Available at

www MATHEMATICSwEB.ORG " JOURNAL OF
POWERED BY SCIENCE @DIHECT' Func‘:lona-l

ACADEMIC Ana]'ySlS
PRESS Journal of Functional Analysis 200 (2003) 348—400 —_—

http://www.elsevier.com/locate/jfa

Dirac index classes and the noncommutative
spectral flow

Eric Leichtnam®* and Paolo Piazza®

& Institut de Jussieu et CNRS, Etage 7E, 175 rue du Chevaleret, 75013, Paris, France
® Dipartimento di Matematica G. Castelnuovo, Universita di Roma “‘La Sapienza”, P.le Aldo Moro 2,
00185, Rome, Italy

Received 19 June 2001; accepted 28 June 2002

Communicated by R. Melrose

Abstract

We present a detailed proof of the existence-theorem for noncommutative spectral sections
(see the noncommutative spectral flow, unpublished preprint, 1997). We apply this result to
various index-theoretic situations, extending to the noncommutative context results of Booss—
Wojciechowski, Melrose-Piazza and Dai—Zhang. In particular, we prove a variational
formula, in K, (C*(I')), for the index classes associated to 1-parameter family of Dirac
operators on a I'-covering with boundary; this formula involves a noncommutative spectral
Sflow for the boundary family. Next, we establish an additivity result, in K, (C*(I')), for the
index class defined by a Dirac-type operator associated to a closed manifold M and a map
r: M — BI' when we assume that M is the union along a hypersurface F of two manifolds with
boundary M = M, up M_. Finally, we prove a defect formula for the signature-index classes
of two cut-and-paste equivalent pairs (My,r; : My — BI') and (M>,r, : M, — BI'), where

Ml :M+ U<F‘¢l) M*? M2:M+U(F‘¢/)2) M7

and ¢;eDiff(F). The formula involves the noncommutative spectral flow of a suitable 1-
parameter family of twisted signature operators on F. We give applications to the problem of
cut-and-paste invariance of Novikov’s higher signatures on closed oriented manifolds.
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1. Introduction and main results

The Connes—Moscovici higher index theorem on Galois coverings [6] can be seen
as a family-index theorem but with a noncommutative parameter space given by the
reduced C*-algebra of the covering group [5]. It is natural to ask to what extent
results established for families of Dirac operators parametrized by a topological
space X can be carried over to such a noncommutative context. The past 20 years of
noncommutative geometry show that such generalizations have, besides their own
beauty, deep and interesting geometric applications. See Alain Connes’ book [5] for a
wide and fascinating treatment of many of these generalizations.

We consider the following results in family-index theory:

® on a closed manifold N, the existence of spectral section for a family of Dirac
operators with trivial index class [25,26];

® on a manifold with boundary M, the definition of the Atiyah—Patodi—Singer index
class and of the b-index class associated to the choice of a spectral section for the
boundary family [25,26];

® the equality of these two index classes [25,26];

® the relative index theorem, giving a formula for the difference of two index classes
associated to two different choices of spectral sections [25,26];

® on a closed manifold N = M, Upr M_, union along a hypersurface F of two
manifolds with boundary, the splitting formula for the index class associated to a
family of Dirac operators [7];

® the notion of higher spectral flow and its relationships with family index
theory [8].

For an informal presentation of some of these results we refer the reader to the
surveys [23,28]. We shall also consider the following result in ordinary (i.e. numerical)
index theory:

® let Mi =M, Y (F,p,) M_ and M, = M, Y (F.¢,) M_, (f)jelef(F), OM, =F =
—JM_ be two even-dimensional manifolds that are cut-and-paste equivalent; let
Dy, D, be two cut-and-paste equivalent operators of Dirac-type. Then the
difference ind Dy —ind D| is equal to the spectral flow of a natural family of
operators on F [3].

The main goal of this paper is to establish noncommutative generalizations of the
above results and give geometric applications to the problem of cut-and-paste
invariance of Novikov’s higher signatures on a closed oriented manifold.

The first result, i.e. the existence of noncommutative spectral section, was claimed
in the odd-dimensional case by Wu in the preprint [30]. Unfortunately Wu’s preprint
was never published; moreover, as pointed out to us by Michel Hilsum, the proof
given by Wu contained one unjustified step. For these reasons we felt it was
necessary to present a full proof of the existence of noncommutative spectral
sections; the missing step turned out to be nontrivial and one section of this paper is
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entirely devoted to a rigorous proof of this particular result. Notice that there was
much more in Wu’s preprint than just the existence-theorem for noncommutative
spectral sections. Of course we cannot report here on Wu’s further results and we
strongly feel that it is a pity that the interesting Mathematics established in [30] will
most likely never be published.

