can be expressed as the STR of the exponential of the curvature V2

of a connection on Coo © .A/oo^

Ch(Ind(P)) = STR(exp(-V2)) € H^B00). (0.7)

With the help of the ^°°-6-calculus we then prove that &-STR(exp(-V2)) =
STR(exp(—V2)). Using this equality, formula (0.7), various transgression
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10 E. LEICHTNAM AND P. PIAZZA

formulas as in [L1][B], the short time behaviour of the heat kernel on P-
coverings with boundary and applying (repeatedly) the supercommutator
formula for &-STR we obtain, VZA > 0, the following equality

u

Ch(Ind(P))= / ASAo;- 1 [ rj(t)dt + B{u) in H^B00)
JM 2 J

o

with B(u) explicit boundary terms. Employing finite propagation speed es-
timates on the boundary we then show that as u —> +00 the term B{u) con-
verges to zero. In these computations the assumption on the T^-invertibility
of Do is very important. Using the convergence of the higher eta integrand
at infinity the higher APS index theorem

00

Ch(Ind(P))= / A S A c ^ - 1 ! r)(t)dt EE t A S A c j - 1 ^ in H^B00)
JM 2 J JM 2o

follows in the invertible case. If the boundary operator DQ only satisfies (0.6)
then it is not difficult to see that null('Po) is a finitely generated projective
/3°°-module and the higher APS index formula becomes

Ch(Ind(P))= / ASAcc;-1^+Ch(null(Po)) in H^B°°).
JM 2

The passage from the invertible to the gap case is based on the limit be-
haviour of the higher eta invariants of Do + ̂  as i? —^ 0^ (this was studied
back in Sect.3). The precise statement of the theorem is given at the begin-
ning of Sect. 14 and can be read at this point.
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1. /3°°-Mishenko-Fomenko pseudodifferential calculus.

Let M be a compact boundaryless Riemannian manifold of even dimension
n, let TT : M -> M be a Galois F-covering of M, F being a finitely-generated
virtually nilpotent group. This means that if 1 1 • 1 1 is a right invariant word
metric on F then the number of points g G F such that \\g\\ < R is of poly-
nomial growth with respect to R. Thus if M is endowed with the lift by TT of
the Riemannian metric of M then the volume of the open balls B{x, R) of M
is of polynomial growth as R -> +00. Any function in the classical Schwartz
space <?(M, C) is integrable with respect to the Riemannian density; we will
denote by d{x^ y) the geodesic distance between two points x^ y G M.

Let A = C^(F) be the reduced (7*-algebra of F. Since F is virtually
nilpotent

B°° = {f : r -, C/ VL G TV, sup(l + 117H)1-1/(7)| < +00}
7er

is a subalgebra of A which is stable under holomorphic functional calculus
and r acts on the left on B°°. We also recall that B°° is a Frechet unital
algebra whose unit is e, the neutral element of F.

Let E = E^ © E~ be a Z2-graded hermitian Clifford module over M
endowed with a unitary Clifford connection [BGV], let

D-^ "o"). (^•^-
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12 E. LEICHTNAM AND P. PIAZZA

be the associated Zs-graded Dirac operator. Let D be the associated lifted
Dirac operator on the covering M which acts on sections of the lifted vector
bundle E = TT* {E) endowed with the lifted hermitian metric.

The action of 7 E F on M will be considered on the right and denoted
Rg. We will deal respectively with the two following B°° and A bundles over
M:

(M xr B°°) 0 E = £°°, {M x? A) 0 E = £

where for any 7 € r the point (a^/) of (M Xp B°°) is identified with
(R^(x)^~1 ' /). Let us fix ZQ e M; we define the usual Schwartz space
<?(M, .E) as the set of the so-called rapidly decreasing sections u of E: for
any multi-index of derivation a :

VJVeN, sup^V^^IKl+d^o^))^] <oo
z^M

One of the main contributions of [LI] is the systematic use ofabijective
correspondence between

(i) rapidly decreasing sections of E on M and smooth sections of the
bundle £°°.

(ii) smoothing F— invariant operators on M with rapidly decreasing
Schwartz kernel and smoothing operators on M acting on £°°.

More precisely we have the following

Proposition 1.1.
1] The map:

u^s=^R^{u)-Y
7er

is a bijection between the Schwartz space S{M^E) and C^^M^S00),
the space of smooth sections of£°°.

2] Let End0oo(M,<f00) denote the algebra of smoothing linear operators
T : C^^M.e00} -> C00^^00} defined by a Schwartz kernel ofC00-
class:

{z, z ' } € M x M -^ T{z, z ' } G Hom^oo (^°°, ̂ °°)

Then there is an isomorphism between End^oo (M, £°°) and the algebra
of F-invariant integral operators on L^M,!?) with smooth kernels
T(x^y) G Hom(Ey^Ex) such that for all N > 0 and all multi-indices
a,/3:

suplKo+d^^v^r^^))!! <+oo (1.1)
x,y
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This isomorphism T —^ T is such that for any u E 5(M, E) :

T^R^)=^R^t(u))^
7^r 7er

We define an operator:

0 V^
\Vt 0

v - °° n 9}UOQ ~~ T)+ n t1^

acting on C^^M.S00) by setting:

WG<?(M^), /DiC^RW^=^R^D±(u)^ (1.3)
7er 7er

Using the usual norm [resp. semi-norms] of A [resp. B00} we see that
the space of smooth sections C^^M.S^) [resp. COO{M,£±00)} is a Frechet
space. We observe that:

(^(M,^) = ̂ ^(M,^00) ®5- A.

In the sequel we shall often omit the subscript B°° in such tensor products.

We define a A—hermitian product < • , • > by setting for any sj =
E^r ^(^-)7 ^ C^M,^) with j = 1, 2 :

< 5 i , 5 2 > = ^(/L <^N,-R;(^2)(^)>. dx)^ e ff00 (1.4)
7er J M

where < • , • >x in the righthandside denotes the hermitian scalar product
of Ex. The A-Hilbert module L2{M,£±) is defined to be the completion of
C^M,^00) for the norm:

||5i|| = || <5i ,Si > ||1

where the righthandside is the (7*-norm of A. In a similar way [M-F] have de-
fined ̂ ^(M,^), the Sobolev space of order —1. The operator Poo defined
by (1.2) induces an operator P :

V - ( ° v'}u- ^+ 0 ;
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14 E. LEICHTNAM AND P. PIAZZA

which is continuous from ^(M,^) to ^"^(M,^).

It is worthwhile to describe these spaces on a small open subset U
of the base M such that over U the covering map TT and the two bundles
jE, M Xr A are trivial. For i == 1,2 let 5^ be a section in C^^UyS00) with
compact support. We fix a sheet UQ of 7^~1(U) and we let TTo"1 : U —>• UQ
be the inverse of the local diffeomorphism induced by TT : UQ -> U. By
definition, for each z E (7, 5^(2;) is the class fixed by an element of the
following form:

(^'(^E^^) (L5)
7er

where for each fc, the C^-norms of the Ui^{z) are of rapid decay with respect
to ||7|| as ||7|| goes to infinity. The A-scalar product (1.4) can be written
as:

<5i,52>= V ( / U^z)U2^'{z)dz)^'
^^r Ju7^er ̂

Moreover: \/z G U, VooSi{z) is determined by the equivalence class of the
pair

(^'(^S ̂ 7(^)7)
7GF

We construct an orthonormal basis {sj)j^ of L2(?7,f) made of com-
pactly supported C°° sections of £00 as follows: first we fix ('u^e)j^, an
orthonormal basis of .L^E/.I?) made of compactly supported (7°° sections;
then we define uj^ to be identically zero for all (j, 7) 7^ (j, e), j G N; clearly
then the (^)^N defined by (1.5) provide the required orthonormal basis of
L2^).

So, using a finite number of open subsets ?7i,..... Us of M such that
M = Uf^L^, Ui n [Tfc = 0 for I ^=- fc, and such that over each L^ the covering
map TT and the bundles ^±, £' are trivial, we can find an orthonormal basis
{e^)k>i of ^(M,^) such that for any k > 1, e^ C ^^(M,^^00).

Convention 1.2. In the sequel we fix such an orthonormal basis [^)k>i
and set C^ = e^B°°e^.

The existence of such an orthonormal basis will be useful in the proof
of the main theorem of this section which we now state:
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Theorem 1.3. We can find Coo [resp. A/ooJ 3, sub-B°° -module projective
of finite rank of (^(M,^0054-) [resp. C^^M.S00^)] with the following
properties:

1] Coo is free and we have

^(/:oo)cA/oo (1.6)

2] As Frechet spaces

Coo(BC^ = C^M^00^), A/ooO^cGCoo) = C^M,^-). (1.7)

3] The orthogonal projection of C^^M^E00^} onto Coo ^d the projec-
tion P^ ofC^M^005") onto A/oo along D^{C^) are smoothing
operators.

4] As Banach spaces

Coo ® A © C^A = L\M, <?+)

A/oo ® A © P^(r^) (g) A = ̂ -'(M, <?-)

5j TAe operator

^••^^^(0 (1-8)

is invertible for the Frechet topologies; the operator

V^ : r^0A ̂  ̂ (/;^)0A C ̂ -'(M; £-)

is invertible.

Remark. By definition:

Ind^+ = [Coo] - [A/oo] e Xo(S00) = ^o(A)

The sub-modules Coo and A/oo should be viewed as "smooth representative"
of the index class Indl^. It is very likely that our proof can adapted to
the case in which F is no more virtually nilpotent but hyperbolic, and 23°°
is equal to the Connes-Moscovici algebra. However our arguments do not
allow to prove Theorem 1.3 for more general algebras B which are "only"
stable under holomorphic functional calculus.
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16 E. LEICHTNAM AND P. PIAZZA

There is of course an analogous decomposition for V~:

M^@M^= C^M^00'-), Zoo ©^oo(A^oo) = C^M^00^).

In contrast with the classical Hilbert-space theory we do not claim here
the existence of a simultaneous ^^-decomposition of C^^M^E00^) and
C°°{M, £°°--) for P+, P- such that Zoo - ̂ oo and .Moo = A/oo.

We shall refer to Theorem 1.3 as the ff^-Mishenko-Fomenko decom-
position. Our result makes precise a statement in [LI, Sect. 6], which seems
to be given there without a detailed proof. In order to pass to the bound-
ary case we felt it was necessary to give a precise account of ^goo(M^00),
the space of classical ff°°-Mishenko-Fomenko pseudodifferential operators on
M; this turned out to be a rather delicate matter already in the boundary-
less case. The analogous statements in the boundary case (e.g. the specific
structure of the Schwartz kernels of the projections onto the smooth repre-
sentatives ^005 A/oo) will play a crucial role in the proof of the higher APS
index theorem.

The following three propositions are a key tool in the development of
the B°°-Mishenko-Fomenko calculus.

Proposition 1.4.
1] Let P € ^oo (M, <f°°), let P be the associated operator on the covering

so that P(E^;007) = E^;GPOO)7 for any s C S(M,E). Let
X C C^O^R) such that ^(z) = 0 for z < 0 and ^{z) = 1 for z > 1.
Let Kp be the Schwartz kernel of P. Then for any N > 1:

sup sup RN\\ ^ x{d{x,y) - R}Kp(x,y}u{y}dy\\ „ , < +00
R>1 IHIl,2<l JM v ' /

(1.9)

2] Let A and B be two operators sending continuously C°°{M^ £°°) into
itself, B being moreover a smoothing operator. Then Ao B is also a
smoothing operator.

Proof. We easily reduce ourselves to the case when the Schwartz kernel
K - p ^ z ^ z ' } of V has compact support in U x U where U is a small open
subset of M such that over U the bundles E and M Xp A are trivial. By
definition we can write:
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Kr =^K^
7er

where the K^ are the Schwartz kernel of usual pseudodifferential operators
in ^°(U,E) defined by complete symbols of zero order a^(z^) which are
rapidly decreasing in the symbol topology as ||7|| goes to +00. Let UQ be
an open subset of M such that the covering map TT : UQ —> U induces an
isomorphism which we denote by 71-0. Then:

7r-\U) = U^rR^Uo)

The r'-invariant Schwartz kernel K- of P is determined by:

V(rr^) € Uo x UQ, V^ € F, K^R^x),y) = K^7r(x\7r{y)). (1.10)

The rigorous meaning of this equality is the following: let r^ be the action on
M x M given by (^, y) —^ {R^(x)^y)\ then for each test function (/) G UQ x UQ
we have

<Kp^(t»=<K^^lY(t».

Since the covering M is of polynomial growth, we get easily 1] by using the
rapid decay of the symbols cr/y. We omit the easy proof of 2].

Remark. Note that in 1] the Schwartz kernel of P may have singularities
at off-diagonal points {Rg(x)^x) where g ^ e. It is for this reason that, in
contrast with (1.1), we can only give decaying estimates in terms of the
Z^-operator norm.

Proposition 1.4 gives a general result for operators on M associated to
ff^-pseudo-differential operators. For operators manufactured out of Dirac-
type laplacians it is possible to improve such a result by using finite propa-
gation speed estimates. We shall only need the following:

Proposition 1.5. For any a G R the operator (1 + D2)^ on the covering
M has a Schwartz kernel which is smooth outside the diagonal and satisfies
the same decay estimates for d ( x ^ y ) —> +00 as in Proposition 1.1, formula
(1.1). Considering the associated operator on M acting on sections of £°°
we get an invertible operator (Id + P2)0' G ^^oo (M, £°°).
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18 E. LEICHTNAM AND P. PIAZZA

Proof. We set f(z) = (1 + z2^, for any real z. Since the Fourier transform
/(r) is defined by an oscillatory integral, /(r) is smooth on R \ {0} and its
derivatives are of rapid decay as |r| —^ +00. We can write:

_ /*-hoo _f*+00

/O
{l+D2)a= / f{r)cos(r\D\)dr

Jo

Let us recall that by the finite speed propagation property, for any y E M
and any r > 0, the support of the distribution kernel cos(r \D\)(x^y) is
contained in the ball B(y, r). Let e > 0, and <^>(r) G C°°{R, [0,1]) be an even
function such that <^(r) == 0 if |r| < 6, (f){r) = 1 if |r| > 2^. So, if d(a-, y) > 2e
we have:

/*+oo ^ ^

^(I+D^^) = / A7')^71) cos(r|D|)(a;,2/)dr
v o

By construction /(r)0(r) is the Fourier transform of a function h{z) in the
Schwartz space <?(R,IR). Thanks to finite propagation speed properties it is
well known that the Schwartz kernel of h(D) is of rapid decay as d(x^ y) —^
+00 [CGT] and since

^(1+52)-(^) = ̂ (D)^) for d^^) > 2e

the proposition follows.

Proposition 1.6.
1] Let P be a pseudo-differential operator e ^^oo (M, £°°) such that, as a

bounded operator on the A-Hilbert module L^M, f), ||P|| < ^. Then
(Id - P)~1 sends continuously C°°{M, £°°) into itself.

2] Let Q G ^^(M,^*00) be a pseudo-differential operator of order m
which is invertible in the A—calculus. Then Q~1 belongs to the space
^(M,<f°°).

Proof. 1]. We will use notations and results form Proposition 1.4. Since
||P|| < i, we can claim that (see [Pa] page 449):

W G ̂ (M,^), < P{u),P{u) X — < u,u >

where this equality has meaning in A = C^(T). Using the trace of A we see
therefore that for any u in the Schwartz space «S(M, E) :

II^IIL^M^^IIMI^CM^) (Ln)
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Let us fix u G <?(M,£'), we are going to prove that ^k>oPku belongs to

S(M^E) which will prove 1].
Let A be the lift to M of a differential operator of order one with

diagonal principal symbol acting on (7°°(M,£'). Let us fix N € N*. Then
(A^ o P^u^xo} is the sum of at most {k + 2)(JV+1) terms of the following
type:

/_ B-i(xo, rci) B^xi.x^) .... Bk{xk-i, Xk) {A1 u)(xk)dxk...dx^ (1.12)
JMk

where I < N^ (k — N) +1 of the Bj are equal to P, and the other Bj are the
Schwartz kernels of iterated commutators of A with P.

So we can find a constant CN(U) which does not depend on k so that:

VfceTV, IKA^oP^H^ <CN{u)2N+l-k(k+2)N+l

Thus XQ —^ ^^>o P^O^o) is C00 on M. Let us fix x G M. Let a;o C M

be such that d(x^xo) > 2. We set ko = [^/d(a;,a;o)]. Since M has bounded
geometry we see, using Sobolev injection's theorem that:

| ̂  (A^ o P^)(.ro)| < ̂ (^(l)'0 < ̂ (^(^V^-o) (1.13)
fc>fco

Now let us consider AN o Pku{xQ) for k G {0,1, ...fco — 1} and a particular
term of the type (1.12). Using the fact u is of Schwartz class, we see that

/ Bi(^o, a^i) B^(x^ x^) .... Bk(xk-i,Xk) (A1 u)(xk)dxk.^dx^
Jd(x,xo)<10d(x,Xk)

satisfies the required decay estimates. Now we recall (see (1.11)) that the L2-
operator norm of P is < | and that each Bj in (1.12) satisfies the estimates
(1.9) of Proposition 1.4. We are going to show that if in the following integral

/ Bi(a;o,^i) .82(^1,^2) ....Bk{xk-l,Xk){Alu)(xk)dxk^.dx-i
Jd(x,xo)>10 d(x,Xk)

we replace each Bj(xj-\^Xj) by

[1 - x(d(^-i,^) - R)]B,(x^,x^ with R+ 1 < ^Jp°I
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then we will get zero; since all the kernels Bj satisfy estimates (1.9) of
proposition 1.4 and at least k - N - 1 of them are equal to P and thus have
an L2— operator norm < j, this will prove part 1] of the lemma. We observe
that:

d(xo, x-t) + d{x^x^} + ... + d{xk-i, Xk) > d(xo, x) - d{x, Xk)

So if d{x^ xo) > 10 d{x, Xk)^ we see that there exists j G {1,..., k} such that:

9d(x,xp) 9d{x, xp) ^/d{xo,x)
U\JL") — 1 . X i ) ^ ———————— ^ ———————— ^ ——————————v 3 ? 3 ) ~ 10k - lOko ~ 2

Since \(z) = 0 for z > 1, we see that the integral in question is indeed zero.
Using inequality (1.13) we see therefore that AN^^QPku{xQ) is of rapid
decay and 1] is proven.

2] First we show that Q~1 sends (^(M,^00) into itself. Let us consider
C € ^S(M, e°°) be such that U = Q-1 - C G ̂ ^{M, £} is very small so
that QoU=ld-QoC and K o Q = Id - C o Q are bounded operators on
L^M,^) with small operator norms:

| |Qo7Z||<|, | |7ZoQ| |<J

Then, according to I], (QoC)-1 = (Id-QoTZ)-1 and (CoQ)-1 = (Id-TZo
Q)-1 sends C°°{M, £°°) into itself. Then the same is true for C o (Q o C)-1

and (Co Q)-1 oC which are both equal to Q-1. Thus Q~1 sends (7°°(M, £00)
into itself. Next we show that Q~1 belongs to ̂ ^{M.S00). There exists a
B°° parametrix Q e ̂ ^(M,^00) such that

Id - Q o Q = U1 where H' G End^oo (^00, <?00).

So Q~1 =g+ Q~1 o n'. As we have just seen Q~1 sends C°°{M, £°°) into
itself; by applying Proposition 1.4 2] we see that Q~1 o U' is smoothing in
the 23°°-calculus and the Proposition follows.

MEMOIRES 68



2. Higher eta invariants.

In this section we consider a compact connected boundaryless Riemannian
manifold N and TT : N —> N a Galois r-covering. We assume that the
discrete group r is finitely presented and virtually nilpotent. Here, the
dimension of N may be either even or odd. In Section 14 we shall use the
higher-eta invariants for N equal to the odd dimensional boundary of an even
dimensional manifold. In Section 13, on the other hand, we shall use the
superconnection formalism recalled here in the even case.

Let E be a hermitian Clifford module over N endowed with a unitary
Clifford connection. Let D be the associated Dirac operator. If N is even-
dimensional then both E and D are assumed to be Zz-graded. We denote
by T the grading operator; thus T2 = Id and E^ = ker(T db Id).