Some of our papers on higher index theory freely use the existence-theorem stated
in Wu’s unpublished preprint as well as the consequent definition, given there, of
noncommutative spectral flow (this definition is an immediate generalization of the
family case treated in [8]). In these articles of ours, [16,18,19], some of the above
generalizations are presented. More precisely:

® The definition, in the even-dimensional case, of the b-index class associated to a
Dirac operator on a Galois covering with boundary once a spectral section for the
boundary operator is chosen, is given in [16]. (Notice that our main interest in [16]
was in proving an index formula, in noncommutative topological de Rham
homology, for the Chern character of such an index class.)

® A formula for the Chern character of the noncommutative spectral flow in terms
of higher eta invariants is also proved in [16].

® The gluing formula for index classes is already stated in [19].

® The existence-theorem for spectral section on even-dimensional closed manifolds
is proved in [18] assuming the theorem in the odd-dimensional case.

® Finally, always in [18], we prove the relative index theorem for even-dimensional
Galois coverings with boundary.

In writing this article we were also motivated by the wish of completing the picture
that has emerged so far from these articles. We shall be more specific in each
particular section.

The paper is organized as follows. In Section 2 we recall the notion of
noncommutative spectral section and prove the fundamental result that a
noncommutative spectral section for a Dirac-type operator exists if and only if the
index class defined by this operator is trivial in K-Theory. We also recall the notion
of difference class and of noncommutative spectral flow. In Section 3 we recall from
[16,31] the definition of b-index class and APS-index class associated to a Dirac-type
operator on an even-dimensional Galois covering with boundary; these classes
depend on the choice of a noncommutative spectral section for the boundary
operator. We then prove the equality of this two index classes. We end Section 3 by
extending these results to odd dimensions, using suspension as in [26]. In Section 4,
following ideas of Bunke and Dai—Zhang, we prove a gluing formula for index
classes. In Sections 5 and 6 we discuss applications to the problem of cut-and-paste
invariance for higher signatures. Let us briefly explain what is the problem and what
are the techniques that we shall be using.

Recall from [11] that two manifolds M, M, are SK-equivalent if

M1 = M+ U(F~¢1) M,, M2 = M+ U(p~¢2)M, (1)
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with OM, = F = —OM_ and ¢;eDiff(F). In words, M, and M, are obtained by
gluing two manifolds with boundary but the gluing diffeomorphisms are different.

Incidentally, SK stands for Schneiden = cutting and Kleben = pasting.

The signature of a manifold is a SK-invariant o(M;) = o(M;) for M, M, as
above. An analytic proof of this fact is given in [3]. The argument given there is a
consequence of a more general formula concerning the numerical indices of two
Dirac-type operators obtained one from the other by a cut-and-paste construction;
the formula expresses the difference of the numerical indices in terms of the spectral
flow of a suitable 1-parameter family of operators on F. For the particular case of
the signature operator this spectral flow is defined by a 1-parameter family
{Dr(0)}pcs1, of odd signature operators acting on the fibers of the mapping torus

M(F,¢$5"¢,) associated with ¢, and ¢, and parametrized by a path of metrics.
Because of the cohomological significance of the zero-eigenvalue of the signature
operator, this spectral flow is equal to zero. Since the signature of a manifold is equal
to the index of the signature-operator, we obtain finally

(M) —o(M;) =ind D, —ind Dy = sf({Dp(0)}y.s1) = 0. (2)

In Section 6 we shall be concerned with the higher analog of this argument.