If N is odd dimensional then we consider the bundle of C—vector
spaces Ea = E 0 Cl(l). Here Cl(l) is the complex Clifford algebra of C,
it is generated, as a complex vector space, by 1 and a with a2 = 1. There
is a natural bundle isomorphism Ecr — ^ E G ) E under which a becomes the
matrix

(0 1\"ll »)•

Let z be a base point of TV; for any endomorphism u of (E^)z we define a
linear functional Strci(i) : End((E^)z) —>• C by setting

Strewn =JStr(_0^ ^\ou (2.1)
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If u is Cl(l)—right linear, then u is of the form

(ui 0 \ (u-i 0 \
" = ( o .J+^0 uj

so that Strci(i) u = Tru'z as in [Q].
Let D be the associated lifted Dirac operator on the covering N acting

on the sections of the lifted bundle E = TT*{E) —> N. We denote by Ey the
lift of Ecy on the covering.

We will assume that the L2— spectrum of D has a gap at zero; thus
there is a 8 > 0 such that

spec(Z?) H ] - 6, S[= {0} (2.2)

Our first goal is to define the higher-eta invariant associated to 15,
thus extending Lett's original construction which was only valid under the
assumption D invertible ([L2]). That such an extension should exist was
already remarked in [L2].

We first recall a few results and definitions of [L 1,2].

We set Q.Q^B00) = B°°. As already remarked the neutral element e G F
is the unit element of the algebra B°°.

For each k e N*, ^fe(^00) is the set of the functions a : Fx (F^e}^ ->
C:

(70 ,7 l , - - - ,7 fe ) -^ ^7o,7i,...,7fc

such that for any M E N :

sup sup |a^,^,,.,^|(||7o|| + ||7i|| + • • • + Ihfcl l )^^ < oo
7i,...,7fc€r\{e}7oer

We will view the elements of the C—Frechet vector space f^(Z3°°) as homo-
geneous differential forms of degree fc, thus identify a with:

^ ]C ^o,7i,...,7fc 7o c?7i... d7fc (2.3)
7i,...,7fc€r\{e} 7oCr

70 d7i... d^k being an abstract symbol. Moreover we set de = 0, and, by
convention, ^71... d^k = 0 if at least one of the 7^ is equal to e. Let us
consider the graded vector space

^(B°°) =Tlk>o^k(B00)
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We define the product of two homogeneous forms of ^(500) by setting:

(70^71 . . .^) • 7^+1 ̂ +2 • "d^m =

k-1

E (-1)^70 d7i... ̂ (7,7,4-1)... dY^d^... d^
3=1

+ 70 ri7i... ̂ -î  • 7,+i) rf7,+2 • . . d^m+

(-1)^7071^72 . . . ̂ +1^+2 • • . d^m

Since F is virtually nilpotent, this product allows to define on ^(B°°) =
^even(000) C ̂ odd(^°°) a structure of Z2- graded Frechet algebra with unit
element e. In particular, ^(B°°) is a ff°°-bimodule. By definition a se-
quence (a^peN of forms tends to zero if each component of degree k of ^p

tends to zero in ^(Z?00).
Moreover we define on f2,(000) a graded differential d by defining its

values on the elements 0,70 and 70^71^2.. .ri7fc which appear in (2.3) in
the following way and with an obvious abuse of notations:

de = 0, d/yo= ed-yo ^(70^71^72 ... d^k) = e d^d^ ... d^

We then have d o d = 0, and for any homogeneous form uj of degree 9uj we
have d(o;. a/) = dw . a;' + (-1)^. da;'. Now we consider the graded vector
space:

^00) = n.>o ^g00) ,
^k(B°°) n [^(ff°°),^(ff°°)],-

where [^(ff00),^,^00)],- is the closure of the spaces generated by the
graded commutators: o;o/ - (-l)9" '̂̂ . The differential d induces a

differential of ^(ff00) sending homogeneous forms of degree k into forms
of degree k +1. The corresponding homology is called the topological non-
commutative de Rham homology; it pairs (for positive degrees) with the
topological cyclic cohomology of 0°° (see Karoubi [Ka]).

Recall that S(N, E) is a right B°° -module where the right 0°°-action
on a section / is given by / • 7 = R^, (/). An easy extension of Proposition
1.1 allows us to show the existence of a natural isomorphism of Prechet
spaces:

S(N, E) (8)600 ^k(B00) -^ C°°(N, £00 8)300 ^(ff00))
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^ Ai,...,7fc ® ̂ 71 • • • d^k -^ ^ ^(Ai,-^) 7o^7i • • • d-Tk
7l5---?7fe€r 7o,7i5---57fcer

(2.4)
where, for any fixed point ZQ G TV, the /yi,...,^^) above belong to the
Schwartz space <?(TV, E) and are of rapid decay, together with all their co-
variant derivatives, with respect to d{z^ zo) + ||7i|| + • • • ||7fc|| •

We recall (cf formulas (1.2), (1.3)) that D can also be seen as the
operator associated on the covering to a differential operator T>oo in the
5°°-Mishenko-Fomenko calculus acting on (^(TV.f00).

In the even case, we recall that the Zs—grading of (7°°(TV, £°°) 0^00
^*(2300) is defined as follows: the (total) degree of u 0 a is the sum of the
degrees of u and a where u is a section of £°° and a G ^(B°°).

In the odd case we shall use the B°°— bundle £^° —> N'^ to any endo-
morphism u of £°° we associate the endomorphism of £^° given by u © u.

Now we define Lottos connection and the corresponding superconnec-
tion.

Definition 2.1. Let h G CS°(N) be such that ]^p R^(h) = 1.

(i) We define a connection by setting for any f € S (TV, E) :

V : C00^,^00) ̂  G00^,^00 0^oo Qi(5°°))

v(^ a;(/h) = ̂  R^W R^(f) 1 0^00 d7
7er 7/,7€^

or, in a more compact way: V/ == S/yer ^ ̂ (/) ̂ 7-
fiî ) If dim TV is even and T is the grading operator, then for any real s > 0

the superconnection Ds is defined to be TV + sVoo. Thus

V^ G C°°(TV, £00) 05- ^*(ff00), Va C ^*(000),

D^a) = D,(0a+(-l)^da

where 9^ is the (total) degree of^. Notice that Poo is ^{B00)-right
linear.

(Hi) If dim N is odd, the superconnection Ds is defined to be TV + s<7T>oo
where T is the obvious ^—grading of £^° = £ © £.

Remark. As pointed out by Connes in [C] page 434, these supersign rules
differ slightly from that of Quillen [Q] because we are dealing with right-
modules.
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It is important to point out that it is only with these supersign rules
and with this definition of D, that the curvature operator D2, becomes
^(B°°) -right-linear. In the even case for instance, for any / e S ( N , E )
^(Z^cr^C/^) is given under the correspondence (2.4) by:

v2^) + s(r^7D + i5rv)(/) + s2^2^)

where we recall the two following formulas:

(YV5 + DT^)f = ̂  -Y[D, h] 7?;(/)d7 (2.5)
7er

^W= E ^WR^^d-ydy (2.6)
7,7'er

Similar formulas hold in the odd case.

Now we consider the following ^{B°°) -bundle over N :

£°° 0^ ^(B00) = E 0c (M xr B00) 0^00 ̂ (B00)

We can find a finite open cover U = {j7^ 1 < j < q} of N and associated
trivializations of this bundle:

M, : (£°° 0^ ^(^00))]^. ̂  ̂ . x (C^^ 0c ^*(^00))

where A^ is^a right f2*(ff°°)- linear bundle isomorphism. Next we con-
sider a right f2^ (ff^-linear continuous endomorphism /C of C00 ( N, £00 0^oo
^*(ff00)) defined by a distribution Schwartz kernel:

/C(^') e Hom^^^[^00 0^ ^(ff00), ^00 0^00 ^(ff00)].

Thus for any section u of £°° 0^oo f?^^00) we can write, with a common
abuse of notation,

\/z e N, JC(u)(z) = f IC^z^u^dg^)
J N

where dg(z') is the riemannian density. We are going to describe locally this
Schwartz kernel. Let £/„ Uj be two open subsets ofU. Then we can find a
finite number of distributions on U, x U, : {z, z ' ) -, ̂ {z, z ' ) , KKm with
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values in ^(B°°) and also endomorphisms Ai C End(Cdim£7), 1 < ; < m,
such that for any vector s G C "̂̂  and for any a G C^p(i7z, fL(B°°)) we
have:

m .

[)CoM,-\s(Sa)}\u,=M^[^W^( ^zWWz'))} (2.7)
f=i t/Lrl

By definition /C is a smoothing operator if all the (j^i(z^ z ' } are C°° functions
with values in 0, (B00).

Now let us consider the important case where /C sends sections of £°°
into sections of £°° 0^00 ^lk(B00) for a fixed k. Proceeding as in [LI] we see
that /C corresponds to a distribution Schwartz kernel (z, z1) —> K(z^ z ' ) on
N x N of the form:

K{z^')= ^ K^_^zt)d^...d^ (2.8)
7l,---,7fc

such that V/ C S{N, E) :

^(E W^ = E L^^ • ̂ ^f^dz'^d^.. .^
7^F 7o,7i.•",7fe iv

Fundamental examples of such operators on the covering are provided by
(TV + sD)2, TVD + DTV. It is easy to check that for any 7 G F, K(z, z ' '
7) = K{z^ z ' ) -7. In contrast with the case k = 0 treated in Proposition 1.1,
we must point out that when k > 1 the K^^^^^z^z'} are not individually
T-invariant with respect to the diagonal action of T on N x N. That's why,
in the next definition, the statement of the decay property for the family of
smooth kernels .PCy^...^ corresponding to the smoothing property of /C, is
not completely obvious.

Definition 2.2. Let F be a fundamental domain for the covering N.
(i) Let /C be the right f^(/300) -linear operator introduced above and let

us assume that the Schwartz kernels jPCy^...^ in equation (2.8) are all
C°°. Then we shall say that 1C (or K) satisfies the decay property (DP)
if for any M E N and any multi-index of derivation a with respect to
(^, z ' ) the supremum C( /C, M, a) of the set:

{[d(^,^)+||7l||+•••+||7fc-l||+d(^^(^))]M|VQ^,...,^(^^)|,
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such that 71,..., 7fc G r, (z, z ' } G N2}

is finite,
(ii) Let s —^ F(s) be a positive function on IR"^*. Let {lC(s))s^+* be a

family of right ^(23°°) -linear operators as in (i) above. We shall
say that the )C(s) ( or K{s)) satisfy the decay property (DP) with
respect to F(s), s being > 0, if for any M G N and any multi-index
of derivation a with respect to (z^ z ' } we can find a constant 25(M, a)
such that:

V5 > 0, C{ /C(5), M, a) < D(M, a)'F{s)

Let d(x, y ) denote the geodesic distance on N associated with the lifted
Riemannian metric. We recall that N and the virtually nilpotent group F
are quasi-isometric. Using the arguments in [L 1,2] it is not difficult to prove
the following proposition. We leave the cumbersome details to the interested
reader.

Proposition 2.3. A right Q^(500)-linear operator sending the sections of
£°° into those of £°° 0^oo f^(23°°) is smoothing in the B°°-calculus if and
only if the -PCy^...^ of (2.8) are smooth and satisfy the decay property (DP).

The next result is essentially a corollary of Proposition 2.3; alterna-
tively a direct proof on the covering N can be given.

Proposition 2.4. Let (/C(5))s>o be a family of right f^(23°°)— linear oper-
ators, as in Definition 2.2, satisfying property (DP) uniformly with respect
to F{s), s being > 0. Let A be a right f^(23°°)— linear operator sending
continuously the sections of £°° into those of £°° (g^oo ^(23°°). Then the
operators fC(s) o A, A o )C{s) will also satisfy property (DP) uniformly with
respect to F(s), s being > 0, provided the operator A associated to A on
the covering fulfills at least one of the following assumptions:

(i) A satisfies property (DP).
(ii) A belongs to {TVD + ̂ TV, V2}.

(Hi) A is a F—invariant pseudo-differential operator of any order acting on
L2^, E) whose Schwartz kernel A{z^ z ' ) is C°° outside of the diagonal
and of rapid decay (with all its derivatives) when d{z^ z ' ) -> +00.

Now, in the odd case for instance, we set for s real > 0, Pg = —V2 —
sa(TVD + JDTV). We can then define the solution of heat superconnection
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equation, exp(-I^), as an element of End^ ^ ^ N , £ ^ ° (g)^oo ^(5°°)) &2/
defining its associated operator on the covering to be:

exp(-52^2 + Ps) = exp^i:)2)^-

f1 ^ ^
/ exp^i^2)?,, exp(-(l - uz)s2D2du^+
Jo
/.l /.l-m _ _ _ _
/ / (exp(-^l52P2)P,exp(-^252I?2)P.

Jo Jo

exp(-(l - ZAI - U2)s2!)2) )du2dui + • • • (2.9)

Using formulas (2.5) and (2.6) we see that for each k € N, only a finite num-
ber of terms in the expansion (2.9) will give a contribution in ̂ (^00)- Using
finite propagation speed estimates for exp^—sD2)^^1) and Proposition 2.4
we see easily that all these terms satisfy property (DP).

Now we define the supertraces in our context. First let us assume that
N is even-dimensional. Let /C be a right f2^(2500)— linear operator satisfying
the (DP) property as in Definition 2.2. Let a; € TV, we use the notations of
equation (2.7) with Ui = Uj being a neighborhood of x. Let T denote the
grading of CdmE ̂  Ex. We then define the supertrace Str/C(rc, x) to be:

771

St!}C(x,x) = ̂ St^r^A^^x.x) (2.10)
^==i

Str/C(.r, x) is intrinsically defined modulo the closure [000, ̂ (ff00)]" but in

fact we will view Str)C{x^x) as an element of ^(23°°) (i.e. as a differential
form modulo graded commutators).

Let us now consider the case where N is odd dimensional. Let /C be
a right fL(000) -linear operator acting on C^^N.S^ (g)^oo fL(ff00)) and
satisfying the (DP) property. We do not assume that /C is a—linear, for
instance the superconnection operator which appears in Lemma 3.1 is not
a— linear because of the grading T.

Let x € TV; of course we use the notations of equation (2.7) with
Ui = Uj a neighborhood of x. We set:

m

Strci(i) {JC(x, x)) = ̂  Strci(i) ((-T)^AQ ̂ (.r, x) (2.11)
l=i
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where T denotes the grading of C^1"1^; this differential form is intrinsically

defined in f^(/3°°). The sign minus in (2.11) will provide a definition of the
higher-eta invariant so that Proposition 14.2 holds true.

In the even [resp odd] case we define the supertrace STR/C [resp.
a—supertrace STRci(i) /C] as:

STR/C = / StifC(x,x)dg{x), STRci(i) /C = [ Strcim fC{x,x)dg(x)
J N J N

where dg(x) is the Riemannian density of N. Both STR/C and STRo- /C

belong to fL(6°°).
Now we recall the following formula of [LI] for the supertrace.

Proposition 2.5. Let $ € CS°{N) be such that E/ycr^W ^ L Let ]c

be a right ^(B°°)— linear operator satisfying the decay property (DP) with
the notations of Definition 2.2. Then:

1] In the even case, the supertrace of 1C is the element ofd^{B00) given
by:

STR/C = ^ L ̂ (^)Str^,.^(^o, z)dz^od^ ... d^
70,71, ...,7fcer 7M

Moreover the supertrace of a supercommutator is zero and d STR /C =
STR[2?g, /C] where Dg is the superconnection of Definition 2.1.

2] In the odd case, STRci(i) /C is given by replacing Sir by Strci(i) in the
previous formula.

Remark. It is precisely because of property (DP) that the coefficients
a/yo,...^ of these supertraces or a—supertraces are of rapid decay with re-
spect to | |7o 1 1 + • + | |7fc 1 1 • The proof of the equality d STR /C = STR [Ds, /C]
is easy and left to the reader.

We have assumed that there is 8 > 0 so that L2 — spec^2)?)] — 5, 8[=
{0}. Let ^(x) G C§°{R, [0,1]) be such that ^(x) EE 1 for |a;| < j, ^{x) EE 0
for | re | > ^. The orthogonal projection Po onto the null space of D2 is
given by Po = x(D2). Using finite propagation speed estimates we see that
PO is a smoothing P—invariant operator whose Schwartz kernel is rapidly
decreasing.

Now we set r(x) = l~^(ao G (^(IR^R).
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Proposition 2.6.
1] We define the Green operator to be G == r{D2). It sends the Schwartz

space S{N,E) into itself. We have ^{N.E} = null(P2) ©± ImP2.
Moreover G : ImD2 —^ Im D2 is the inverse ofD2 acting on Im D2.

2] null Poo is a finitely generated projective B°°— module.

Proof. 1]. This proof is standard. Using finite propagation speed estimates
we see that r(D2) is a F— invariant pseudo-differential operator of order —2
whose Schwartz kernel r^2)^, z ' } is C00 outside the diagonal of N2 and of
rapid decay when d(z^ z ' ) —> +00. For all u e S{N^ £'), we can write:

u = Po{u) + D2 o G o (Id - Po) {u)

Since G o (Id — Po) == G, we get 1] immediately.
2]. Theorem 1.3 shows the existence of the following decompositions for
Poo:

C00^^00) = £00 ©± C^ -^ C00^00) = A^oo ©Poo(-Coo)

such that Poo(^oo) C A/oo where Xoo and A/oo are finitely generated sub-
B°°— modules, and Poo : ^oo "̂  ^oo(^oo) i8 invertible with inverse Q. More-
over the two projections P/:oo? -^Voo onto ^oo? A/oo respectively are smooth-
ing. So we have:

(?o(Id-PvJoPoo=Id-P^

Applying the projection PnuiiPoo to both members of the previous equality,
we get that PnuiiPoo = ^oo °-Pnuiiz?oo' ^° mill Poo is certainly finitely gener-
ated. Since the L2— spectrum of D has a gap at zero, we can argue as in the
proof of 1] to check that: null D @1- D(S{N, E)) = S{N, E). Using Loft's
correspondence between S { N ^ E ) and C^^N^S00), we then get:

null Poo C^Im Poo =COO(N,£00), nullPoo^Ae^inTPoo^A = L^A^,^)

Now, Lemma 16.2 of Appendix A shows that null Poo is B00— projective and
finitely generated. The proposition is therefore proved.

Now we state the main result of this section:
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Theorem 2.7. The following integral is absolutely convergent and defines
the higher eta invariant f) as an element of^(B°°) :

o /*+oo

if dim TV is even, f) = —— j STR[Dexp(-(TV + sD)2)] ds

2 /'+00 ^
if dimNis odd, 77 = —^ / STRci(i) [^Dexp(-(TV + 5a5)2)] ds

Remark. In the odd case we can pair 77 with the trivial 0-cyclic cocycle
(= evaluation at 70 = e). Then by Proposition 2.5 we get

00 QQ

^ff^)rrr(Dexp{-t2D2))^z)dzdt^ —— fTr^Dexp^D^dt.
0 o

This is precisely the Cheeger-Gromov F-eta invariant [CG] which enters in
the APS r-index theorem of Ramachandran [R]. It should be remarked at
this point that the F-eta invariant can be defined only assuming the group
r finitely presented. The crucial difference between the integrand of the F-
eta invariant and that of the higher eta invariant lies in the fact that in the
latter case it is necessary to control the heat-kernel as t -> +00 at arbitrarily
distant points. It is for this reason that in the higher case we assume the
group virtually nilpotent.

Proof of Theorem 2.7. We will deal only with the odd case. The integrability
near s = 0 is a straightforward consequence of the local index theorem as
pointed out in [L2] page 219. We then study the integrability for s -> +00,
extending to the present context a technique of Berline and Vergne (see
[ B-V]). We will work directly on the covering. Intuitively we shall show
that once the use of C^ -estimates on compact manifolds is replaced by the
use of the (DP) property on N and once finite propagation speed estimates
are employed to control the heat-kernel at distant points, the large time
behaviour of the superconnection heat-kernel can be studied by using the
Berline-Vergne diagonalization lemma as in the compact (family) case. We
set Pi = Id - Po; for j = 1,2 we still denote by Pj be the projection acting
on S(N, E^) defined by Pj © Pj. We obtain the decomposition:

S(N,Ea)(S)B^^{B00) = ImPo®^(^00) C ImPi 0 f^00) (2.12)
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In order to shorten the notations we set:

c = r\7aD + aiyrv (2.13)

The curvature operator D'j = (TV + saD)2 on the covering is given by the
following matrix decomposition associated with (2.12):

.2 _ ( PoV2^ Po(V^+ sC)P^ \D^=s {pi^+scm pi^+^pi+^wpj
Now we denote by A the algebra generated by the operators:

Id, Po, Pi, C, V2, G

Let Mi be the set of "Laurent polynomials" of degree < —1 with respect to
s real > 1, and with coefficient in APoA. Thus a generic element of .Mi is if
the form ^^=1 ^S where the Ak belong to APoA. Since Po is smoothing,
Proposition 2.4 then shows that all the Ak above satisfy property (DP) of
Definition 2.2.