We thus consider a pair (M,r : M — BI'), with M a closed oriented manifold and r
a continuous map into the classifying space of a discrete group I'. To such a pair one
can attach a set of numbers, the Novikov’s higher signatures (M, r;[c]) defined by

o(M,r;[c]) = CL(M) v r¥[c], [M],
with [c]e H*(BI',Q) = H*(I', Q). Two pairs
(M17}’1 :M1—>BF) and (Mz,rz : M2—>BF)

are said to be SK-equivalent if M, and M, satisfy (1) and (ri),, ~(r2)y,,
(ri)jpr =(r2);y » where ~ means homotopy equivalence. One can ask whether two
SK-equivalent pairs (My,r;), (Ma,r;) have the same higher signatures. It was
observed by Lott [22, Remark 4.1], that results in [11,27] can be reinterpreted as
giving examples where the answer to this question is negative; one can then try to
find conditions on I" and F so as to ensure that the higher signatures are indeed SK-
invariants. The first result in this direction is given by Leichtnam—Lott-Piazza [12],
as a corollary of the higher APS-index formula proved there and the higher index
formula proved in [20] (see [12, Corollary 0.4]). The condition on the group I is that
it be Gromov hyperbolic or virtually nilpotent. The condition on F is recalled in
detail in Sections 6.2 and 6.3: it is an homotopy-invariant condition of the pair (F,r )
and can be briefly formulated as a gap condition, in middle degree, for the spectrum
of the differential form Laplacian on the I'-covering associated to (F,rz). This
condition was first introduced by Lott [21], where a regularization of the a priori
divergent integral defining the higher eta invariant for the signature operator was
proposed. These ideas were further pursued in the articles [12,18,22].
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A different treatment of the cut-and-paste result proved in [12] was subsequently
given in [13]. In that paper techniques from algebraic surgery are used; the condition
on F remains the same but the group I' must only satisfy the property that the
Baum—Connes map be rationally injective.

In Section 6 we shall reobtain these results using a higher version of the result of
Booss—Wojciechowski, i.e. a higher analog of (2). We briefly describe the result. Let

us denote by @ﬁn’rﬂ j=1,2, the Mishchenko-Fomenko signature operators

associated to the two SK-equivalent pairs (Mj,r;) and a choice of metric g; on
M;; then for the corresponding index classes, in K, (C;(I')), the following defect
Jformula holds:

Ind 735" — Ind 235" = st ({Zr(0)}ges1)- (3)

On the right-hand side of the above formula the noncommutative spectral flow of a
suitable 1-parameter family of fwisted signature operators acting on the fibers of the
mapping torus M(F,¢$;'o¢,) appears. Formula (3) is a consequence of two
fundamental results:

® the gluing formula;
® a variational formula for the index classes, in K, (C*(I')), associated to a
I-parameter family of Dirac operators on a I'-covering with boundary.

It is the latter formula that involves a noncommutative spectral flow. The
variational formula is proved in Section 5; there we also establish the equality of
the noncommutative spectral flow for a family {Z(u)},co; with the index class
associated to a suitable boundary value problem for the operator 0/0u+
{Q(M)}ue[o‘l] on the cylinder.

Notice that the noncommutative spectral flow is a class in K, (C*(I')); as such it
should be more precisely called a higher noncommutative spectral flow. Numerical
(i.e. lower) spectral flows in the noncommutative context have already been
considered, for example, in the work of Perera, Kaminker and Phillips; see [10] and
references therein.

It is important to notice that, in contrast with the numerical case treated in (2), the
noncommutative spectral flow appearing in (3) will in general be different from 0, as
it is associated to a family of rwisted signature operators, with the twisting bundle
depending on the parameter 0. By employing symmetric spectral section, as in [17],
we shall show that under the cited assumption on F this noncommutative
spectral flow is automatically zero. This fact, together with the assumption that
the Baum—Connes assembly map is rationally injective, allows one to reobtain the
results of [13].

Notice that in the even-dimensional case a recent preprint [9] of Hilsum sharpens
further these results by slightly weakening the assumptions on F. We refer the reader
to his paper for the detailed statement of this weaker assumption and also for a
somewhat different treatment of boundary value problems in the noncommutative
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context, more in the spirit of [3]. It would be interesting to know whether the higher
APS-index formula proved in [16] can be established for these more general
boundary value problems (one advantage of spectral section being that they are
specific enough for local index-theory arguments to be carried over).

Notice also that the cut-and-paste results in the odd-dimensional case are
somewhat more involved than in the even-dimensional case and cannot be obtained
by simply crossing with S!. This phenomenon is already present in [12,13] and will be
further clarified in the present paper.

2. Proof of the existence of noncommutative spectral sections

We begin this section with two functional analytic results that will be needed in the
proof of the existence-theorem. The definition of noncommutative spectral section
and the statement of the existence-theorem are given in Section 2.4.

2.1. Very full projections and a lifting theorem

We consider in this section a unital C*-algebra A and denote by Hy = I*(4) =
I2(N) ®¢ 4 the standard A-Hilbert module. We consider % the algebra of A4-linear
continuous adjointable operators from H 4 to itself and denote by .74 the subalgebra
of %4 of all the operators T such that both 7" and T™ are A-compact. We then have
the following exact sequence:

0> A y>By—>Cs =By H 40,

where %4 denotes the (generalized) Calkin algebra. We recall that (see [1]) the K-
theory groups K, (%) vanish and that K, (# 4)~K,(A4). The standard six terms

exact sequence in K-theory gives the following isomorphism ¢ called the index map
0: Ko(6a) > Ki(AH 4) =Ki(A). (4)

We shall now recall what a very full projection is, see [1, Section 6.11]. The
relevance of this notion in our problem has been pointed out to us by Ralf Meyer.

Definition 1. A projection p (= p*) of a unital C*-algebra A is said to be very full if
there exists an isometry ue 4 (u*u =1=14) such that uu*<p. In other words, p
contains a projection which is equivalent to 1.

The following theorem and the precise structure of its proof has been suggested to
us by Ralf Meyer.

Theorem 1 (Ralf Meyer). Let p be a very full projection of € 4 such that the K-theory
class [p] of p in Ko(€ 4) is zero (i.e. the index 6(p) is zero) and 1 — p is very full. Then
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there exists a projection Pe B 4 such that n(P) =p where n: B4—>C4 = BuH 4 is
the canonical projection.

Proof. The proof of the theorem relies on the next two propositions. [

Proposition 1. Let p be a very full projection of € 4. Then there exists an isometry
WeR, such that i(W)n(W*)<p.

Proof. By assumption there exists W;e%, such that n(W]) is an isometry of %4
satisfying n(Wy)m(W,)*<p and WiW, —1d e # 4. Recall that *(4) = @~ Aey;
for any NeN, we denote by Pye#, the projection from /?>(4) onto Im Py =
@, y Ae,. Then there exists N eN such that ||Py(WiW, — 1d)Py|| <} where || - ||
denotes the C*-norm of %.

Now we consider and fix a unitary isomorphism y : />(4) —Im Py < [*>(A).

We have

2 PN (WEWL —1d) Py <L (5)

*

we identify Pyy with an element of %4 so that (Pyy)* = y~'Py. We then set W, =
W\ PyyeZ4 so that WF =y~ 'PyWF. From (5) we deduce that

|WEW, —1d|| = ||z~ Pn(WF W, — 1d)Pyy|| <1

So WiW,e#, is invertible and Im W5 = I>(A). Therefore W3 admits a polar
decomposition W§ = V/W2 W3, Im W, = Im W, W5 is closed in I*(A4), ker W5 =
ker W, W3 and

P(A) =Tm WaW5F @+ ker Wo W5 (6)

(see [29, Theorem 15.3.8] for details). Moreover, V*V (resp. VV*) is the orthogonal
projection onto Im WL W5 (resp. Im W5W, = [>(4)), so VV*=1d. From the
definition of W, we get Wo W5 = Wi Wi + W (Py — 1d) W} and thus n(W,W5) =
n(WW7). Since by hypothesis n( W, W5) = n( W, W) <p, we obtain the proposi-
tion as a consequence of the following lemma by taking W = V*. O

Lemma 1. We have n(V*V) = n(W,LW5).

Proof. Using decomposition (6) and the fact that Im W, W} is closed and defines a
A-Hilbert module, one sees that W, W5 induces a (bi-)continuous bijection

W2W2* :Im WQW;—)II’D WzW;

still denoted W, W3. We denote by S its inverse; by extending S by 0 on ker W, W75,
we get an element of %4, still denoted S. Thus, by definition of the polar
decomposition W5 = V /W, W3, we have W, W3S = V*V. Now we consider the
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universal representation of the Calkin algebra j : ¥4 — B(Hg¢,). By applying jor to
the previous identity we get j(n(W>2W5))j(n(S)) =j(n(V*V)); so the range of the
projection j(n(V*V)) is contained in the range of the projection j(n(W>W5)).
Moreover, from the identity W) W5 = V¥VW, W5 = WL W5V*V, we get that the
range of j(n( W, W5)) is contained in the one of j(n(V*V)). Since j is injective, we see
that n(V*V) = n(W,W5) which proves the lemma. [

Proposition 2. Let p be a very full projection of € 4 such that 1 — p is also very full.
Then there exists a projection p" of €4 such that for any k,le N*, one can find an
A-linear bicontinuous isomorphism:

iy P(A) > (T P(A) @ P(A) @ (IT)_ P (A)) = Hyy
such that
p= X/Z,}(lk ®p" @01k 15 (7)

where 1, @p" ®0; denotes the obvious diagonal-by-blocks element of the Calkin
algebra € 4(k,1,1) associated with A, and u— x;’}uxk,, induces an isomorphism
between €4 and € 4(k, 1,1).