Proceeding as in [B-V] and using the Green operator G, one proves
easily the following lemma:

Lemma 2.8. With respect to the decomposition (2.12) we can write:

^=»(')((? î)- '̂))^
where,

H(s) = s2^2?! + 5?i CPi + Pi V2 Pi + Pi CPo CP^G

R is the curvature ofPoVPo; g{s) and Z{s) are squared matrices of type
(2,2) such that g(s) is invertible and the three matrices Z(s\ g{s) — Id and
p""1^) — Id have their coefficients in Mi.

The next theorem is crucial for the proof of Theorem 2.7

Theorem 2.9.
1] Let K(z^ z ' ) be the Schwartz kernel on the covering N associated with

a right f2^(ff°°)— linear operator /C satisfying property (DP) as in Def-
inition 2.2. Then for each k G N, the components in ^(ff00) of
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exp{-H{s)) o K and K o exp{-H{s)) all satisfy property (DP) uni-
formly with respect to the constant function 1, s being in ]0,1].

2] For each k € N, we can find 6/ > 0 so that each component in ̂ (S00)
ofexp(5^) exp{-H(s)) satisfies property (DP) uniformly with respect
to the constant function 1, s being > 1.

Proof, We begin by recalling the finite propagation speed estimates for Pi o
exp{-s2D2) and exp^-s2!)2) Let \ be the function introduced just before
Proposition 2.5 so that Id - x(D2) is the projection Pi. Since \(x) = 1 for
2\x\ < 6, we can use the main result of [CGT] as in [L2] page 215 to show
the existence of 6" > 0 so that for any for any a, N C N :

V5 > 1, ^x, y G N , |(-DaPlexp(-5252))(^y)| <

G(a, 7V)(1 + d[x, y))^ exp(-52^) (2.14)

Now let e > 0 be very small compared to the radius of injectivity of TV. We
set R{x,y) = max{d{x,y) - e, 0). In [L2] page 215, it is shown that for any
a € N and any s e]0,1] :

\/x, y e Mwithd(a^) > 2e, l^exp^D2) )(x,y)\ <

^)exp(-^^) (2.15)

Next we observe that since the heat kernel is F-invariant and almost Eu-
clidean we have the following asymptotic expansion valid for d{x, y) < 2e
and 0 < s < 1:

exp^D2) ̂ y) - (47^.2)-t exp^^2^) ̂ s^a^y) (2.16)
k>0

which can be differentiated at any order.
Moreover we observe that Pi exp^-s2!)2) = exp(-52^2) - PQ where Po is
a smoothing operator whose Schwartz kernel is rapidly decreasing.

Now we apply DuhamePs formula where H{s) is considered as a per-
turbation of ^PiD2. Defining I(s) = (s^P^D2 - H{s)) we obtain

exp{-H{s)) = exp(-52PlP2)+
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/>1 -
/ exp^-u^D2?^!^) exp(-(l - m^PiD2) d^i+

Jo
/*! /•I-HI ^ ^

/ / (exp î̂ Pî J^exp^^Pl.D2)^)
Jo Jo

exp(-(l - m - ̂ ^Pi-D2) )du2dui + — (2.17)

Now let us prove briefly 1]. The asymptotic expansion (2.16) and inequality
(2.15) allow us to see that K o exp^-s2!)2) and exp^2!)2) o K satisfy
property (DP) uniformly with respect to 1 as s e]0,1]. Using the Duhamel
expansion (2.17), the definition of H(s) in Lemma 2.8 and Proposition 2.4
which asserts the stability of condition (DP) under composition, we get
immediately 1]. Let us prove 2]. Let us consider in expansion (2.17) the
integral over the k—simplex associated with ^i , . . . ,'UA;. In this integral at
least one of the following (nonnegative) numbers:

Z A i , . . . , Z A f c , 1 -1Ai - • • • -Uk

will be > ^j-, Uj for example. Then, estimate (2.14) allows us to see that

the s-family of operators exp(^-s2) exp(-UjS2D2) o Pi satisfy property
(DP) uniformly with respect to 1 as s > 1. This condition will be preserved
if we compose exp{-UjS2D2) on the right and on the left by the operators
appearing in expansion (2.17). Thus we get 2] with 8' = ̂ —.

End of the proof of Theorem 2.7
In order to shorten the next formulas we set:

E{s)=
/ R 0
. 0 H^)

Proceeding as in the proof of lemma 14 of [B-V] we can use Lemma 2.8,
Theorem 2.9 and Proposition 2.4 to write each component in ^(Z500) of
exp[—E{s) — Z(s)] under the form:

\expkR)+U,{s) U^s)
U2{s) W{s) (2.18)

where (exp^jR) is the component in ^(ff00) of expJ?, and the operators
Uj(s), 1 < j < 3 [resp. W{s)} satisfy property (DP) uniformly with respect
to s~1 [resp s~2] as s > 1.
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Moreover, the uniqueness of the heat equation shows that:

exp(-^2) = g(s)exp[-E{s) - Z{s)}g-\s)

Recall that according to Lemma 2.8, g(s) -Id and g~1 {s) -Id satisfy property
(DP) uniformly with respect to s~1 as s > 1. So equation (2.18) shows that
each component in f^(0°°) of exp(-D^) is of the form:

f{exp,R)+U[(s) U,(s)\
\ U^s) W\s))

where the operators U^{s),l < j < 3 [resp. W\s)} satisfy property (DP)
uniformly with respect to s~1 [resp s~2} as s > 1. Moreover:

( 0 0 \nexp,R)+U[(s) U,{s)\_
\0 aDP,) { U^s) W\s}) ~

( - ° - ° ^\aDP^(s) aDP^W^s))

According to Proposition 2.4, aDP^W\s} will still satisfy property (DP)
uniformly with respect to s~2 as s > 1. Now we observe that the grading T
and a preserve the decomposition (2.12) and recall the definition of Strcim
given by (2.11) and Proposition 2.5. We get therefore Theorem 2.7 by using
the previous (DP) estimate for (jDP{\V\s).
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3. Modified higher eta invariants.

In this section we will assume that N is odd dimensional. We still assume
(see equation (2.2)) that the L2— spectrum of D has a gap at zero. So for
any i9 E (0,5), the operator D + ̂  admits a I^-bounded inverse.

Lemma 3.1. For any t > 0 and-ff e]0,5[, we set- B(5,^) = TV+5o-(D+^).

1] The following integral is absolutely convergent in 0^(fi°°) :

+00

—— / STRci(i)(a(D+^) exp^B2^)))^;
/TT

t-A

moreover, as t —^ O4', it admits an asymptotic expansion with respect
to \ogt and the ̂ , fc E Z. We then define 77(1?) to be the coefficient of
t°.

2] For any t > 0 and ^ e]0, 8[ we have modulo graded commutators the
following variation formula for the higher eta integrand:

^STRci(i)(a(5+^)exp(-B2(^))) =

9s STRcHi^aexp^B2^)))

+d STRci(i) ( ̂  I 1 exp(-^B2) ̂  exp(-(l - ̂ )B2) du).

Proof. 1] Since D + i9 is invertible the convergence of this integral is es-
sentially a result of [L2] page 215-218. The existence of the asymptotic
expansion is a consequence of the local index theorem. 2] The proof is an
easy adaptation of the proof of Proposition 14 of [MP 1].
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Theorem 3.2. We have: limrj^) = r] + Ch(null'Doo) modulo exact forms

ma,(000).
Proof. Let us consider three real numbers ^ > 0 and 0 < t < T. We integrate
both members of the equality of Lemma 3.1 2] with respect to s € [̂  T] and

i9' G [0, i9]. Modulo exact forms we get the following equality in ^(2300):

m

I STRci(i) (a{D + ̂ ) exp(-B2^ ^9)) )ds -
Jt

rT
/ STRci(i)( aD exp(-B2(5,0)) )ds

J t
^

= / STRcl(l)(a^exp(-B2(^^/)))d^-
JQ

^
\ STRci(i)(atexp(-B2(t,^)))d^ (3.1)

Jo

We check easily that:

^
lim lim / STRcln)(^exp(-B2(t,2?')) )d^ = 0

i9^0+ t-)-0+ JQ

Thus, using equation (3.1), we see that the theorem is a consequence of the
following assertion:

/*i9 /—

lim lim / STRcim^Texp^B2^^)) }dtf = v— Ch(nullPoo)
i9^0+ T^+oo Jo ^

(3.2)
We have:

B2(r^) = (TV)2 + 5<7^TV + sT^aD + s2^!) + ̂ )2

We set D2^) = D2 -}- 2^D. Since the L2 -spectrum of D has a gap at
zero, D2^) will admit, for i? small enough, a Green operator G(^) whose
Schwartz kernel is smooth outside the diagonal and of rapid decay. Consider
the matrix decomposition of the curvature B^T,^) with respect to the de-
composition (2.12) associated with D. We can proceed as in [B-V] to get the
following result analogous to Lemma 2.8:
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Lemma 3.3. With respect to the decomposition (2.12), we can write for i?
small enough:

(D i T2^2 o \
^(T,i})=g(T^)( A+^ ^^^j+Z^^g-^T,^

where,

H(T, ̂  = r2!)2^)?! + TPi CPi + Pi V2 Pi + Pi GPo CPiG(^)

J? is the curvature ofPoVPo; g(T^} and Z(T^) are squared (2,2) matrix
such that g(T, '(9) is invertible and the three matrix Z(T, i9), g(T, 2?) — Id and
^"^(r,'^) — Id have their coefficients in .Mi ('(9) where A^i(^) is defined as
MI before Lemma 2.8 but with G replaced by G^).

Now we make a few remarks. Hypothesis (2.2) shows that for i?
small enough D2^) = D2 + 2'ffD is a generalized self-adjoint positive lapla-
cian, so exp^^Z)2^)) ( x ^ y ) will satisfy expansion (2.16) for small time t
and d{x,y) small. Finite propagation speed techniques allow to see that
DaP-iexp{-t2D2{fff)) satisfy the large time estimate (2.14) for s > 1. Ob-
serve next that for each i? € R the value at ^ of the Fourier transform of
r —>• exp(—r2 — 2n?) is ^/TT exp(—^- + {P + ̂ 0. Hence we can again use a
finite propagation speed argument to see that exp{—t2D2{^)){x^y) satisfy
estimate (2.15) for t small and d(x,y) > 2e. Now we can proceed as at the
end of the proof of Theorem 2.7 to see that each component in ^(ff00) of
Texp^B^T, i?')) is of the form:

^-T^^exp^-R) 0\+u(T^)}

where the coefficients of the matrix U{T, ̂ ') satisfy property (DP) uniformly
with respect to T~1 as tf e]0, 'ff\ and T > 1.

We check then that:

lim / Texp^r2^2)^' = v/7r
^

lim /
r^+oo JQ->+00JQ 2

Now, using the definition of Strci(i) given at the beginning of Sect. 2, we
see easily that the left-hand-side of equation (3.2) exists and is equal to:

^STRci(i)(aexp(-^)) = ^CK(null^)
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4. r-manifolds with boundary and the small b-calculus.

We first give some geometric preliminaries that will be constantly used
in the sequel.

Let M be a smooth connected compact manifold with boundary. Let
r be a finitely generated discrete group. Let M be a Galois covering of M
with covering group equal to F. As in the previous sections we denote by Rg^
g G r, the action of F on M on the right and by TT : M —> M the covering
map. Since r acts by diffeomorphisms on M, there is an induced action

Rg:9M-^9M, g^F (4.1)

with the property that QTT : 9M —> 9M is a Galois r-covering.
We consider the Lie algebra of vector fields

Vh(M} = {V E C°°(M, TM) | V is tangent to 9M}

We can introduce as in the compact case the notion of 6-tangent bundle
^TM and we have H(M) = C°°{M, ̂ TM). We denote by b^ the 6-density
bundle. Notice that by (4.1) there is an induced action of r on ^TM. When
speaking of the Clifford bundle on M we shall always refer to the one as-
sociated to ^T^M. Here we follow the Clifford algebra conventions of [M],
thus demanding that a/3 + /3a = 2 < a, (3 >.

We fix a boundary defining function x G (7°° (M) by lifting from M a
boundary defining function x C C°°{M). Let QM e F^M, ̂ r*M 0 ̂ M)
be an exact fr-metric on M. Thus (we can assume that)

9M = {dx/x}2 + HM (4.2)
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with HM € (7°°(M, T*M 0 T*M). The lift of ^M to M is an exact ^metric
which is furthermore r-invariant. We denote this lifted metric by g. The
associated riemannian fc-density \dg\ is clearly r-invariant. The metric g in-
duces in a natural way a r-invariant riemannian metric go and a r-invariant
density |d^o| ^ C°°{9M, ̂ ) on <9M. We fix once and for all the Levi-Civita
connection associated to g as in [M].

We fix a r-invariant locally finite cover of M by coordinate neigh-
borhoods. We also fix a r-invariant partition of unity subordinate to this
cover.

In order to investigate the analytic properties of Dirac type operators
on M we extend to the non-compact fr-manifold M the microlocal techniques
developed in [M] in the compact case.

Let F be a complex vector F-bundle over M. The F-action on M and
P induces in a natural way an action on C^°(M, F), C^°(M, F), C°°{M, F),
(7°°(M, F) where the dot in the first and in the third space means vanishing
of infinite order at QM. If we introduce an hermitian metric on F then
we can consider the Hilbert space Lj(M,P), i.e. L2 with respect to the b-
density \dg\ and the given metric on F. The group F acts on L^(M, F), the
action being unitary if the hermitian metric on F is chosen to be r-invariant.

Let PO,PI be two F-bundles with r-invariant hermitian metrics. Cer-
tainly the notion of ^-differential operator P € Diff^(M;Po,Pi) is mean-
ingful on M. If P is a 6-differential operator, then P : (7°°(M,Po) -^
C°° (M, Pi) and it makes sense to define the space of r-invariant ^-differential
operator as

Diff^r(M; Po, Pi) = {P G Diff^M; ?o, Pi) | P o R^ = R^ o P V7 e F}.

More generally a (7-linear map A : C^°(M,P()) -^ C°°{M,F^}, or A :
Lj(M, Po) -> L^(M, Pi), is r-invariant if A o R^ = R^ o A for each 7 in F.

Let now M be even dimensional and let P be a Z2-graded r-invariant
vector bundle on M. Thus E = TT* P, with E a Za-graded bundle on the
compact b-riemannian manifold M. We assume that P is a unitary Clifford
module endowed with a unitary connection V^ which is Clifford with respect
to the ft-Levi-Civita connection associated to the b-metric QM- We assume
that Vf^ = 0 on QM. We denote by D the generalized Dirac operator
associated to these data. The lift of D to the covering M is a r-invariant
fr-differential operator £); it is precisely the Dirac operator associated to the
lifted data on E.
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The Clifford bundle associated to T*(9M) acts in a natural way on

^M :

dxcla(^)(e^) EE cl(^)cl(7?)(e^)

We define EQ to be E^~. It is a unitary Clifford bundle with respect to
QM

cla(-). It is endowed with the induced Clifford connection. We denote by
DQ the associated F-invariant Dirac operator. Finally, we identify E~^ with

£'0 through Clifford multiplication by cl{idx/x). With these identifications,
that will always be used in the rest of the paper, the indicial family J(D, A) G
Diffr(<9M;JS^) is equal to the family of F-invariant differential operators

on EQ © £'0 given by
/ 0 Do-i\\
\Do-{-i\ 0 ) ' (4.3)

End of geometric preliminaries.

Corresponding to the four spaces of (7°°-sections introduced after (4.2)
we have four spaces of distributional sections

C-°°{M,F) = (G^(M,F* ®^))' C7°°(M,F) = (C°°(M,F* 0 ̂ )y

C7°°(M,F) = (C^M.F* (g)6^)/ G-°°(M,F) = (^(M.F* 0 ̂ )y

The Schwartz kernel theorem, in this context, states the existence of a 1-1
correspondence between the space of continuous linear maps

G,°°(M, i?o) -^ CT^M, Fi) (4.4)

and the space C~°°(M x M;Hom(Fo ® ba~l,Fz)) where Hom(Fo,^i) is
the bundle over M x M whose fibre at {p^q) is the vector space (-Fi)g ®
(Fo)^- Following [M] we shall define a space of pseudodifferential operators,
naturally extending the F-invariant ^-differential operators, by specifying the
Schwartz kernel of its elements. In order to characterize their behaviour near
the corner of M x M, we introduce as in [M] the 6-stretched product M2

Let 9M = L-l^=i^.^ {9M)j be the decomposition of 9M in its k connected
components. Then

9M=Uj(u^A,{9M)^) withTT-^M),) = U,eA,(9M^
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Definition 4.1. The ordinary b-stretched product M^ is obtained by blow-
ing up in M2 the submanifold

BA = Uj(Ua{9M)^ x (<9M)^) c 9M x 9M.

Thus, following the notation given in [M Ch 4],

M^ = [M2;^] = S+{N{B^) U (M x M\ (B^)) (4.5)

with blow-down map (3^ : M^ —^ M2.

The notions of lifted diagonal A&, of front face, as well as left and right
boundary face are precisely as in [M]; we adopt the notations given there
and use the symbols bf, Ib, rb for these three submanifolds.

Notice that in (4.5) we only blow up the components of 9M x 9M that
meet the diagonal. This space is still too small for our needs: in studying
the Schwartz kernel of operators on the covering M which are associated to
23°°-&-Mishenko-Fomenko pseudodifferential operators on the base M we will
need to consider the following extended version of the b-stretched product.

Definition 4.2. The extended b-stretched product M^ is obtained by blow-
ing up in M2 the submanifold

B = U, (U(^)^ (QM^ x (<9M)^). (4.6)

We denote by f3^ the blow-down map /3^ : M^ -> M2

Remark. Since B = B^UC with

C = U,(U(^)^(aM)^ x (<9M)f) with a + /?.

we see that M^ == [M^C]; thus there is a partial blow-down map (3^ :
M^ -^ M^ such that ̂  o ̂  = f3^.

One could also consider the overblown ft-stretched product

M^= [M^.QMx9M]

where all the connected components of the corner 9M x 9M are blown up.
We shall not need this space.
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Proposition 4.3. The diagonal action ofF on M2 lifts in a natural way to
an action ofF on M^ and on M^. The product action ofF x F of M x M
lifts in a natural way to an action of r x F on M^ with quotient space
diffeomorphic to M^.

Remark. The second statement in this proposition already suggests why it
is natural to introduce the extended 6-stretched product.
Proof. Since F acts on the boundary of M, there is certainly an action
of r on (M x M \ (BA)). On the other hand, elements in S^{N{B^)}
are equivalence classes of curves \ : [0,1] —> M2 with their initial point
X(0) C BA and ^(0) i T^(B^}. We obviously define R^[x} = [x^\ with
XjW = R^(^(t)). This action is well defined and under the identification

r :5+(JV(BA))^(BA)x[- l , l ]

explained in [M Lemma 4.1], it corresponds to the natural action

r x ( B A ) x [ - l , l ] ) ^ ( B A ) x [ - l , l ]

given by (7, (p, A)) —^ (p-7, A) with F acting diagonally on BA. We leave the
easy proof of this fact to the reader. Exactly the same argument establishes
the first statement for M^. Consider now the product action of F x F on
M2. We can extend this action to Me& by setting

R(^)[X} = [X(^)} with [x] G S+N{B)

and X(7,7o(^) = ^(7,70 (x(^))- This action is well defined (precisely because
of the definition of B in (4.6)); it is also clear that Meb/T xT ^ M^. The
proposition is proved.

In introducing fc-pseudodifferential operators we first assume, for sim-
plicity, that FQ = F\ = ̂ 2. The blow-down map gives an isomophism

(^^^(^.^^^^(ii^,6^)

and, by duality, an isomorphism

(/3^)* : G-°°(M;2,^) ̂  C-°°{M2^). (4.7)

The definition of the small space of &-pseudodifferential operators is
exactly as in [M] and we recall it here for the convenience of the reader:
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Definition 4.4. The (small) space of b-pseudodifferential operators of or-
der m acting on b-half densities, ^^(M,6^), consists of those continuous
linear operators A as in (4.4) whose Schwartz kernel KA ^ C~00{M2, ̂ 2)
lifts under (4.7) to an element in the space {K e ^(M^A^,^) | K =
0 at £by rb}, with = meaning equality of Taylor series at the indicated set.