Proof. We shall treat (only) the case k =/ =1 from which the general case follows
immediately.

By considering a decomposition >(A4)~/*(A)®[*(4), we choose and fix a
projection I1;e%, such that ker IT; and ImII; are both isomorphic to lz(A).
According to Proposition 1, we fix an isometry We %, such that n(W)r(W*)<p.

We set W = W I, so W* = I1, W*. Since W*W = Id we get
WEW =11,, WW*=WILW* WW*WW*=WW*WW*=WW*

From this, we deduce that WW*< WW*. So WW* — WW* = W(Id — IT,) W* is a
projection

Im WW* = Im WW*@* Im(WW* — WW*)
and we get
P(A)=Im WW* @+ Im(WW* — WW*) @+ ker WW*. (8)
Since the map

Im W*W = Im IT) ~*(A) > Im W W*,

y->W(y)
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induces an isomorphism, one sees that
Im WW*~1(A). (9)

Moreover, since WW* — W*W = W(Id — I1,)(W(1d — IT,))*, one proves in the
same way that Im(WW* — W*W)~[2(4). Thanks to Kasparov’s stabilization
theorem, we then have

Im(WW* — W*W) @' ker WW* ~ >(A). (10)

Now we go back to the proof of the proposition. Since we have pr(WW*) =
rn(WW*p = n(WW*) (ie. p=n(WW*) and n(WW*)=n(WW*), we see that
p=n(WW*) and p=n((WW* — WW?*). Using decomposition (8), we can identify
A4 as a set of (3,3)-matrices; accordingly, we then see that p(e€%,4) is of the
following diagonal form by blocks

p=1®1Dq. (11)

We set 1@®q = p', p' is a projection of the Calkin algebra associated with the left-
hand side of (10). Since 1 — p is very full, 1 — p’ is also very full. Now we apply to
1 —p and to Im(WW* — W*W) @+ ker WW* the analog of decomposition (8)
Repeating for 1 — p’ the arguments that have been used for p, i.e. (9)—(11), we obtain
the following decomposition:

Im(WW* — W*W) @+ ker WW*~ P(4)@(A). (12)

With respect to this decomposition we can write 1 — p’ = ¢ @ 1 (diagonal by blocks)
where ¢, is a projection in 4. So, from (8) and (12), we get a decomposition
P(A)~P(A)®P(A)®I*(A) such that

p=1®(1l —q)DO.

One then gets the proposition by setting p”’ =1 —¢,. O

Proof of Theorem 1 Continuation. We use the projection p” € 4 4 associated to p as in
Proposition 2.

Lemma 2. The K-theory class of 1 in Ko(%4) is zero.

Proof. We recall that the index map (4) 6 is an isomorphism and is also the
connecting map associated with the six terms exact sequence in K-theory. Since the
projection 1 in the Calkin algebra % 4 is the image of the projection defined by Id in
B4, we have 6([1]) = 0. Since 0 is an isomorphism, the lemma is proved. [

Proof of Theorem 1 Conclusion. Since [p] is (by assumption) zero, the previous
lemma then shows that [p”] = 0. Thus there exists k,/ e N* and a unitary element
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u€ U(Mjes141(%4)) such that
u(1, @0, ®0,)u™ =1, ®p" ®0y.
We set [ = k+2/' + 1 and z = diag(u,u~'). We then have
2(L®0 @0z = 1L, @p" @O0,

Since z belongs to the connected component of 1 in U(My14/(%4)) (see [1]), we can
find Z in U(My41+1(%4)) such that n(Z) = z. Now we apply Proposition 2 with k
and / = k+2/' 4+ 1 and we set

PZ%/Q}Z(Idk ®01D0)Z 'y €84 (13)

We thus get a projection P of %4 4; using the two equalities (7) and (13) and the fact
that n(Z) = z, one sees that n(P) = p which proves Theorem 1. [

2.2. Spectral cuts and very full projections

We now consider a finitely generated group I'; we shall apply the above results in a
particular case to be described below, where the C*-algebra A will be equal to C*(I'),
the reduced C*-algebra associated to the group I

It should be remarked, however, that all arguments leading to the main result in
this section and to the existence-theorem in the next section, can be easily generalized
to any Dirac-type operator acting on the section of a A-vector bundle in the sense of
Mishchenko-Fomenko, with 4 any unital C*-algebra.