We shall use the same symbol for the Schwartz kernel of A G ̂  in
M2 and its lift on M^.

Definition 4.5. The extended (small) b-calculus ^^ is obtained by con-
sidering the Schwartz kernels in {K G ^(M^, A^,b^) | K == 0 at 0), rb}
with A&,^&,r& defined in terms of f3^.

Remark. Using the remark following Definition 4.2 we see that ̂  C ^^.
This inclusion in simply obtained by lifting a Schwartz kernel on M^ to a
Schwartz kernel on M^ through the partial blow-down map /3^. The lifted
kernel will vanish of infinite order on the off-diagonal components of the
front face of M^. We shall not use the extended fr-calculus until Sect. 12.

We say that A G ^^ is properly supported if both the canonical pro-
jections TI-I, 7T2 : suppKA C M2 —> M are proper maps. A typical example
is given by e-local operators (in the ordinary sense, i.e. with respect to an
ordinary riemannnian metric g on M).

Definition 4.4 can be extended in the usual fashion to take in account
the presence of two arbitrary bundles FQ, F-^ and we denote by ^^(M; FQ^F\)
the corresponding space of b-pseudodifferential operators; thus

^(M^F^F^)=

^*(M;b^) 0^^ C°°(M^ {f3lY Hom(Fo 0^-^Fi®^)).

Using well known mapping properties of pseudodifferential operators
on paracompact manifolds [Sh 1] and the results established in [M] it is easy
to prove that A 6 ̂  maps C^° into C°° and C^° into C°°. If in addition
A is properly supported, then A maintains the compact support property.

The usual symbolic properties of ̂  carry over to the present non-
compact context. In particular there is a well defined notion of ellipticity.

The composition of two fc-pseudodifferential operators of order m and
m7, one of which properly supported, is again a &-pseudodifferential operator
of order m + m1.
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We now take the r-action into account. From now on, unless otherwise
stated, we shall always work with F-invariant ^-densities. With a small
abuse of notation we keep the symbol bQ, in order to denote the F-invariant
6-density bundle: thus b^ = 7r*(^).

If FQ , FI are complex vector F-bundles on M, then we define

^^(^;^o^l)={Ae^(M;Fo^l)|^oA=Ao^, V7 € F} (4.8)

Notice that the F-invariance of the operators obviously implies a F-
invariance on the constants appearing in the symbol estimates of Definition
4.4.

Finally given a F-bundle F over M we can introduce the following
Sobolev spaces. If m C Z"^ then

H^(M, F) = {u € £J(M, F) | An 6 £g(M, F), VA G Diff^(M; F)}

and if m € Z~ then

%(^ F} = LJ(M, F) + Diff^(Lg(M, F)).

These Sobolev spaces are in between H^ and H^oc' Standard arguments

show that A C ^^p properly supported defines a continuous linear operator

A : H^ -> H^ for each k E Z.
In the hypothesis F-virtually nilpotent we can also consider

b-pseudodifferential operators that are not propely supported but instead
rapidly decreasing outside the lifted diagonal A&. The rapid decay condi-
tion refers to the action of the group F. In order to encode such a decaying
property we introduce an auxilliary metric g on M for which M and F
become quasi-isometric. The metric g is simply the lift to M of an ordi-
nary metric on M. In the sequel we denote by d(-, •) the distance function
associated to g.

Let e € (0,1) and let 0(bf) = {p G M^ \ d{^(p}, B^) < e }. In 0(bf)
the variables r = x-\-x' and r = ( x — x ' ) / ( x - \ - x ' ) together with the boundary
variables (y, y ' ) (see [M] Ch. 4) can be used. Let ^ 6 C°°{M^ b^-^) be the
lift to M^ of the density \dgM 0 dgM\~2 on M x M.

Definition 4.6. Let F be virtually nilpotent and let A G ^J^^6^)'

We shall say that A is rapidly decreasing outside an e-neighborhood of the
lifted diagonal if
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(i) for each multi-index of derivation a and any q € N we can find a
constant Ca,q > 0 such that

V (^ z ' ) C M^ \ 0(bf) such that d{z, z ' } > e,

IV^^^^^^Kl+d^^))^^,,

(ii) For any multi-index of derivation a with respect to (r, r, y , y ' ) G 0(bf)
and for any q € N there exists a constant Da,q such that

V (r, T, y , y ' ) G 0(bf) such that d(y, y ' } > e,

IV'^^^^r^^QKl+d^^))^^,

Of course we could have used covariant differentiation on the ^-density
bundle (with respect to the b-Levi-Civita connection) instead of inserting
the density fi.

Proposition 4.7. If F is virtually nilpotent and A G ^^p is rapidly de-

creasing, then A : J^p —^ H^171 is bounded for each k C Z.

We omit the easy proof.
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5. r-trace class operators.

Let F be a complex vector F-bundle over M endowed with a F-invariant
hermitian metric. By considering the space Lj(M,F) as our reference
Hilbert space , we can introduce the Von Neumann algebra Ar = {A €
B(Lj(M, F)) | A o R^ = R^ o A \/^ G F}. We can also consider the usual
r-trace and introduce the ideals of F-Hilbert-Schmidt operators and F-Trace
class operators. We refer the reader to [A2] (see also [ES] [Sh 2]) for the
necessary definitions.

Let now P G Diff^p(M; FQ, Fi) be an elliptic F-invariant ^-differential
operator. Then there exists a F-invariant 6:-local parametrix Qa

P o Q^ = Id - Ro^ Q^ o P = Id - R^ (5.1)

with Q^ e ^^(M;Fi,Fo) and R^ e ̂ ^ and ^-local.
In fact the existence of a symbolic ^-local parametrix in ^r^00 is simply

an application of the symbolic calculus for fc-pseudodifferential operators.
The use of a F-invariant partition of unity subordinate to a F-invariant
cover of M by coordinate charts, ensures that such a parametrix can be
constructed in ^^j50.
Remark. In the sequel we shall often drop the tilde-notation for F-invariant
operators on M. We shall only keep it when it is necessary to make a
distinction between operators on M and operators on M.

Notice that if as in (4.5) we denote by /3^ the blow-down map and if
T G ^i?(M; FQ, Fi) then the Schwartz kernel of T satisfies

KT € C°°(M^ (/?,2)* Hom(Fo ® ̂ -\ Fi))
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and it is furthermore invariant with respect to the action induced on the
latter space by the fibre action of F on the bundles FQ, Fi and the (diagonal)
action of F on M^ introduced in Proposition 4.3. In particular if FQ = F^ =
b^ and if we use \dg\ in order to trivialize this bundle, we obtain

T e ̂ (M,^) ̂  KT e c°°{MS/r). (5.2)

To understand when an operator T e ^j? H Ar is F-trace class we
need to define the indicial operator and the indicial family of an arbitrary
fo-pseudodifferential operator. The vector field x9/9x fixes a trivialization i>
of the positive normal bundle to the boundary

N+9M ̂  9M x [0, oo) (5.3)

and thus of its fibre-compactification N+9M ̂  9M x [-1,1]. The action of
r on N^QM with respect to (5.3) is of course of product type: Ay(p, A) =
(Ay(p), A) for each (p, A) € 9M x [0, oo).

Given an element A e ̂ (M; EQ, E^) we can define its indicial oper-

ator J(A) G ^(7\4<9M;£;o^i) and its indicial family I^A.z) €

^{QM'.EQ.E^.Z € C, precisely as in [M]. If A G ^p then both J(A)
and I^{A^z) will be r-invariant. The indicial operator of an element A €
^^0 H Ar represents the obstruction to the F-trace class property for A.

Proposition 5.1. Let A e ^^(M,F) H Ar. If A is F-trace class on

Lg(M,F) then I {A) =0.

Proof. Let p G bf(M^). We want to show that KA{?) = 0. Let MQ be a
fundamental domain containing p. Then Lj(M,F) ^ e/y^r^J(Mo,F) and
A e B(Lj(M,I^)) is represented by a block matrix [A^y] with A^y e
B(Lg(Mo,F)).

By assumption Ae,e is trace class in B(Lj(Mo, F) and Tr r A = TrA^e-
Moreover the Schwartz kernel of A^g is equal to KA\MQXMQ- Thus if ̂  e
C7^(Mo),P C supp^ H supp^, 1 = (t){p) ̂  ^{p) then ^Ae,e^ e ^-^(A^o; F)
and since it is trace class on L^(MQ;F) it follows from [M] (Proposition
4.57) that J(<^Ae,e'0) = 0. Since KA^P) = ^<Me,e^(p) and P ̂ s arbitrary
we conclude that J(A) = 0 as required.

We now ask under which circumstances is the converse true. If h G
COO{M)^, we denote by Tv^h the induced smooth function on M.
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Proposition 5.2. Let A € ^^(M, F) and assume I (A) = 0. Assume one
of the following conditions:

1] A defines a positive, self adjoint bounded operator on I^(M, F)
2] KA is compactly supported in M^/F.
3] r is virtually nilpotent and KA is rapidly decreasing on M^/T

Then A € Ar, A is F-trace class and

TrrA== t tr^k = I ^^{KA\^\ (5.4)
JMo J M

Proof, 1] Recall that by simple functional analytic arguments it suffices to
show that (f)A^ is trace class on Lj(M, F) for each <^, ̂  G C^°(M). Clearly
K(^A^ is smooth and compactly supported on M^. Since by assumption the
indicial operator of (f)A^ is equal to 0, it follows that

W : LI(M, F) -^ xH^(M^ F).

One checks that if n = dimM, the inclusion ^H^^M.F) ̂  Lj(M,F)

is compact ^£^8 > 0. Thus (J)A^ G B(Lj(M,271)) is trace class as required.
Formula (5.4) is standard.

2] Since, by assumption, A is properly supported, it follows that A
is bounded on Lj; thus A G Ar- Since J(A) = 0 and J^A is compactly
supported in M^/F, we certainly have that A is r-Hilbert-Schmidt (i.e.
Lj-integrable in M^/F). Let B € Diff^p be an elliptic operator and let
Qa ^ ̂ ^ be a properly supported F-invariant symbolic parametrix. Then
Qa ° B = Id — T with T G ^f^^0 and properly supported. We can write
A = T o A + Q<7 o B o A. Since by assumption J(A) = 0 it follows that
A = aiA', with A' € ^f^^0 and properly supported. It follows that T o A =

(Tx^)o{x^ A') and since on the right-hand side we have the product of two T-
Hilbert-Schmidt operators we conclude that T o A is F-trace class. Similarly
Qa o B o A = Qa o B1 with B' e ^^^°,J(B') = 0, B' properly supported.

Thus Qa o B o A = (QaX^) o {x^B") with B" G ̂ ^ properly supported.

Choosing k large enough we see that (,QaX2) is F-Hilbert-Schmitd. It follows
that Qa o B o A is F-trace class as the product of two F-Hilbert-Schmidt
operators.

Since exactly the same argument establishes 3] , the proposition is
proved.
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If we select a function h € C§° (M) which near 9M is constant in the
normal direction and such that

^R^h=l (5.5)
7er

then as in [A2] we can express the F-Trace in (5.4) as

T r r A = [hR^ (5.6)
J M

MEMOIRES 68



6. The 6-r-Trace.

The last section has been devoted to the proof of necessary and sufficient
conditions under which an element A G ^^^° Fl Ar is F-trace class. The
heat kernel of a F-invariant Dirac laplacian, a fundamental object in index
theory, is a typical element of ^^^° with non-vanishing indicial operator (we
shall treat the heat kernel in Sect. 10); thus according to Proposition 5.1 it
cannot be F-trace class on Lj.

As in the compact case we shall now define an extension of the F-trace
functional to all of ^5"^°. Let us fix a trivialization v G C°°(9M^ N^-9M) of
the normal bundle to the boundary of 9M and let x G C°° (M) be a boundary
defining function for 9M with dv ' x = 1 on 9M. We denote as usual by v
and x the lifted objects. Recall the ^integral of [M]; if (f) E C°°(M,b^) then

/ (f)=lim \ (^+log^- / (f)\oM .
JM €^0 Ux>e JQM J

For any element ^ € C^°(M,6^)), exactly the same definition can be
given on M. Consider now A € ^^(M,b^) and KA\^ C (C°°(M, b^))^.
We can give the following

Definition 6.1. The b-T-trace of A e ^^°(M/^) is equal to the b-
integral of TT^ (KA | A^ ) •'

b-TrrA= ! ^(KA\^. (6.1)
J M
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Equivalently, if MQ C M is a fundamental domain for the action of F
and if h G C^°{M) is a function as in (5.5), then

&-TYrA=7/^Ak=7 ^Ak. (6.2)
J M JMQ

If, more generally, A acts between the sections of a complex vector r-bundle,
AG^^(M.F) then

^
fc-TYrA- / tr7r,(^A|Aj.

JM

Notice that the b — r-trace of A C ^^^°(M^F) is, by definition, a finite
number.

If A e ̂ b? ls a r-trace class element of Ar then

b -Trr A = Tr r A

since, by Proposition 5.1,

7 7r*(^A|Aj= / 7r^KA\^=TrrA. (6.3)
JM JM

The first equality holds whenever the indicial operator of A vanishes.
As in the compact case the fc-F-trace is not zero on commutators.

Before giving a formula for &—Trr[A,B], with A,B € ^5'^°, we need a
Lemma.

Lemma 6.2. Let A G ^^(M,F). Then Iv{A,z) is an entire family of
F-invariant smoothing operators, with Schwartz kernel rapidly decreasing in
z on any compact subset of 9M x 9M, as \sftz\ —^ oo, in any region where
\^sz\ is bounded.

The proof of the Lemma follows at once from the properties of the
Mellin transform. To simplify the notation we shall often forget about the
v subscript in the indicial family.

Proposition 6.3. Let A,B € ^^^{M^F^B being properly supported.
Then

00

b-Trr[A,B}=— t t ^((^^(^-/(A.^oJ^A^IaAjdA.
27r J JQM dx

—00
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If moreover the operator <9/<9A(J(A, A)) o J(B, A) is F-trace class for each
A G R then, more suggestively,

00

b-Trr[A,B}=— t t Trr(^(A,A) oJ(B,A))dA. (6.4)
27r J JQM dx

—00

Lastly ifB is a differential operator and A G ^^"^(M, F) then the same is
true.

Proof. We shall use the definition of b —Trp given by the first equality in
(6.2) and adapt the proof of [M] page 153. We can assume that KA and KB
have supports contained in LLy^r U ' ^ = V where U is a "smalP open subset
of M^ disjoint from Ib(M^) and rb(M^). We choose U so that we can use
projective local coordinates on V : ( x ^ s = ^ ^ y - i y ' } and h = h(y) does not

depend on x on M^ D A&. We set:

T^ /- ^ ,ds dx ,,iKA = a { x , s , y , y ) \——dydy 2s x

KB = |^(x,s,y,y'}\——dydyf\^s x

Of course KA and KB are F— invariant. Let R : M^ —^ M^ be the factor
exchanging isomorphim: R^z^z'} = {z\z). As in [M] page 154 we have: (for
£>0)

t [hKAoB - hKB.A\\^ = t ^ hKAR^Ka)-
Jx>e J{x>e}UM^

t ^ KAR^hKB)
J{x'>e}nM^

In the previous local coordinates we have R{x^ s ^ y ^ y ' } = (^, ^, y , y ' ) . Since
KA^ KB are F— invariant and S-yer ̂ ^ = 1 we see that:

r /•+00 /*+°° ^ i dxds
^ ^ / ^x,s,y,yl)[^(-,-,y\y)h(yf}——dydy'

JQMXQMJQ J e s s s ^ S

r /*4-oo /•+oo ^ ^ d5 ds
= ^ ^ / ^,s,y,y')h{y}l^{-,-,yf,y)——dydyt

JQMxQMJo J e s S S X S
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Therefore we get:

y [hKAoB - hKBoA}\A =
Jx>e

/* /»+oo pse ^ ^ d^ d5

^ ^ I Oi(x,s,y,y/)h(y)(3(-,-,y^y)——dydyf
JOMxQMJo J e S S X S

At this point the proof is completely parallel to that in [M].
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7. r-invariant b-elliptic operators and their parametrices.

Let P G Differ (^5 -^05 ̂ i) be elliptic. We fix once and for all a trivialization
v of the positive normal bundle to the boundary of M and a boundary
defining function x G C°°{M) such that dx - i / = 1. We denote by ^.r the
lifted objects on M. In order to investigate the properties of the null space
of P we need to improve the symbolic parametrix construction of Section 5
and produce an inverse modulo operators with vanishing indicial operator.
In order to accomplish this we need to impose a condition on the indicial
family of P. We make the following assumption

3 8 > 0 | L2 - spec(J(P, A)) n [~i8, iS] =0 VA G R. (7.1)

Thus for each A € R, J(P, A)"1 exists as a bounded operator on the Hilbert
space L^M; Pi, Po).

As a fundamental example we can consider a Dirac-type operator D±

on an even dimensional F-covering with boundary M endowed with an exact
r-invariant & metric. Let us denote by DQ the boundary operator. If there
exists a 6 > 0 such that

L2 - spec(Do) n [-6, 6} = 0, (7.2)

i.e. if Do admits a bounded I^-inverse, then I{D^^ A) == ±%A + DQ satisfies
assumption (7.1).
Remark. We can introduce the set

spec^(P) = {z E C | J(P, A) does not admit a bounded L2 — inverse}.
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We claim that, as in the compact case, this set is concentrated near the
imaginary axis. In fact, if S G ^^^i > 0 is properly supported, then
we have uniform estimate for the F-Sobolev operator norms of the indicial
family of 5, i.e. on ||J(5,^)||o,^ exactly as in [M] page 148. This estimate
follows ultimately from the F-invariant symbol estimates and allow us to
infer as in [M] that if Qa is a F-invariant ^-local symbolic parametrix of
P G Diff^p as in (5.1) and if -RO,(T is the resulting er-local remainder, then
for the indicial family J(-Ro,a? ^) we can find a function F : [0, oo)) —> [0, oo)
such that Id — I{RQ^,Z) is invertible for each z such that \^z\ > F{\Qz\).
Using

J(P, z) o J(Q,, z) = Id - I{Ro^,z)

we see that spec^(P) is contained in the complement of the set {z G C :
1^1 > F(|^|)} and the claim follows.

Before stating the main result of this section we introduce the F-
calculus with bounds. Let C be the space of b-half densities K on M^
such that :

(i) For each 0 G C°°(M^) with support disjoint from bf(M^), K(f) <E
H^M^^).

(ii) if K = ̂ (r, r, ^/, y ' ) \d^- \ 2 in the neighborhood 0(bf) introduced in Def-
inition 4.6 then

^.^^([O.e];^00^-^!]^^)®^00^,^)) (7.3).

Notice that

K G C => K is C°° in the interior of M^.

Let a, (3 G R and define ^00'OL'(3 (M .b^} as the space of &-half den-
sities A on M^ such that for some e (depending on A) P ^ a ~ € P ^ ^ ^ j^'

We define the calculus with bounds as the space of continuous opera-
tors

A : C°°(M^} -^ C7-°°(M,^)

with Schwartz kernel in

^,a,/3^ b^^ ^ ̂ ^ b^^ ̂  ̂ oc,a./3^ &^^^

P^H^(M2^).
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We shall usually assume that a = (3 = 6 > 0 and use the shorter notation
^-00,6 ^m,6

b 5 b * ^
We denote by ^^(M,6^) the r-invariant calculus with bounds.

Thus

^f(M^} = ̂ r(^^^)+^^(^^^)+p!^

^ ^ (7-4)
where we denote by (ff^(M2, b^))^ the r-invariant kernels in

H^(M2^).
If A e ̂ /,B e '̂J^ with B properly supported, then A o B G

^y< Finally properly supported elements in ^^(M,6^) define
bounded operators H^p —^ ^r^' ^u these statements generalize in an
obvious way to the case of operators acting between the sections of two
complex vector F-bundles FQ^F^.

We can also introduce the extended b-calculus with bounds. The def-
inition of ^e" '̂ is precisely as in (i) (ii) above but with the submanifold B

instead of BA appearing in (7.3). Notice that ^p5 c ̂ '^ with the lift of

A E ^^p vanishing of order 2S at the off-diagonal front face of M^.

Theorem 7.1. Let P G Diff^p(M;Fo^i) be elliptic and assume (7.1).
Then there exists an operator Q G ̂ ^(M; F^.Fo) such that

P o Q = Id - Ro

Q o P = Id - J?i

with R, € Pbf^b^6'

Proof. Using assumption (7.1) the proof proceeds as in the compact case,
once r-invariant elliptic theory as in [A2][ES] is employed on 9M. We leave
the details to the reader.

Remark. It is important to note that the parametrix Q will not produce
6-local remainders. To understand this point we observe that in a neighbor-
hood of the front face, the Schwartz kernel of Q is the sum of the Schwartz
kernel of a symbolic parametrix Qo-, as in (5.1), and of the Schwartz kernel
given by

00

K(s, y, y') = -^ I s^K^P, A)-1 o I{^, A))(y, y')d\ (7.5)
—00
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with RQ^ equal to the remainder produced by the symbolic parametrix (see
(5.1)). Because of the presence of the inverse of7(P, A), such a parametrix is
not s-local, nor it will produce an 6-local remainder. On the other hand it is
clear that we cannot simply cut the kernel given by (7.5) near the diagonal;
such a cutting would destroy the property of I{Q) of inverting the indicial
operator of P which is in turn a mandatory requirement in order to obtain
remainders which vanish on the front face as in Thorem 7.1. This lack of
^-locality should be compared with the closed case ([A2]). We point out
that since the remainders RQ^RI are not properly supported, they are in
general unbounded on fo-r-Sobolev spaces; they are instead continuous as
maps H^ -^ I^^V^W € Z. In particular, although I(Ro) = I(Ri) = 0,
nothing can be said about the r-trace class property of J?o? RI

The fc-r-trace functional can be extended to ^j^, since only the

restriction of the Schwartz kernel to the lifted diagonal A^ C M^ is involved.
The 6-trace identity, formula (6.4) is still valid if A € ^^8 and B is
differential.

We can also consider the linear functional

Trr:p^^\M,F)^C

obtained by integrating the trace of the restriction of the Schwartz kernel of
A € pbf^^i^' over a fundamental domain MQ C A&:

TrrA= ! tiKA\^b= I ^{KA\W. (7.6)
JMo JM

Observe that

pbf^r'w^) ^ pbfftU'bTOoc^^^^))1^
(here we consider F = bQ,^ for notational convenience). If 26 < 1 then
the latter space is contained in Pi^pfbP^b^^oJ^^ b^))^ which is in turn
isomorphic, through the blow-down map, to the space
P^W^M2^)^.

Similarly, for 0 < 6 small enough, there is an injection

pAT''(^b^) c pbfpfbpfbWoc^. ̂ ))^ c
Pfb^bTOoc^^"1))^ __

In fact (7.6) defines a linear functional on P^b^^o^^6^))^ For

operators with Schwartz kernel in this space the analogue of Proposition 5.2
holds:
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Proposition 7.2. If A:C°° -> C~°° has Schwartz kernel

KA G pf^bTOoc^^Hom^^^-1^)))1^

and if one of the following three assumptions is satisfied
(i) A defines a bounded positive self-adjoint operator on Lj(M, F)

(ii) KA has compact support in A^/r

(Hi) r is virtually nilpotent and KA is rapidly decreasing on M2/!^.

then A G Ar, A is r-trace class and we have Tr r A = TrpA.
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8. The r-index of an elliptic r-invariant fc-differential operator.

As a consequence of the parametrix construction of Theorem 7.1 we see that
if P G Diff^p(M;Fo?^i) is elliptic and satisfies (7.1), then the null space
null(P : H^ —^ H^J^) is contained in ̂ ./^^(M, Fo). Let us now consider
IInuii(P)5 the orthogonal projection, in Lj, onto the null space of P acting on
Lj with domain H"^' Clearly IInuii(P) is a positive and self-adjoint element
in AT.

Proposition 8.1. If P G Diff^p(M;Fo,^i) is elliptic and satisfies (7.1)
then IInuii(P) is F-trace class.

Proof. Since IInuii(P) is positive and self-adjoint it suffices to show that
^nnuiHP)^ is trace class on Lj(M,Fo) for each (f)^ e C^°(M). However,
since by the parametrix construction we certainly have

^n^(P)^ : ̂ (^^O) ̂  X^^M^Fo)

we conclude as in the proof of Proposition 5.2 that <?!>IInuii(P)'0 is trace class
and the Proposition follows.

We shall now investigate the structure of the Schwartz kernel of the
operator IInuii(P)- Consider the manifold with corners M2.

Proposition 8.2. If P e Diff^p(M;Fo,^i) is elliptic and satisfies (7.1)
then

(̂IInuii(P)) C pip^(H^(M2^om(Fo (8^-l,Fo)))^. (8.1)
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Proof. As we shall not use this result, we only sketch the proof. We are in-
debted with R. Melrose for explaining to us the compact case of the following
argument.

Let Z = M x M = Mx x My with X, Y denoting the collective
coordinates on the two copies of the manifold with boundary M. Suppose,
for simplicity, that the boundary 9M is connected and that Fo = M =i^ ^" i ^ " i
^2. Z is a r-manifold with corners, with F acting diagonally. We have a

corner of codimension^2, which is Zi,i = 9M x 9M, and the two boundary
hypersurfaces Zo,i = M x 9M and Z^o =9M xM. As in [atiyah] we see
that our kernel ^(IInuii(P)), denoted from now on as Kn, belongs to the null
space of the operator

P=PX°PX+P^OPY

The operator P is an elliptic ^-differential operator on the manifold with
corners Z. Since Kn € null(P) what we need to show is that there exists a
(good) parametrix Q of P, in a space of fo-pseudodifferential operators, with
remainders Ri.R^ in the residual space P^P^H^^Z2,^)

This approach involves defining on a manifold with corners of codi-
mension 2:

(i) the small ^-calculus, with its composition, symbolic and mapping
properties

(ii) the notion of indicial operator and indicial family associated to a
boundary face.

Once this has been done (and we refer the reader to [M2]) we can
proceed as follows. Associated to P there are indicial operators

Ji,o(P) € Diff^p(^+Zi^^)

Jo,i(P)eDiff^(^Zo,i,^)

Ji,i(P)GDiff^p(A^Z^^)

with indicial families

(8.2)

A,o(P, A) = I^^{P, A) = P" a P + J(P, A)* o I(P, A)

Io,i(̂ ) = ̂ MXA^'^) = I(P^roI{P,P,)+P"oP.

A,i (P, A, /x) == I^^P, A, ̂  = J(P, ̂  a J(P, ̂  + J(R, A)* o J(P, A)
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Our assumption (7.1) certainly implies that the operators ^(P,r)* o J(P,r)
are invertible, with bounded Z^-mverse, for each r € R. More precisely
there exists an e > 0 such that

^-spec^P^o^rOf-^-oo^^O VT G R. (8.3)

Using (8.3) it is not difficult to prove that there exists a positive 6 such that

L2 - spec(Ji,i(P,A,/^)) H (-oo,5] = 0

Lj - spec(Ji,o(P, A)) H (-00, 8] = 0

Lg - spec(Jo,i(P,^)) H (-00,5] = 0

for each A € R and for each IJL e R. We leave the easy proof of this fact
to the reader. Proceeding as in the boundary case it follows that all three
indicial operators associated to P are invertible on L2 and L^, the inverse
being obtained in terms of the inverse Mellin transform of (the inverse of)
the respective indicial families. The inverses of the indicial operators belong
to calculi with bounds (analogous to the one defined in (7.4)) on the com-
pactified normal bundles appearing in (8.2). If Q^ is a symbolic parametrix,
with Qcr o P = Id — R\^, we can then find an operator Q ' , in an appropriate
calculus with bounds on Z, with the property that

I ^ J ( Q / ) O I i J { P ) = I i J { R l ^
for each admissible ij. The operator Q = Q^ + Q' is such that Q o P =
Id - J?i with R^ belonging to the same calculus with bounds as Q' but with
all indicial operators equal to zero. The push-forward under the blow-down
map

(f. . y2 y2
Pb • ^b ~^ z

of the Schwartz kernel of R^ belongs to the space P^P^H^{Z2,b^) which
is what is needed to conclude the proof.

Remark. The Proposition just established, together with the Proposition
7.2, proves once again that IInuii(P) is F-trace class.

Definition 8.3. Let P C Diff^p(M;Fo,Pi) be elliptic. We define the F-
index of P as

indr P = Tr r n^n(P) - Tr r n^n(p*) = dimp null(P) - dim? null(P*).
(8.4)

As a corollary of Proposition 8.1 we get
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Proposition 8.4. If P e Differ (M;Fo,^i) is elliptic and satisfies f7.^
then indp P < oo.
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9. Virtually nilpotent groups and spectral properties.

In this section we shall always assume that the group F is virtually nilpotent.
Our main objective is to show that b-Dirac laplacians satisfying assumption
(7.2) have a spectral function which is F-trace class near zero. The funda-
mental step is the following:

Proposition 9.1. Let F be virtually nilpotent and let D2 be a Dirac-type
laplacian belonging to Differ (At; E, E), with DQ € Diffr(<9M; EQ.EQ) satis-
fying assumption (7.2). Then there exists a parametrix Q € ^^(M; jB, E)
with remainders Roy R\ which are T-trace class. An analogous statement
holds for the Dirac operator D itself.

Proof. We first analyze the behaviour near the front face. The parametrix
Q of Theorem 7.1 is the sum of a symbolic 5-local parametrix Qa and of an
operator Q' G ^^^°' with indicial operator

00

K ' ( s , y , y ' ) = ̂  t s^K^D^ +A2)-1 o I{Ro^\))(y,y')d\. (9.1)
—00

Using finite propagation speed estimates as in the proof of Proposition 1.5
we see that the Schwartz kernel of the operator (D^ + A2)"1 is rapidly de-
creasing, uniformly in A, outside the diagonal in 9M x 9M. Since I{RQ^, A)
is smoothing and almost local, uniformly in A, we conclude that the Schwartz
kernel defined by (9.1) is smoothing and rapidly decreasing in the sense of
Definition 4.6 (ii) with r = 0. Since Q' can be chosen to be supported near

SOCIETE MATHEMATIQUE DE FRANCE



68 E. LEICHTNAM AND P. PIAZZA

the front face and since RQ = RQ^ - PoQ/ and J?i = R^ - Q' o P, we see
that the remainders RQ, jRi vanish on the front face, are rapidly decreasing
in the sense of Definition 4.6 in a neighborhood of the front face and ^-local
in the complement of such a neighborhood. According to Proposition 7.2 3]
RO and J^i belong to the von Neumann Algebra Ar and are P-trace class.
This proves the statement for D2. The proof of the one for DQ proceeds
exactly in the same way.

Theorem 9.2. Let E^ (A) G Ar be the spectral function associated to

the Borel set A for the generalized b-Laplacian D2. Let DQ be the boundary
operator and assume that L2 - spec(Do) H (-5, 8) = 0 for some 6 > 0. Then
there exists e > 0, which depends on 6, such that

Trr(^((-oo,A]))<oo VA < e.

Proof. We shall first need the following Lemma for elements in a
semifinite Von Neumann algebra A endowed with a faithful, normal, semifi-
nite trace T. We denote by <?i {A, r) the ideal of trace class elements. We
refer to [Br][Sh 2] for its proof.

Lemma 9.3. Let P G A and assume P = P*. Then V is invertible modulo
Si{A,r) if and only if there exists an e > 0 such that r(£'p((-6,£))) < oo,
with 2?p(A) denoting the spectral function associated to the Borel set A.

Going back to the proof of Theorem 9.2 we observe that the operator
(Id + 2)2)"1 is an element in ̂ ^8 which is Lj-continuous. Similarly the

operator P = (Id + -D2)"1 o D2 is bounded on Lj and since it is obviously
r-invariant it follows that P e Ar. Let Q G ̂ ^8 be the rapidly decreasing
parametrix constructed in Proposition 9.1. Let G be the operator G =
Q o (Id + D2) . Since Q = Q^ + Q ' , with Q' supported near the front face
and rapidly decreasing, and since D2 is differential we see that G G ^'^
is the sum of a P-invariant ^-local Oth-order fc-pseudodifferential operator
and an element in ^^° which is supported near the front face and rapidly
decresing. As in Section 7 we have that G is bounded in Lj and thus G G Ar.
Let us show that G furnishes an inverse of P modulo P-trace class operators.
According to proposition 9.1, GoP = Id-^i, where J?i belongs to the ideal
Si{Ar,r) of P-trace class operators. A standard argument then shows that
PoG-ld €<Si(Ar,T).
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By Lemma 9.3 we infer that there exists an e' > 0, e' < 8 such that the
spectral function Ep{{-oo, e']) is F-trace class. It follows that £?p((-oo, A])
is also r-trace class VA < e1. Since P = D2 o (Id + D2)-1 we conclude that
there exists an e < 8 such that

^(^((-O^A^OO V A < ^

and the theorem is proved.

Remark. The result just proved allows for the definition of &-Novikov-
Shubin invariants.
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10. The heat equation on Galois coverings with boundary.

In this section we give a treatment of the heat equation on F-coverings which
is suited to our particular needs. In particular, we assume the group F to
be virtually nilpotent. The advantage in making this assumption is that it
is then possible to build directly a space of kernels with the right space-
variables decaying estimates to which the fundamental solution of the heat
equations belongs. The decaying estimates translate as usual in the property
of belonging to a jB°°-calculus which is in turn a fundamental requirement
in order to define traces and b-traces (see Section 13).

First we assume that TV is a F-cover without boundary with base N.
The definition of the heat-space Njj proceeds exactly as in chapter seven of
[M]; thus Njj is obtained by t-parabolically blowing up BH = {(0,p,p) | p G
N} in R+ x N x N. The group F acts on R"^ x N x N by the formula
(^P?P') '7 = ( ^ ^ P ' l ^ P ' '7)- Also F acts on the temporal front face tf(TVj^) —^
BH with the action on the interior equal to the F-action over TN. We fix
F-invariant boundary defining functions pif, pib fo1' the temporal front face
and for the temporal boundary respectively.

Definition 10.1. Let —k G N. We define the heat-calculus of order k,
^^p(7V; ̂ 2), as the space of F-invariant kernels

K e p^"^-^00^,^); K\^ = 0

with the following additional property : 3 e e]0,1[ such that for any multi-
index a of derivation with respect to (t,z,w) G IR"^* x N2, for any q € N
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and any T > 0 :

sup sup IV^^^/^^w^l+d^w))9 < oo. (10.1)
0<t<T d(z,w)>e

IJL being the lift of a riemannian trivializing — j density.

We define ^^ev r(^5 ̂ 2 ) by requiring j^ to belong to the space

Ptf ^^?en(^^?^2) (see [^] f01' more details on the definitions used
here and in the sequel). The definition with a bundle F instead of ̂  can
be given as usual by tensoring with the smooth sections of the appropriate
homomorphism bundle. Since the following lemma may be proved as in [M]
page 262, we omit its proof.

Lemma 10.2. Let A € ^^p(^V;^) with -k e N. Then

A:S(N,E)-^t~^~lCOO([0,+oo[^xN,E)

and \/t > 0, W G S{N,E), Au(t, •) defines an element in S(M,E). If
moreover A E ^j^ev r ^2ejl ^or ^V t > 0, Au(t, •) defines an element of

S(M,E).

Notice that if A G ^j^ev r then the restriction AQ of the operator A
to t = 0 is well defined

Ao : 5(M, E) -^ 5(M, ̂ ), Ao^ = (A^)|t=o

Theorem 10.3. Let P G Diff^(^,E) be the lift to N of an elliptic self-
adjoint differential operator on M of order two, with non-negative principal
symbol. Then there is a unique element Hp G ^j^ev r(^5 ̂ ) suc^ ^a^

(<9i + P}Hp = 0 in t > 0, (^) |̂ o = Id. (10.2)

The kernel Hp defines a semigroup of smoothing operators exp(-tP) each

of which is rapidly decreasing on N x N.
Proof. The structure of the proof is precisely as in [M]. First we contruct a
parametrix G G ^j^ev r5 thus

t{9t + P)G = R € ^ ,̂ Go = Id.

We can always arrange for G and R to be ^-local, i.e. G{t^p^p') = 0 if
d ( p ^ P ' ) > £- Recall the convolution product -k of [M]. The proof of the
theorem is completed by using the following
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Lemma 10.4. The kernel defined by

+00 ^
H^G+Gi.^——)^

k=i T

belongs to ̂ Jj2^ p an^ ls a solution of the heat equation as in (10.2)

Proof of the Lemma. One proves that this kernel is indeed the solution of
the heat equation exactly in [M] page 271. Let T be > 0; then one checks
that for each k € N5 (—-^)*fc is ke— local and that its Schwartz kernel can
be estimated for all t G]0,T[, by C^~1 /k\ where CT is a constant which
does not depend on fc. Lastly, in order to prove that the heat kernel satisfies
the decay properties of Definition 10.1, one uses the trick introduced in the
proof of proposition 1.6 (see inequality (1.12)). Namely we assume that
d{z,w) > 100 and set ko = [^/d{z, w)} - 5. If k < ko, then {-R/t^^z.w)
is zero. Since ^^>^ C^1 /k\ is rapidly decreasing with respect to fco as ko
goes to +00, we have proved the lemma.

Next we consider a F-cover with boundary M of the compact man-
ifold with boundary M. The &—heat space M2 is obtained by taking the
t— parabolic blow up of R4' x M^ along BH = {(0,p,p) | p G M} in
R4' x M x M. M2 is thus a manifold with corners which has five boundary
hypersurfaces; namely, the two frontfaces bf(M2), tf(M2), and the three
others Ib(M^), rb(M^), tb(M^). The group F acts naturally on M^ (via
a diagonal action on the last two factors) and on the boundary hypersur-
faces. We fix r—invariant defining functions pif? Ptb for the temporal front
face and the temporal boundary respectively. In the next definition we will
consider the neighborhood 0(bf) of bf(M^) in M^ introduced in Definition
4.6.

Definition 10.5. Let —k € N. We define the b—heat-calculus of order k,
^k y{M\b^2), as the space of T-invariant kernels

K ^ p^^^C00^^)', A T ^ O a t t b U l b U r b

such that the two following additional properties are satisfied for a suitable
£6]0,1[:

(i) for any multi-index of derivation a with respect to (^,^,w), for any
q E N and any T > 0 : there exists a constant Ca,q,T such that

\/t (E (0, T) V {z, w) eM2\ 0(bf) such that d{z, w) > e
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\^a{K(t,z,w)®^l)\(l+d{z,w))q < C^,T. (10.3)

(ii) for any multi-index /3 of derivation with respect to (t,r,r,y,2/), for
any q G N, and any real T > 0 : there exists a constant D^^T such
that V I E (0,T)

V (r, T, y, y') 6 0(bf) such that d(y, y1) > £

^{K^^^^y^y^l+d^y^ < I5^,r. (10.4)

where we have as usual denoted by ^ a trivializing riemannian lifted
b-density.

We define ̂ ev,^^^5) by requiring K to belong to

p~^(n+3)~kC^(M2,b^). The following theorem claims the existence and
unicity of the solution of the b-heat equation in the b-heat calculus of
M2. We will omit the proof which uses arguments from [M] and from the
boundary less case above.

Theorem 10.6. Let P € Diff^(M,E) be the lift to M of an elliptic self-
adjoint b-differential operator on M of order two, with non-negative prin-
cipal symbol. Then there is a unique element Hp G ^^v,!^^^) such

that
{9t + P}Hp = 0 in t > 0, (ffp)|t=o = Id. (10.5)

Remark. Since Hp belongs to the b-heat calculus, we see that near the
front face, the derivatives Q^ Kup of the Schwartz kernel of Hp are smooth
functions (as a consequence we can certainly define the b-F-Trace). Equiva-
lently, we can control the derivatives 9^9j KH? of the heat kernel near the
front face, with respect to the projective coordinates s = { x / x ' } , x . Such
a property does not follow in an obvious way from the construction of the
heat kernel on M viewed as a complete manifold with cylindrical ends. In
fact finite propagation speed estimates only allow to control the derivatives
with respect to x9x = 9u,u= \ogx.

Proposition 10.7. Let D~D^ be a Dirac laplacian on a F-covering en-
dowed with an exact b-metric. Assume that the boundary operator of D~^
admits a bounded Lj-inverse. Then

lim b-Trre-^"^ = Trr(n^J = dim^null^)
t—^00
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Proof. Since the boundary operator jDo is assumed to be invertible,
we can define a small real 6 > 0 and a contour Ce in the complex domain
such that for any A € Ce the member of the indicial family

I(D~D~^~ - Aid, z) is invertible \/ z in the strip \Qz\ < 8. (10.6)

The contour Ce is explicitly given by the union of Ce and its complex con-
jugate Ce, with Ce equal to be the union of a halfline C with origin a + iA
and of the three segments:

[-£, -e + ie], [-£ +ie, a + ie], [a +ie, a + iA}.

Here A and the slope of C are » 0, and the positive reals e^ a, 8 are very
small.

Now we analyze the resolvent of D~D+ proceeding as in [M]. Let
(f)(t) G C^°([0, +oo[)_be such that (f)(t) = 1 for 0 < t < 1. We then set
^(A) = Jo^00 e^e-*5"^^, for any A G Ce. So we have:

^ ^ /•+00 ^

(D-^+ - Aid) o Gs{\) = Id - a,(A), ^(A) = - / e^e-^ ^(t)^
^0

Thanks to (10.6) we can construct as in [M] Ga(A) G ^^"^^ so that
for each X e Ce :

(D-D^ - Aid) o [G,(A) + GB(A)] = Id - Rr(\)

where ^(A) belongs to pfbP^^ioc^^ 6f2^) and ^s Schwartz kernel is
rapidly decreasing with respect to d{z^ z ' } and A belonging to the contour Ce'
Now we set G^(A) = {D~D^ - Aid)-1 o ̂ (A). Thus we have the following
decomposition of the resolvent for any A € Ce :

{D-D^ - AId)-1 = G,(A) + Ga(A) + Gy(A)

Using the spectral measure representation of D~D^ we see that for any real
t> 1 :

b-Trpexp^tD-D^) = ^b-Trr{f exp{-t\)(D-D^ - XId^dX)
«/ (/g-
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Moreover we can let £ go to O4' in the previous equality. We denote by CQ+
the limit contour. In view of theorem 9.2 we can choose a so that VA e [0,2a]
the spectral projection £^_^(A) is F-trace class. Using an integration by
parts with respect to A we can certainly show that:

t^/a ^(-^-^r^) = b-TrrTI^^ = TrrII^,

(10.7)
On the other hand

dE^.^{\) = ̂ [(D-^-iX+iO+W^iD-^-iX-iO+W^dX

so that, from (10.7), we obtain

,Hm»2j.t-IY^(^„^,„exP(-<A)[(5^+-AM)-]<iA) =

^ainuiî )
Now we observe that the Lj-operator norm of e^D'D^ - (a- ± e^i)ld)~1

remains bounded as e\ goes to 0^~. Thus using the structure of
G?s(A), G?^(A), G?r(A) we see easily that:

lim ——b-TTr[[ exp(-^A)(D-5+ - Xld^dX] = 0.
^+oc 2w L^,+n{^><T} ' V A / J

Proposition 10.7 is now proved.
Recall now the definition of the F-eta invariant given in the remark

following Theorem 2.7. Using the properties of the heat kernel we can prove

Proposition 10.8. Let M be an even dimensional F-covering with bound-
ary as in section 4. Assume I'-virtually nilpotent. Let D G Diff^ r(^ E^ E)
be a Dirac-type Za-graded b-differential operator. Under the assumption
that 0 ^ spec Do the following formula holds :

md^D+= ! A(M) Ch'(E) - ̂ (O).
J M 2

Proof. Using the short time behaviour of the &-heat kernel and the
rescaled &-heat calculus, which is nothing but the b- version of Getzler cal-
culus, we get:

lim &-STrrexp(-^D2) = f A{M)Ch\E)
^"^ JM
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On the other hand, Proposition 10.7 shows that:

lim b-STrrexp(-tI)2) = mdrD^.t-^o+ /

Thus by the fundamental theorem of calculus the difference between the
r-index and the Atiyah-Singer integral is given by the integral from t =
0 to t = oo of the derivative of the &-F-Supertrace of the heat kernel of
D2. Proceeding as in the introduction of [M] (page 6) we can express this
derivative as the fc-F-supertrace of a commutator. By applying Proposition
6.3 we obtain the F-eta invariant contribution as defined in the Remark
following the statement of Theorem 2.7. The Proposition is proved.

Remark. The result given above should be viewed as an Atiyah-Patodi-
Singer index theorem on Galois coverings with boundary. Ramachandran
[R], in the context of non-local boundary problems, has given a version of
the above proposition with no assumptions on the boundary operator and
only assuming the group F finitely presented. His result is thus much more
general then Proposition 10.8 above. However in the truly higher case,
which is what we are really interested in, our assumptions are crucial not
only in proving the higher index theorem but even in defining the higher eta
invariant appearing in the main formula (see [L2] and the remark following
the statement of Theorem 2.7).
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11. The A-fr-Mishenko-Fomenko calculus.

In this section we introduce the b-Mishenko-Fomenko calculus on the man-
ifold M. We only assume the group F to be finitely presented. Many of
the arguments are straightforward generalizations of the concepts in [MF]
[M] and are therefore only sketched. The fundamental result is the C^(r)-
Fredholm property for elliptic b-differential (^(I^-operators whose indicial
family is invertible.

Let r —^ M —^ M be a Galois covering with boundary as in section 4
and let FQ^ F^ be two complex vector bundles over M with lifts FQ^ F^ over
M. We define the (7*-algebra-bundles of ^b? T\ as in the beginning of section
1. Let us consider the trivial C^(r)-bundle over M, C^(r) = M x G;(r).
As in [CM] we identify

C°°{M, ̂ ) ̂  (<^(M, G?(F) 0 F,)f.

Let us write, as usual, A for C7;(r). The space Diff^(M;JFo,^i) of A-b-
differential operators is obtained by considering the restriction of the oper-
ators

Id 0 P : G°°(M, (^(r) (g) Fo) ̂  C°°(M, C^(r) 0 Fi)

with P € Diff^p(M;Fo?^i)? to the r-invariant elements. We shall denote
the restriction of Id (g) P to C^^M'^o) either as Id 0r P or as P. Notice
that we have resumed here the tilde-notation for r-invariant operators on
M.
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If x € C°°(M) is a boundary defining function for QM then, in local
coordinates {x , y^ , . . . , ̂ ), each A-6-differential operator of order m can be
written as a matrix of operators of the following type:

E^)^)- -(^r (ii-i)

with afc,a e (7°°(M,A). In fact we can also define the algebra of A-b-
differential operators directly in terms of (11.1).

The principal symbol of P <E Diff^(M;^b^i) is well defined as an
element in ^(^M.HomA^*^?*^!)), with? : ̂ M -^ M the
projection map, and there is a well defined notion of ellipticity.

Once a 6-metric on M has been fixed, we can consider &-Sobolev spaces
7^(M,.F) associated to the sections of a A-vector bundle T over M; the b-
A-hermitian scalar product for Lj(M,.F) is defined as in (1.4) but using the
&-riemannian density. These spaces are A-Hilbert modules (isomorphic to
^(A)) and Banach spaces. If P <E Diff^(M;^o,^i) then it is easily seen
that P defines a bounded operator V : U^-^ ̂ -m for eack k € Z which is
a A-module homomorphism.

If P = Id ®r P is a A-fc-differential operator, then we can define its
indicial family as J(P, z) = Id0r^(P, z), z € C. It's a family of A-differential
operators on 9M which is elliptic if P is. The indicial family can also be
defined in terms of (11.1). Notice that I { P , z ) is holomorphic in z (in the
sense that its coefficients, which belongs to (^(M.HoniA^o^i)), depend
holomorphically on z).

Let V € Diff^(M;^b^i) be elliptic and such that 35 > 0 :

35 C Z | VA G R x [-i8, i8} J(P, A) admits a bounded inverse

as a map ̂ -^-m- (11.2)

Notice that if J(P, A) admits an inverse as an element in B(%^, T^"771) then
it does so as a bounded map U^ -^ ^-m for each k € Z. The proof is
standard once we use the Mishenko-Fomenko calculus on 9M.

Theorem 11.1. Let P G Diff^(M;^b^i) be elliptic and assume (11.2).
Then for each k € Z, P is A-Fredholm as a map

P : H^M^o) -^ ^-^(M,^)
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with Mishenko-Fomenko Index class

Ind (?)=[/;]-[A/-] G^o(A) (11.3)

independent o f f c e Z .

Proof. Recall [MF, Th. 2.4] that a sufficient condition for a continuous A-
homomorphism P beetween two Hilbert A-modules H^H^ to be A-Fredholm
is that there exists an inverse of P : H^ —^ H^ modulo A-compact operators.
Applying this result to P : U^ -^ ^-m we see that it suffices to find for
each k e Z a countinuous A-homomorphism Q : ^^-m —^ U^ with the
property that

P o Q = Id - TZi Q o P = Id - 7^2 (11.4)

with 7^ i ,7^2 :%^-^ T-L^ A-compact. In order to prove Theorem 11.1 we
shall need the following

Lemma 11.2. Let x e C°°(M) be a boundary defining function for 9M C
M and let T be a A-bundle on M. For any e > 0 and for any s > t the
inclusion

^(M.JF) ̂  ̂ (M,^) (11.5)

is A-compact.

Proof. We will only deal with the case t = 0. Since this question is local,
we can replace £^ by the one-dimensional trivial bundle A and we have to
show that the injection:

^(M;A)^LJ(M;A)

is A-compact. Let 6 > 0, then we can find C§ > 0 so that:

W C a^(M,A), |N|LJ(M,A) < ̂ IHI^Lj(Mn{.«^;A)+

GS I H \x£H^(M^{x>6}•, A)

Let (e^)neN be an orthonormal basis ofa^I^M; A). Since (e^)n>o converges
weakly to 0 in L2{M U {x > 6}; A) and the injection I I s (M H [x > j}; A) ->
^(M H {x > 5}; A) is compact, we see that for all rj > 0 we can find a real
Nrj so that:

Vn > N^ \\en\\L^(M,K) < 6s + Cgrj
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The lemma is thus proved.
The strategy for proving Theorem 11.1 is of course to develop a b-

Mishenko-Fomenko pseudodifferential calculus where a parametrix Q of P
can be found.

In order to rigorously develop such a calculus we would need several
pages of rather obvious material. It is in fact clear that once the alge-
bra of C°° functions on M and on M^ has been replaced by the algebra
of C°° functions with values in A, the development of the small calculus
^^(M^o^i) and of the calculus with bounds ^^^(M;^)?^) is simply
the disjoint union of the material presented in [MF] and [M]. Thus we leave
to the reader

(1) the definition of the small fr-A-calclus

^(M;^o^i) 3 Diff^(M;^o^i).

(2) the construction of a symbolic parametrix for each elliptic b-A-
differential operator.

(3) the definition of the A-calculus with bounds

:̂1(M; ̂  .Fi) = ̂ (M; ̂  .Fi) + ̂ -J'̂  (M; ̂  ̂ i)

+pfbP?b^oo(^2,Hom(^o* ®^-1^1))

as in Section 7
(4) the proof of the continuity properties of the calculus with bounds

on Sobolev spaces T-L^.
(5) the proof of the following

Proposition 11.3. Given V e Diff^(M;:Fo^i) elliptic and satisfying
(11.2), there exists a parametrix Q G ̂ ^(M'^o,^) such that

PoQ=U-n^ QoP=ld-n^ TZi^epbf^^^o^i).
(11.6)

Using this proposition, the mapping properties of the elements in ̂ '^
as given in (4) above and Lemma 11.2 the proof of the first part of Theorem
11.1 follows. The fact that the index class does not depend on the particular
choise of k G Z also depends on the parametrix construction (the pseudoin-
verse on ̂ -m is induced by the same fc-A-operator for each k G Z). The
proof of Theorem 11.1 is now complete.
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Notation. As in the closed case, we denote by End^(M^) the space of
Schwartz kernels defined by p^p^H<^(M2,Ilom(^ (g) b^-l,^l)).
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12. Virtually nilpotent groups and the ^goo-calculus.

We now assume that F is virtually nilpotent, (M,^) is an exact
even dimensional fc-manifold and D± C Diff^M;^,!?^) is a Dirac-type
operator. Our goal is to extend the results of section 1 to the &-case. Again
we want to pass from the (7*-algebra A = C^(F) to the "smooth" subalgebra
B°°.

Observe first of all that from (11.6) it follows that the null space ofV^ :
U\{M, £^} — 7^(M, £-) is contained in ̂ (M, <?+) which, however, is not
contained in COO{M^£Jr}. Thus we cannot hope for a ^^-decomposition of
(7°°(M, <?00'±) as in Section 1 and our first task is to define and characterize
the space that will contain the "smooth" representatives of the index class
Ind^^) which was introduced in the previous section ( see Theorem 11.1).

Let U C M a trivializing neighborhood for the bundles E E^ <?, £°°.
If (j) € C^°{U) and if s e Lg(M,<?) then for each fixed z G U we can write,
as in Section 1 (see (1.5))

((^ s) {z)=J^ s^(z)-r. (12.1)
7er

Definition 12.1. We define Uy[M,£00} as the space of Lj -sections of
£ such that for each trivializing neighborhood U C M, for each smooth
compactly supported function (f) G C^° (U) the following two properties are
satisfied

(i) the s^ appearing in (12.1) belongs to H^{M, E) for any 7 e F.
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(ii) WV € N, VP € Diff^M; E, E) we have:

SU^I+IHI^HP^II^ < oo.

If a; is a boundary defining function for 9M and e > 0 then we define
the space x£U(^{M,£oo} by simply requiring the s^ in (12.1) to belong to
xeH^O{M, E) and by imposing the estimates in (ii) for the sections x~es^.

We are interested in the space ^%^(M, £°°^) because it will contain
the smooth representatives of the index class Ind^"^).
^ We now define the space corresponding to ̂ ^(M, £°°) on the cover
M.

Let e > 0 and fix po e M. Let x G C°°(M) be the lift of the boundary
defining function x G C7°°(M). Let l^(po,-R) be the characteristic function
of the complementary of the ball centered in po and of radius R. Here the
distance function is with respect to the lift of an ordinary metric on M. See
the discussion leading to Definition 4.6.

Definition 12.2. We define S^(M, E) as the space

{u e yH^{M, E) | V7V e N, VP e Diff^p

^P(^||lBC(po^)P(^-^)||^) <00}

The proof of the two following propositions is easy and will be left to
the reader.

Proposition 12.3. For each e >0 the map

u^s=^R^u)^
7^r

is a bijection between the space S^O'e{M, E) and x£'H<^{M, £°°).

Next we define the space of "smooth endomorphisms" as the space
End^o (M, £°°) of operators T the Schwartz kernel of which belongs to

Pfb/4W^ x M,Hom(^°° (g)^-1^00)).

When we have two different bundles ̂ , ^•f0, a similar definition can be
given, thus defining the space Hom^o(M;^°,.^00)
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On the cover M we define the space ^^(M^Hom^i^i?)), with

Homn(^, E) = Hom(E 0 b^-1, E), as the set of functions
u G ^£.r/£^f^o(M2,Homo(^,^)) which are invariant for the diagonal
r-action and such that for any F x F-invariant b— differential operator P
acting on ^(M^Hom^t^E)) and any function (f){z) € G^p(M) we
have for any nonnegative integer N :

sup RN\\B^R){z}P{x-exl-£u{z,z')<f>(z'})\^. <oo
JL>I b^ /

We then have:

Proposition 12.4. There is a bijection T -^ f between End^(M,<?00)

andS^^.Kom^E.E)) so that

TC^R^u)^=^R^fu)-r
7^r 7er

for any u 6 ̂ ^(M, £?), ^ > 0.

The definition of the small B°° - fr-pseudodifferential calculus is ob-
tained by taking the symbols with values in B°°. In the next proposition
we will describe the correspondence between b—B°°— pseudo-differential op-
erators on the base M and associated operators on M. It is at this point
that we finally use the definition of the extended &-stretched product intro-
duced in Definition 4.2. First we fix a few notations. We recall (cf defini-
tion 4.5) the r x r—covering map TT : M^ —^ M^ and the blowdown map
ftb : M^ —^ M2. Let 0(bf) be an open neighborhood of the frontface of M^.
Then Tr'^e^bf)) will be a neighboorhood of bf(M^) on which the usual
coordinates (r, r, y^ y ' ) may be used.

Proposition 12.5. There is a one-to-one correspondence between operators
)C € ^^o(M,f°°) and F—invariant operators defined by Schwartz kernels

K belonging to ̂ ^(M, E) where K satisfies the two following estimates:
1] For any N C N and any multi-index a of derivation with respect to

(z^ w) we have:

^sup IIV'i^wtlKl+d^w))^ < oo
(z,w)eM^\7r-i(0(bf))
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2] For any N G N and any multi-index /3 of derivation with respect to
(r, r ^ y ^ y ' } we have:

sup ||V^(r,T^,^)||(l+d(^^))^ < oo
(ryr^^QeTr-i^bf))

The proof of the Proposition is along the lines of that given for Proposition
1.4 (see in particular formula (1.10)).

Remark. Theorem 10.6 thus shows (in view of definition 10.5) that the
heat kernel exp(—^D2) is the associated operator on M^ of an element of
\Sf-°° (M £°°}b,B°° v ' • / •

We can also define the ff^-calculus with bounds ^^^oo(M,^°°) (for

6 > 0) and construct a parametrix Q e ^^^f(M, <f°°) of an elliptic element
V G Diff^oc^f00) whenever I(P, A) is invertible, in the ff°°-&-calculus,
for each A E R x [—i8^i8]. In view of the results of Section 1 (in particular
Prop. 1.6), invertibility in the A-calculus would suffice. Summarizing :

Proposition 12.6. Let P e Diff^goc(M;<f00) be elliptic and assume that
I ( P ^ \ ) is invertible in the A-calculus for each A e R x [—i6^i8]. Then
there exists a parametrix Q G ^^^oo (M; f°°) with remainders in the space
End^(M^°°).

Remark. If V is induced by a Dirac-type operator D on M with
Z^-invertible boundary operator DQ^ then Proposition 12.6 is nothing but
Proposition 9.1 of Section 9.

We can know state the main theorem of this section.

Theorem 12.7. Let D be a Dirac operator on M with L2-invertible bound-
ary operator DQ . Let T> and Poo be the two operators induced by D in the
A— and B°°—Mishenko-Fomenko calculus. We can find e > 0, Coo [resp.
A/ooJ a sub-B°° -module protective of finite rank of ̂ ^(M,^00^) [resp.
xe'H^O{M,£001~)] with the following properties:

1] Coo is free and we have

^(/:oc)cA/oc (12.2)

2] As Frechet spaces

Coo e^oo = ̂ rw^00'^ .A/oo ev^c^) = ̂ (W'")-
(12.3)
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3] The orthogonal projection of^(M,f°°'+) onto £^ and the projec-
tion P^ ofH^{M,£°°'-) ontoA/oo along D^(C^) are operators in
End^M,̂ ).

4] As Banach spaces

C^ 0 A © C^0A = L^M, ̂ +)

A/oo ® A © Pi,(^)0A = %^1 (M, ̂ -)

5] The operator

^-.C^^V^(C^) (12.4)

is invertible for the Frechet topologies; the operator

V+ : £^0A ̂  P^(£^)0A c %6-1 (M; £-)

is invertible.

6] The operator (P^)-1 o (Id - P^) belongs to the B°°-b-calculus with
bounds: ^(^o.

As a consequence of the theorem we immediately obtain

Ind V+ = [C^] - [A/oo] e Ko(B00) = Ko{A). (12.5)

Proof. See Sect. 17.
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13. Noncommutative superconnections and the &-Chern character.

In this Section we use the notations of Section 12 about the exact even-
dimensional b— manifold M, the graded hermitian Clifford module E^@E~,
and the Dirac operators D±. We will adapt to the b— setting the supercon-
nection formalism of Section 2. For instance we will define the 6—supertrace
and the commutator formula (Prop 13.5) which explains why this is not a su-
pertrace. Lastly we will prove the local higher index theorem. We adopt the
identification near the boundaries explained in the geometric preliminaries
of section 4.

We define ^~^° {M,£°° 0^oo O^ff00)) to be the set /C of right
b,SZ^ (^J300)

f!*(fi00)—linear operators defined by a smooth Schwartz kernel /C(j?), p G
M,2:

/C(p) e Hom(^ ® b^~l',£q ®0oo fL(ff°°))

where (^5 q') G M2 is the image of p by the blowdown map /3^. We assume
that in the trivialization charts of equation (2.7) the kernel /C may be written
locally as:

y^ Ai ® uji1=1
where each Ai e End(CdlmJE;), and each ui belongs to the space
^°°{M, b^ )(g)c^*(^00). For each point q <E A& we can define the super-
trace

Str/C(^)eH*(000)
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modulo the space of graded commutators exactly as in equation (2.10).
Let us fix a trivialization v € C°°{9M\ N^QM} of the normal bundle and
x C C°° (M) a boundary defining function for 9M such that dx ' v = 1 on
9M. We define:

&-STR/C= / Str/C|A,= l im[ / StiJC^+loge [ Str/QaAj
J^b ^^ Jx>e JQM

Let us assume moreover /C sends sections of £°° into that of £°° 0^oo f^ (0°°)
for some integer k. Then Lottos correspondence recalled before Definition 2.2
and the arguments used in Proposition 12.5 show that we can associate to
/C an operator K on the covering M whose Schwartz kernel K(p) of K is
defined for p € M^ by:

K(p) = ^ i?7i,...,7.(p) ^71... ̂  (13.1)
7l,...,7fcCr

where .FCy^...^(p) defines an element of ^^(M, £?). Thus by definition of
Lottos correspondence we have for any / € S^^^M, E) :

/C(^J?;(/))- ̂  ^ /L^l,...,7.(^o^/)/(^)7od7l...^
7^r 7o€^7l,...,7fcC^7M

We omit the proof of the following proposition which states that these
operators satisfy a decay property very similar to the one of Definition 2.2

Proposition 13.1. Let F be a fundamental domain of M. Then the oper-
ator 1C or K of equation (13.1) satisfies the following decay property, which
will be called property (DP). All the covariant derivatives of the operators
-^7i,...,7fc(p) satisfy the decay estimates of 1] and 2] of Proposition 12.5 with
respect to:

d(z;F)+| |7i | |+.. .+| |7^_i| |+d(w,^(F)), if p = {z, w) as in 1]

d(^F)+||7i||+...+||7fc_i||+d(^,^(F)), ifp={r,r^^f)^m2}

The following proposition may be proved as in [LI].
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Proposition 13.2. Let (j) e C^p(M) which is constant in the normal
direction near the boundary such that E^er^^ = L For an operator JC
as in Proposition 13.1 we have:

b - STR/C = ^ 7 <^)Strî ,,^(^ ̂ )|A.7od7i.. .̂
7o,...,7fcer l/M

modulo graded commutators.

For the manifold TO^/I boundary M we define Loft's connection V and
superconnection Ds = TV + sD for s real > 0 exactly as in Definition 2.1,
Y being the grading of E = £'+ © E~. Then we consider h e G^p(M)
which is constant in the normal direction near the boundary and such that
E-yer^W = 1. If / ^ S^'^M.E) represents as in Proposition 12.3 an
element of ^%^(M,f00) then:

Nz G M, V/(^) = ̂  h{z)R;(f){z) d7 (13.2)
7er

We state without proof the following result which is the analogoue of
Proposition 2.4.

Proposition 13.3. Let K be as in proposition 13.1 an operator satisfying
property (DP). Let A be an operator acting on S^'^M.E) 0^oo f^(ff00).
Then both Ao K and K o A satisfy property (DP) provided A satisfies at
least one of the following three conditions:

(i) A belongs to {TV o D + D o TV, V2}.
(ii) A is an element of^p(M; E) whose Schwartz kernel is smooth out-

side the diagonal and satisfy the decay estimates 1] and 2] of Proposi-
tion 12.5.

(Hi) A is the operator associated to an element of^~°° (M,£°° (g)»oo
b^^B00)^ '

O.CB00)) sending S^^M.E) intoS^^M.E)^^ ^m{B00} for some
m G N (so A satisfies (DP)).

Now we set P, = s(TV o D + D o TV) + V2. We define the supercon-
nection heat kernel exp(-D^) for s real > 0 to be the fL(000) -right linear
operator whose associated operator on the covering (see equation (13.1)) is
given by:
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exp(-s2^2 - P,) = exp(-s2i?2)+

y1 ~ ~
/ exp(-uis2£»2) P, exp(-(l - ui)s2) D2dul+

v o

/«! /•l-'Ui ^ ^ _

/ / (exp^-u^D^P.e^-u^D2)^
Jo Jo

exp(-(l - Z6i - n2)52^2) )du2du^ + • • • (13.3)

where Proposition 13.3 and the remark following Proposition 12.5 show that
in this Duhamel expansion (13.3) the component in ^(^00) is a Schwartz
kernel satisfying condition (DP). Thus we may state?

Definition 13.4. The b-Chern Character is defined by: b-chs £°° = b-
STR(e-^2)

Since D^ is even we see that: b -chs £°° is an even form defined modulo
graded commutators. In general, the &-Chern Character is not closed and
does not define an element of the topological noncommutative de Rham
homology.

Now i f / C c ̂ ^(M,<f°° 0^oo a.(ff00)) is an a,(500)-linear op-

erator as in the beginning of this section, we can define its indicial family
J(/C, A) which is an entire family (with respect to A G C) of smoothing op-
erators on the boundary QM acting on the sections of £^ 0^oo ^{B°°).
Proceeding as in the proof of Proposition 6.3, we can prove the following
commutator formula:

Proposition 13.5. Let /C, /C' be two smoothing operators belonging to the
space ̂ ^^{M,£00 0^oo ^,(^00)) Then:

7 /l+00 f)

&-STR[/C,r] =^f_ STR(^J(^,A)oJ(r,A))dA

If we replace the operator 1C by a differential operator e Diff^ ^oo (M, £°°)
and K! by the composition of 1C' with an element of the calculus with bounds
^%°° (^5 ̂ 00) ^lel2 ^Ae same commutator formula is valid.

Now we state the higher local index theorem.
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Theorem 13.6. _
1] We can find a bi-form uj G ^(T*M) (g) ^(B°°) with the following

structure:

^ == ̂  ̂ fc, ^fc = ^ ^0,71,...,7fc ® 70^71 • • • ^7fc
fceN 7o7i—7fc=e

(thus ujk is 7! concentrated in" 7o • • -7fc = ̂ ) such that:

lim b-chs£°° = t A(M) Ach'E ACJ € ^(600)
s-^0+ JM

2] Let TT : M —> M be the covering map, Pk(^k} be the projection of

ujk onto ^(T^M) (g) f2^(ff°°), and let h be the function introduced in
equation (13.2) then:

^P^)={z^k- ^ ^o(^)A•••A^o....7.-l(d/l)^7l...^
7o...7fc=e

Moreover, (jjk~Pk{^k) i5 a bi-differential form which is of degree < k—1
with respect to the M—variables and has a vanishing pairing with all
the reduced cyclic cocycles r^ of B°° associated to the left-invariant
antisymmetric cocycles rj of the group-cohomology ofF (see [ L I ] , prop
12).

Remark. The assertion 2] is in fact part of proposition 12 of [LI].
Proof. In order to compute & -chs £°° we apply proposition 13.2 with /C =
the superconnection heat kernel. Let k G N*, we are going to analyse the
limit as s —^ 0^ of the component in QA;(^°°) of b —chg £°°. Using DuhamePs
formula (13.3) we first consider the contribution of the term:

/*! rl-u-i /»l-ni-----Ufe-i _ _ _
(-1)^ / . . . / exp(-^l52D2)5(YVI?+DYV)

Jo Jo Jo

exp^^i^^YVD + DYV) • • • 5(YV^ + DYV)

exp(-(l - HI - • • • - Uk)s2D2) duk . . . du-i (I3-4)

We recall that Y denotes the Za—grading of E and that by equation (2.5)

(YVD + DTV) (/) = Y^ 9h R^{f) 0 d^, where 9h = -r[D, h]
7er
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Proposition 13.2 and the r-invariance of the heat kernel allow us to see
that the 6-supertrace of the operator given by the previous formula (13 4)
is given by:

Y" (-1^ F /'1-"1 /•1-"1--^ ̂  r .

- E . ( ) y » / o " • ! ' k^k-k
Str [ex^-^P2)^, z,)s0h(z^ exp(-u^D2)^ ̂

s9h(z^o-fi) ... s9h(zk^i... 7^1)

^-(l-u,-...-n,)s2D2)(z^. ..7^o)]dvol(^). ..dvol(^))^

(^fc ... chii 70^71 • • • d^k (13.5)

Let us show that if the product 7071... 7fc is not equal to e then (13 5) goes
^o jero as ̂  0+. We can find . > 0 such that for any points .0, .1,.... ̂

d^^+d^z^+...+d(zk^,^k)+d(zkWl...7k,^ >e
since the heat kernels exp^-u^D2 )(^, z,)... etc are concentrated near the
diagonal, we then see easily that (13.5) goes to zero.

Otherwise if 7071... ̂  = e in equation (13.5) then using the rescaled
6-heat calculus (which is nothing but a ft-version of Getzler's rescaling
[Ge]) we see as in [LI] that the limit of (13.5) is :

J-̂  ̂  /„ ̂ (M) A ch^) A R^dh A ... A <,̂ 7ori7i... d^

ft o f*\

As in [LI] a r-invariance argument shows the existence of a biform denoted

PkW € A*(T*M) 0 ̂ (B00) such that (13.6) is equal to:

/ ^(Jl^ACh^APfe^)
JM

Now if we examine the contribution of terms similar to (13.4) but where we
have replaced at least one of the (TVZ)+£»TV) by V2 then, using the same
arguments as above, we will find that the limit may be written as

yA(M) A Cl/̂ ) A (̂  - Pfc(^))

where the bi-form (̂  - P,(̂ )) is concentrated in 70 .. .7, = e and is of
degree < k - 1 with respect to the M-variables. The Theorem is proved.
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14. A higher Atiyah-Patodi-Singer index formula.

In this section we finally state and prove the main result of this pa-
per. Let us recall our data. Let M be a compact even-dimensional manifold
with boundary and let F —> M —^ M be a Galois cover, the group F being
virtually nilpotent. Let g be an exact b-metric on M. Let D be a gener-
alized Dirac operator acting on a Zs—graded hermitian Clifford module E\
D G Diff^(M;£'). We assume that D is associated to a hermitian Clifford
connection. Let D € Diff^(M^E) the F-invariant lift of D to the cover
M. Let Do C Diff(<9M; Eo) be the boundary operator. Let P, VQ be the
associated Mishenko-Fomenko operators, acting on the C^ (F)-bundles f, So.

Theorem 14.1. Let D, D, Do, T>o be Dirac operators as above. Let uj be
the biform defined in theorem 13.6. We assume that there exists a 8 > 0
such that

L2 - spec(i5o) n ] - 8,8[= {0}. (14.1)

Then
1] There is a well defined index class Ind(P+) G /Co(ff°°) ^ /Co(C;(r)).
2] The null space ofVo acting on C°°{9M,£^) is a protective, finitely

generated B00-module.
3] For the Chern character ofind^4'), in the noncommutative topolog-

ical de Rham homology ofB00, the following formula holds

Ch(Ind(P+)) = / AACh'^A^-^+C^null^o)) mH^B00).
JM 2

(14.2)
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Proof. We shall first establish the theorem under the assumption:

3 8 > 0 | I? - spec(Do) H ] - 6,6[= 0 (14.3)

We start by applying the higher &-trace identity, Proposition 13.5, to
prove the following important transgression formula for the &-Chern charac-
ter:

Proposition 14.2. Let u > t > 0, let T be the grading of<f, and let fj{s)
the higher eta integrand introduced in Section 2. The following equality
holds in ̂ (B°°):

u u

b-ch^(£00) =b-cht{£°°) - 1 /f)(s)ds - d /'&-STR(5e-(TV+s5)2)ds
t t

(14.4)

Proof. The proof is parallel to the one given in [MP 1] (Proposition 11)
for the family case. Here our choice of signs, adapted to the right-module
structure as in (2.11), enters in a crucial way. The details of the proof are
left to the reader.

Taking the limit as t —^ 0^ of the right hand side of (14.4) and us-
ing Theorem 13.6 and 2.7 we obtain the following equality of elements in
a,(23°°):

u

&-ch^°°) = t A(M) A Ch'(^) A a; - 1 t f)(s)ds-
J M 2 Jo

u

d fb-STR^De-^^^ds. (14.5)
o

The integrability of the last term on the right hand side near 5 = 0 follows
from the local index theorem of the previous section. Using assumption
(14.3) we now introduce a finite rank (in the sense of Kasparov [K]) per-
turbation of the operator Poo as in [LI] [B]. Consider the projective sub-
0°°-modules of finite rank of x£'H^)(M,£oo^±) constructed in Section 12.
Consider the 23°°-modules

%+ = Ul{M,£°°^} QA/oc = ̂ oo ̂  ^oc CA/oo
u- = %|(M, <?005-) © r^o = P^(/^) © A/oo © ^oc
H=n+e/H~~.
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As in Sect. 12 we denote by TljCoo the orthogonal projection onto Coo ana

by PA/OO the projection onto A/oo along 'Z^o(-C^o). We define the operator
7 ^ : % + ^ % - , a > 0 b y

^(/ © ") = (^c/ + cm) © "n^/
for each (/ © n) € 'H'1'. More suggestively

/P^ 0 0\

^ = 0°° D^ a . (14.6)
\ 0 a° O /

We next define 7^ : % - — % + by

^a(<7 © 0 = (^oc<7 + ̂ ) © "-PA/ooff

Thus

/^(^) 0 ^
^ - = ( 0 ^ <. • (14.7)

0 a 0/

Finally we define

""= ^ "0° <14-8'-

Remark. Since we have not claimed a simultaneous jB^-decomposition for
^^(M,^00^) (this decomposition might exist but we are not able to prove
it) our definition here is slightly different from the one given in [L 1].

Denote by ^oo the finite rank module Coo © A/oo- Let us fix a B°°-
connection V;p on ^oo by compressing Lott's connection V by the orthogonal
projection on £00 and the projection onto A/oo along T>^ {£'00)' Let us denote
by V = V © VJF the sum connection on %, T the grading of "H and define

Clearly

b-ch^(f°°) = STR(exp(-(TV' + uKa)2)) (14.9).

&-ch^o(^°°) = b-chn(£°°) - &-STR(exp(-V^)) (14.10)

SOCIETE MATHEMATIQUE DE FRANCE



100 E. LEICHTNAM AND P. PIAZZA

By [Ka] and Theorem 12.7 of Section 12 (see formula (12.5)) we have,
as in [LI],

Ch(Ind(P+)) = Ch([/:oo]-[A/oo]) = [STR(exp(-V^.))] G H^B°°). (14.11)

On the other hand

n^ € End^ (M, f°°'+) P^ e End^ (M, <?00'-) . (14.12)

This implies that their Schwartz kernels vanish on the front face; thus

STR(exp(-V^)) = &-STR(exp(-V^)).

Hence, by (14.10), (14.5), we obtain the following equality in ^(B°°)

u

STR(exp(-V^)) = t A(M) A Ch'(£?) A a; - 1 Ifj{s)ds-
JM 2 J

o

u

d fb-ST^De-^^^ds - (6-ch^o^00)) (14.13).
o

and thus, from (14.11), the following equality in H^{B°°):

u

Ch(Ind(P+))= t A^ACh'^A^- 1 [ f)(s)ds - (&-ch^o(^00)).
J M 2 J

o
(14.14)

Our main result will be obtained by taking the limit as u —^ +00 of the right-
hand side of (14.14) and showing that &-ch^o(<?00) -^ 0 (moddf^(000)) as
u —^ +00 . Using the transgression formula for the &-Chern character we
have, modulo df^(ff00),

&-ch^(f°°) = &-ch^o(^°°) +Bi(n,a),

Bi('u, a) being boundary terms. In order to compute these boundary terms,
as well as others that will appear later in the course of the proof, we need
the following Lemma. Recall that, near the boundary, we are using the
identifications explained in the geometric preliminaries of Sect.4. Also, for
notational convenience, we shall drop the oo subscript in denoting the Dirac
operator and the boundary Dirac operator in the 0°°-calculi.
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Lemma 14.3. The indicia! families of the operators (14.6), (14.7) and of
the superconnection TV are given by

J(7^, A) = ±\i + Vo J(YV, A) = YV^

with V^ equal to the connection induced by V on the boundary 9M.

Notice that, in particular, I(T^2^ A) = A2 + D§; moreover

ri^R
J (—^,A)=0 (14.15)do,

The proof of Lemma follows at once from (14.12).
Now we have

-^-fr-ch^00) = -&-STR[(n7^,+YV/),^^(d^)exp(-(TV/+^7^^)2)].da da

The last expression is nothing but

/77?
- d(b -STR{u{—^) exp^TV + n7Za)2)))v da '

+00

-^ ! STR(^J(^7^„A)J(uc^,A)J(exp(-(TV'+n7^,)2),A))dA
—00

(14.16)
From (14.15) it follows that the second term in (14.16) is identically equal
to zero, so our -Bi('u, a) is also identically equal to zero. Thus

b-ch^(£°°) =b-ch^o{£°°) mod d^{B°°) (14.17)

so that (14.14) can be replaced by (Vn > 0)

u

Ch^ndC^))^ / A(M)ACh'(£;)Acj-1 [ fi{s)ds - (&-ch^(^°°)).
J M 2 Jo

If a is large enough then 7?^ : T-i^ —> 'H~ in invertible. By the results
of Sect. 12 the inverse does belong to the ft-jS^-calculus with bounds. Thus
for a large we can change the sum connection on T-L^ and consider

V^^T^oV^-oT^.
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Define TV" to be V!^+ © (-V^_). The two superconnections TV
and TV" are of course homotopic through the path of connections TV^ =
TV'+^TV'-TV'). Computing as usual the derivative with respect to ̂  of
&-STR(exp(-(TV^ +n%a)2)) applying the higher &-trace identity (propo-

sition 13.5) and integrating in ^, from 0 to 1, we obtain, mod(df^(000)),

6-ch^ = &-STR(exp(-(YV"+'a7^)2)) +B^{u,a)

with B^(u^a) given explicitly by

1 +00

-^ f f STR{-^I(un^ A) J(TV" - TV, A)
0 -oo

exp(-(uJ(7^, A) + (1 - ̂ TV^ + ̂ (TV", A))2))^^.

By definition

ATV-.A)^ _^)

with V^ EE (%A + Po)"1 o V^ o (zA + Po).
Now let us briefly explain why:

lim B^{u,a) =0 (14.18)
U->-+00 v /

To see this we apply DuhamePs formula in the expression defining B^(u^ a)
where {uI(U^ A) + (1 - ̂ TV^ + ^J(TV", A))2 is considered as a pertur-
bation of (uI(Ka, A) )2 = ^(A2 +2^). Since ^o is invertible the heat kernel
exp(-n2^) satisfies the three estimates (2.14), (2.15), (2.16) of Sect.2.
Then exp(—n2^) satisfies the two assertions of Theorem 2.9. So let us con-
sider an integral over a k— simplex with coordinates (TO, . . . , o'k appearing in
the Duhamel expansion of B^{u^ a). One of the aj will be > ,— so, estimate

(2.14) shows that, for a suitable real 8/ > 0, the operators exp^-OjV^D^)
satisfy property (DP) uniformly with respect to exp^^'o-^2) as u > 1. We
recall Proposition 2.4 which explains how the (DP) condition is preserved
under composition. Then we can use part 1] of Theorem 2.9 to check that,
in the Duhamel expansion of B^(u,a), the component in each f^(ff00) is
the supertrace of a Schwartz kernel satisfying (DP) uniformly with respect
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to exp(—|—) as u > 1. Thus the assertion (14.18) follows by inspection of
the expression of the supertrace as given by Proposition 2.5.

Summarizing V u > 0

u

Ch^nd^)) = t A(M) A Ch\E) A u - \ If){s)ds
JM 2 J

o

-b-STI^exp^TV+^TZj2)) - B^(u,a} inH^B00)

so that, thanks to (14.18) and the convergence of the higher eta invariant at
infinity, we only need to show that

lim b -STR(exp(-(TV + ̂ )2)) = 0.
U—^+00

To do so we follow an argument in [B]. By construction we have (TV")-"/?.^ =
Oso :

(rV+un^2=

/ (YV^)2 + u2^ o ̂  u(n^ o YV^_ + TV^ o 7^) \
V 0 (TV^+^oTZ, ;•

Moreover

^[(rV^f+u2^ o7Z^(7Z^)-1 = (TV^-)2 +u^7Z;.

Thus
b -STI^exp^CTV" + u7Za)2))

= 6-TR[exp(-((TV^)2 +u2^ o ̂ ))-

^exp(-((TV^-)2 +^2^7^,))(^)-l]

which by the higher commutator formula (see Proposition 13.5) is in turn
equal to

+00

^/^(^•^
—00

exp(-(/(YV^, A)2 + u\\2 + P2))) o I(n^ A)-1 )dA.

One checks that this last expression goes to zero as u —> +00, exactly as for
(14.17).
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Since we have showed that
+00

ChOhidC^)) = t A(M) A Ch\E) A ̂  - ̂  t r)(s)ds
J M 2 J

o
in the noncommutative topological de Rham homology of 23°°, the theorem
is established under assumption (14.3).

Let us now relax this assumption and only require that 3 S > 0 [ L2 —
spec(Do)n] — 8,8[= {0}. Let ^ € (0,5). Following the compact case we
consider the weighted operators D±(i)) = x^Dx^ e Diff^M;^,^)
and their lifts D^) e Diff^ p(M; E^, E^) to the F-cover M. Each operator
D^~('ff) has a boundary operator jDo + ̂  which is Z^-invertible. According
to the results of Sect. 12 it follows that there exists a well defined index
class Ind(P^09)) = [CooW] - [A/ooW] ^ ^o(0°°). By standard homotopy
arguments this class is independent of the choise of '(9, for i9 € (0,5). We
define Ind(P+) == Ind(2^(i9)). (In the compact case (thus with F = e)
this is the definition of the extended I^-index, which is in turn equal to
the Atiyah-Patodi-Singer index; in the higher covering case we do not have
an index class in the Atiyah-Patodi-Singer framework.) Thus 1] is proved.
The fact that null(Do,oo) is a finitely generated projective Z3°°-module was
established in Proposition 2.6 of Sect. 2. In order to prove formula (14.2) we
first observe that for each '9 G]0,5[, we can define AS^(i9) as the coefficient of
t° in the asymptotic expansion of b -STR(exp(-(YV+^D(i9))2)). Following
the notation in [BGV]

AS^(i?) = LIM&-STR(exp(-(YV+^(i?))2)).

It is well defined as an element of f^(Z?°°) for each i? E R. One checks the
existence of the asymptotic expansion of b —STR(exp(—(TV+tD(^))2)) by
using the arguments of the proof of the local higher index theorem of section
13. Moreover ASa;(i?) is continuous in ^ as a simple variational argument
shows. In particular

limAS^)=AS^(0)= I AACh'(E)Ao; (14.19)
^o JM

By Lemma 3.1 of Sect. 3 we can consider the higher eta invariant for
DQ +1? defined as:

+00

W = LIM t STRci(i) [a(Do + ̂ ) exp(-( TV + sa{Do + i9) )2) ]ds
^u Jt
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Taking the regularized limit as t ^ 0 in formula (14.4) applied to D{^) and
proceeding as in the previous proof of Theorem 14.1 (when DQ is invertible)
we see that V^9 € (0,8)

Ch(Ind(U+)) = AS^O?) - J^) € H^B00).

Using (14.19) and Theorem 3.2 of Sect. 3 the theorem now follows by taking
^UO.
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15. Applications to positive scalar curvature questions.

We begin with recalling the definition of the higher rho-invariant of [L 2].

Since f2^(0°°) breaks up into a sum of subcomplexes labeled by the conju-
gacy classes of F, the higher eta-invariant may be written as:

r) = ®<y>e<r>^(<7>)

The higher rho-invariant is the closed form defined ( modulo graded com-
mutators) by:

p = ©<^>^<e> T?(< 7 >)

We refer to [L 2] for the (stability) properties of p.
Lott has pointed out the following corollary of our Theorem 14.1.

Theorem 15.1. Let M be a compact connected spin even-dimensional
manifold with boundary having a product spin structure near 9M. Let us
assume that 9M has a metric with positive scalar curvature which can be
extended to the whole M as a metric with positive scalar curvature having
a product structure near the boundary. If moreover, the fundamental group
of M is virtually nilpotent, then the associated higher rho-invariant is zero
modulo exact forms.

Proof. We just have to apply our index theorem 14.1 with E being equal
to the spin bundle. Lichnerowicz's formula on the universal covering allows
to see that both D and the boundary operator DQ are invertible. Since the
bi-form uj is concentrated in < e >, we get immediately the Theorem.
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Remark. Thus if N is an odd-dimensional spin manifold with positive
scalar curvature and a nonzero higher rho-invariant, then for any spin M
such that N = 9M (assuming that such exist), there cannot be a positive-
scalar-curvature metric on M which is a product near the boundary.
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16. Appendix A: proof of the ^-decompositions.

The proof of Theorem 1.3 will be divided into several Lemmas and Proposi-
tions. We shall build upon the propositions of Section 1 and the arguments
given by Mishenko and Fomenko [M-F] for the A-calculus. We have laid
the stress only on those of the technical details which are specific to the
B°°— calculus and not an immediate consequence of [M-F].

Lemma 16.1. Let C be a free sub-B°°-module of finite rank of the space
C°°{M, f°°'+) with the property that we can find a closed sub-module Q of
C^^M.S00^) such that:

C © G = C°°(M, £°°^), as Frechet spaces

C <SB°° A © G (2)0oo A = L2(M, ̂ +), as Banach spaces

Then C admits an orthonormal basis (for the B°°—hermitian scalar product
< •, • > induced by that ofC^^M.S00^)) and:

C C ̂  = C°°(M, ̂ S100'4"), as Frechet spaces

Moreover the orthogonal projection Tic onto £ is a smoothing operator C
End^M^00^).

Proof. Let (771,..., rjp) be a generating family for £ (g)^oo A, then C 0^oo A is
the range space of the adjointable operator P = ^L^ < .^t > rjj. Since
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ImP is closed in L^M, ̂ +), P admits a polar decomposition P = y|P| and
£ 0^00 A = Im W*, W* is a A—projection and

im yy* ©± null yy* = L^M,^)

From this we see that the map:

C ®B°° A —>- HoniA^ 00oo A, A)

x —)-< .,a; >

is an isomorphism. Thus if (ei,..., Op) is a B00— basis for £ then the matrix

A= (<ei,ej >)i<zj,<p

is invertible in Mp(A). We can adapt the proof of Lemma 1.2 of [M-F] to show
that A is positive; J3°° being stable under holomorphic functional calculus,
we see that (e'i,...Cp) = (A~^ei, ...,A~^ep) is a 6°°—orthonormal basis for
C. Lastly the orthogonal projection onto L is defined by:

Hc= Y^ <.,^. >e'j
j==i

e' > e'.* 5 j j

which is clearly smoothing.

Lemma 16.2. Let T and Q be two closed sub-B°° modules of(7°°(M, £°°^)
such that T is finitely generated, the projection Pp onto T along Q is
smoothing, and:

T © Q = C°°{M, £°°^), as Frechet spaces

T 0 A C Q 0 A = I?{M, ̂ +), 05 Banach spaces

Then T is B°°—projective.

Proof. We follow [M-F] page 95. Let (/i,..., fi) be a B°° -generating family
of^".
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Sublemma 16.3. There exists a constant C > 0 such that for any x G T
satisfying \\x\\ < 1, we can find ( A i , . . . , \i) € A.1 so that x = S - i ^jfj an(^
\\\j\\<C for any j € {!, . . . , I}.

Proof. Since ^'0A is closed (and a Banach space) we just have to apply the
open mapping theorem to the following continuous surjective linear map:

®^i A -^ T 0 A

i
(Ai, . . . ,Az)^^;A^

j=i

Going back to the proof of Lemma 16.2, let m € N* and Urn be the
orthogonal projection onto C^ (see convention 1.2). For each k E {1, ...,^}
we can write Hm(fk) = fj^ ® 9k where f^ € T and gk G Q. Since /^ ^ ̂
and P,r o II^(/fc) = f^ we then have:

/fc-A' -P^-IU./,))
Ifmis big enough then [M-F] have proved that {f^)i<k<l is a A-generating
family of^(g)A. Using Sublemma 16.3 we see that since fk —Tlm(fk) is very
small, Urn T is injective and

L^M,^) = n^(^)(g)A®0^A

We are going to show that 11̂  (JF) © Q = C^^M.S00^) which is the key
point. Let us consider the map ^ :

c^M^00^) = r@ Q -^ n^(jr) © Q
x -= f © g -^ ^(x) = Hm{f) ® 9

We have ^ = Id + ̂  where ̂  = (n^n - Id) o P,r. Using Sublemma 16.3
we see that for m large enough the norm of Rrm as a bounded operator on
L^M,^), is lower than |. Since Rm is smoothing, Proposition 1.6 shows
that ^ is invertible in the B°°— calculus so that:

Im ^ - TimW © G = C00^^00^)

Since Im Urn = ̂  and ^ (<F) = ̂ (^ we see that:

c^=^^)@gnc^
So ^(^) and T are ff^-projective.
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Lemma 16.4. Let 1C € ^^(M,^00^) be a smoothing operator in the
B°°—calculus. Then we can find two free sub-B°°-modules of finite rank
A/i, A/2 ofC^M,^00^) and two closed sub-B°° -modules <?i, Q^ of the space
C^^M.S00^) such that for 1 < i < 2 :

Xe^C^M^00^), A^®^ocA©^0^:A = L^M,̂ )

(Id + /C)(A/i) C A/2, Id + /C : (7i -> C?2 is invertible

(Id + /C) ® IdA : Gi S>B°° A —)- <?2 ̂ °° A is invertible

Moreover the projection Q ofC°°{My £*00'+) o.nto A/2 along Q^ is smoothing.

Proof. The idea of the proof is as in Lemma 2.2 of [M-F] . We use the
notations of Convention 1.2 and set for 772 E N :

C^ = e^B°°e^ C C°°(M, £00^) (16.1)

Let Hm be the orthogonal projection onto C^. Since /C 0 MA is a compact
operator acting on L^M, f"^), we can choose m large enough so that the op-
erator norm of the restriction of/C0ldA to 0^' 0 A is < i. Now we consider
the matrix form of /C in the decomposition C^- C /^ = C7°°(M, <?00'+) :

K' ==. ( ^1 ^\
\ /Cs ^4 y

So Id + /C o (Id — Urn) defines an invertible operator on C^n1' ® A © C^ ® A =
L^M,^) determined by:

Id: £^®A^/:^(8)A

(Id+/Ci)0ldA: ^0A^^0A

Using Proposition 1.6 and Lemma 16.1 we see that this operator is invertible
in the 0°°—calculus so that (Id + /Ci)~1 sends /^-L into itself. Now we
proceed as in [M-F] and set:

/Id -(Id + /Ci)-1 o /C2 ^ ^-i _ / Id 0 \
' " Y O Id ) u2 ~ ^3o(Id+/Ci)-1 Id;

M=^i(r^), g,=w^
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^=^W, (?2=^-l(^)

Let n^+ be the (smoothing) orthogonal projection onto /^, then Q ==
U^1 o n^+ oti^ is also smoothing and Lemma 16.4 is proved.

M

Definition 16.5. Let T € ^^(M,^00^^00'-) be an elliptic pseudo-
differential operator of order zero. We shall say that T is B°°-Fredholm
if there exist m G N*, U an invertible pseudodifferential operator of order
zero in the B°°-calculus, Frechet spaces decompositions

^{M^^^U^QU^), COO{M,£oo--)=^roeGo

Banach spaces decompositions

L^M.S^) = U{C-^) 0 A ©zTcC^y^A, L^M.S-) = A/o 0 A ®^^A

satisfying the following three conditions:

(i) A/o, Go are closed sub-B°°- modules
(ii) A/o is of finite rank
(Hi) T sends U(C^) into A/o, T : U{1^} -> Go is invertible and:

y : U^C^} (g) A — Go 0A is invertible.

Lemma 16.6. Let /C G Hom0oo(M,foo'+,foo)-) be a smoothing operator
and let T E ^B°° {M, £00^, f00'") be a B00-Fredholm operator. Then we can
find closed sub-B°° -modules A/?, Gf ofC^M^00^), A/? being finitely
generated, J\f^~ being free such that:

A/f^ © Gf = C°°{M, £00^), as Frechet spaces

A/f^ 0 A (B G^~ ® A = L2(M, f^), 05 Banach spaces^

T + /C sends A/^ into A/f, ̂  + 1C : (?^ -)- G^ is (Frechet) invertible.

T + /C : ̂  0 A —f G^ 0 A z5 invertible.

Proof. We follow the notations of Definition 16.5. We can replace T-\ JC by
y o U^ /C o U and thus assume that U = Id. Let

^_^i 0 \ ^_^i /C2\
^~\ o ^y ^3 ^y
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be the matrix decomposition of ^r, /C associated with the two decomposi-
tions:

^oo(^oo,+) ̂  ̂ ± ̂  ̂  (—(M,^'-) = ̂ (r^) ©A/o

Let IIy^ be the orthogonal projection onto /^. By assumption JFi is Frechet-
invertible from C^- to ^(^C^-1). The operator defined by zero on A/o and
by ̂ -1 on ^(^-L) sends continuously C^M,^00'") into
C^M.f00'"^). Since /C is B°°— smoothing (and thus A—compact) Proposi-
tion 1.4 (part 2]) then shows that J^^loJC^o(ld—'^.rn) is smoothing, moreover
if m is large enough then we can assume that its operator norm on L2 (M, ̂ +)
is < i. Using Proposition 1.6 we see that (Id + 7^1 o K'i)~1 ° ̂ f1 =
(^i + ̂ i)~1 sends ^(C^) onto /^-L. We set:

7^ _ (^ -(^1 + ̂ i)~1 ° ̂ 2 ̂  „, _ / Id Q\
^-{O Id ;5 2 -V- / c3o(.Fl+/Cl)- l Id;

We see that:

77' /-r i r'\ 77' ( T\-\-K.\ 0 ^
^2 o (y- +/C) 0^ = ( ^ /T _L ir \-i r _L T _L r )^ 0 —A.30^i+A.i) 0 A^2 + ^"4 + A-4/

Therefore we get the Lemma by setting:

^=^(0 Qt=U[{C^)

^ = ̂ -1 (.^O)) Q2 = U^-\W^))

The Lemma is proved.

Remark. Using the projection of Af^ onto Q^~ along Af^ which is invert-
ibie for the Frechet Topology, one sees easily that one can replace in the
previous Lemma Q^ [ resp. ^f] by M'^1- [resp. (JF+ ^(A/i4""1)]'

Proof of Theorem 1.3. Since

X = (Id+P^)-^ G ^(M,<f°°'+)

is invertible, ̂  o P"^ is elliptic of zero order. So there exists a parametrix

Pe^o^M^00'-,^00^)
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such that: X o V^ o P = Id + /Ci where /Ci e ̂ ^(M, f°°'-) is smoothing.
In order to lighten the notations we will only write the B°° -decompositions.
We apply Lemma 16.4 to /Ci (in place of /C) and get two decompositions:

A/i © 6?i = C°°{M, <f00'-) = A/2 © G2

satisfying the properties stated in Lemma 16.4:

(Id + /Ci)(A/i) C A/2, Id + /Ci : ̂ i — G2 is invertible

A/i, A/2 are free and finitely generated. Let Q be the projection onto A/2 along
02, thanks to Lemma 16.4 Q is smoothing and Q o X o V^ is smoothing.
We are going to show that T = (Id - Q) o X o V^ is ^°°-Fredholm in
the sense of definition 16.5; then an application of Lemma 16.6 to T and
/C = Q o X o V^ will give the Theorem. Clearly 1m ̂  = Q^. Moreover we
also have: V o T = Id + ̂  where K.2 C ^^{M.S00^) is smoothing.
We apply Lemma 16.4 to Id + JC2 and get two decompositions:

A/i' © Q[ = C7°°(M, e°°^) = A/"2 © ^2

where J\f[ is free of finite rank and:

P o ̂ (A/i') C A/^, P o T : Q[ -^ Q'^ is invertible.

Since by construction A/"^ H Q^ = {0} we see that: null^) C A/i'. Using
P we see that T sends G[ isomorphically onto a closed subspace of 82 C
(^(M^00^). Using P again we see that: ^ (Q[} H^A/i') = {0}. Since
A^ © Q[ = C°°{M, £00^) we get & = Im .F = 7{Q[) © ̂ (A^')

So we get a decomposition for a 7 :

Q[ ©A/i' -^ ̂ (^) © [^(A '̂) ©A^]

Since Q[ ©A/i' is associated to Id + K,2 as in the proof of Lemma 16.4 we see
that T is jS^-Fredholm so that we can apply Lemma 16.6 to T = (Id - Q) o
X o V^ and JC = Q o X o V^. We get then the following decomposition for
V^=X-lo^+JC):

A/i+ @Gf = C00^^00^), A^©^(^+) = (^(M^005-)

A/"^ 0 A © Qf 0 A = I?{M, <?+), At 0 A © P^(^) ® A = ̂ -^M, <?-)
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where Af and Coo = Af^~ are finitely generated sub- B°°— modules, Coo being
free.
^^(A/i4") C M. Moreover we have:

v^ : Qt -^ ̂ {Gt) is invertible

V^ : Gf^A -^ V^o{Gt)^A c H~\M, £-) is invertible

Now we see easily that we can replace Q^ [resp. V^{G^)} by C^ [resp.
^(^^o)]- Let us ^ow that the projection P^ onto A^ along %(^^o) is
smoothing. Let TljC,oa be the smoothing orthogonal projection onto Coo-
We can find a pseudo-differential operator T-L in the B°°— calculus and a
smoothing operator % so that:

v^o{id-iicjo^=u-n

By construction we have P^f o V^ o (Id - 11̂ ) = 0 and Pj^r = Pj^ o %.
From proposition 1.4 2] we get that P^f is smoothing. Now we see that A/"
is 23°°—projective by applying Lemma 16.2 to:

jr = x{AT^ g = X(p^{C^)\

Theorem 1.3 is thus proved.
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17. Appendix B: proof of the ^-^decompositions.

We shall now establish Theorem 12.7. The structure of the proof is as the
one for closed manifold, given in the previous section and we shall therefore
be very brief. First of all we fix an othonormal basis (e^)k>i of Lj^M,^)
such that for any k > 1 e^ C ^^(M,^00^). We set /^ = C^ff00^;
one has to use this space as the analogous one in Sections 1, 16.

Next we observe that for each m and for each e > 0
^oo (M; £°°) oEnd^L (M; S°°) C End%^ (M; £°°) and that for each e' G
[0,e] both ̂ ^o andEnd^oo map x^H^M.S00) into itself. The proof of
this two facts is as in [M]. We also observe that if B : x^l-L^ —^ x^U^ is
continuous for the Frechet topology and R € End^oo then Bo Re End^o.

These mapping properties are used as in Section 1 to establish the
analogue of Proposition 1.6, namely:

(i) Let e > 0 and let P G ^^oo(M;^°°) be such that its operator
norm ||P||B(LJ) < j- Then Id - P sends ^%^(M;^00) into itself.

(ii) Let Q € ^^oo(M;<?00) be invertible in the A-fr-calculus. If Q
admits a parametrix in the 5°°-&-calculus then Q~1 e ̂ ^(M;^00).

As a consequence of (ii) we see that

X = (zld + Poo)-1 e ^^(M;<?°°). (17.1)

We will omit the easy proof of the following lemma since it relies on standard
techniques of the previous section
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Lemma 17.1. Let e > 0, and let C, Q two closed sub-B°°-modules of
H^(M',£°°^) such that C C x^^^M.S00^) is finitely generated and

C © G -==- %rW <?00'+) as Frechet spaces

C 00oo A © G ®B°° A = ^J(M, £~^~) 05 Banach spaces.

Then we have:

1] On C, H^{M,£00^) and x^^^M.S00^) induce the same topology.

2] IfC is moreover free then £@C1- = 7^°(M, £°°^) and the orthogonal
projection onto C belongs to End^gL .

3] If the projection onto C along Q belongs to End^oo then C is B°°-
projective.

The proof of the theorem now proceeds as that of Theorem 1.3 in the
closed case once we make the following changes

(i) the ff°°-smoothing operators are replaced by End^g^M;^00)

(ii) the smooth sections of £°° are replaced by 'H^°(M^£00) with the
finite rank sub-modules always contained in x£'H<^o{M^£c)o)

(iii) the fi°°-calculus is replaced by the 23°°-&-calculus with bounds and
X is chosen as in (17.1).

(iv) as for the definition of b — ff°°—Fredholm operator T we add the
following assumption, with notations parallel to that of definition 16.5, given
the decomposition for T :

HSO{M^OO^=U{C^(BW^L)^^foeGo = H^{M^00^}

^-1 sends continuously Go H ^^(M,^00^) into ̂ ^(M,^00^).
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