We shall briefly denote by A the reduced C*-algebra C*(I').

We next consider a smooth compact riemannian manifold M of dimension 2m +
1, a continuous map f : M — BI' and a complex hermitian clifford module £E— M
endowed with a unitary clifford connection. Let M — M be the I'-normal cover of M
associated with f : M — BI'. Let "y = A xp M — M be the A-flat bundle associated
to these data. Then we denote by & the A-Dirac-type operator acting on
C*(M,E®c7y), the set of smooth section of the bundle EQ ¥y — M. In fact
2 defines a self-adjoint unbounded regular operator acting on the A-Hilbert module
L% (M,E ®c7y), the completion of C*(M,E ®¢ 7"y) with respect to the A-
hermitian scalar product <;)» associated to the above data. Of course,
L% (M,E ®c7y) is isomorphic to />(A), and the algebra of continuous A-linear
adjointable operators BL%(M,E ®¢ 77y) is isomorphic to %,. We recall that
for any FeC%[-o0,+w],C), F(Z) is well defined as an element of
BLA(M,E ®c 7'7). Moreover, if KL (M,E®c? ) denotes the ideal of
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adjointable A-compact operators then the following Calkin algebra:

BLy(M,E ®¢c V)

CalE) = KL% (M,E ®c 7y)

is isomorphic to € 4.
Now we recall the following:

Definition 2. A smooth map ye C* (R, [0, 1]) is said to be a spectral cut if there exists
two reals a<b such that for any r<a, x(¢) =0 and for any t>b, y(¢) = 1.

Theorem 2. Let y be any spectral cut, then y(2) and 1d — x(2) define two very full
projections of the Calkin algebra C4(E).

Proof. We will treat only the case of y(2), the case of Id — y(2) being similar. We
shall need the following.

Technical Lemma. Let y be a spectral cut. There exists an orthonormal sequence
(ex)pen Of elements of L4(M,E ®c V) such that Vk,leN, {ex;e;> = & 1 and
1(Z)(er) = ex.

Granting this result, we shall now prove Theorem 2. We denote by
FcL’(M,E®c?7y) the closure of @j_y Aex. Thus, F is A-Hilbert module
contained in the range of y(2). We denote by pr = >, .y <.; e )¢ the orthogonal
projection onto F, pr belongs to B4L%}(M,E®c?). We fix a A-unitary
isomorphism 0: L% (M,E ®¢ 7r)—F and denote by j the canonical injection
Jj:iF>L(M,E ®c 7). Then jo0 defines an element of B4L%(M,E ® 7 y) whose
adjoint is given by (jo0)* = 0*opr. Then one checks easily that

0*oprejol =1d 12 (v p @ vy Jo0°0%PF = pr.
But, according to the Technical Lemma we have
1 D)epr = pr = (1(2)opr)* = prex(2),

therefore we deduce that, in the Calkin algebra, the projection y(2) contains the very
full projection pr. Theorem 2 is proved. [

2.3. Proof of the Technical Lemma

This section can be skipped at first reading. Recall that the principal symbol of D
(acting on section of E) is a(D)(x; &) = v/—1c(&) where ¢(¢) denotes the Clifford
multiplication by £eTFM; thus the principal symbol of Z is ¢(2)(x;¢) =
V—=1c(é) ®c Idy,. Let xeM and ¢eSFM (the unit cotangent sphere)
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then (v/—1¢(¢))* = Id and
E, = ker (V—1c(&) — 1d) @ * ker(v/—1¢(¢) + Id). (14)

In other words, the two bundles ker(v/—1¢(&) +1d) —» S*M define a direct orthogonal
sum decomposition of the trivial pulled back bundle 7*(E,)—S*M where = :
S*M — {x} denotes the canonical projection. We start with an elementary result.

Lemma 3. Let (€ SEM, we then have:

(1) For any spectral cut y, the principal symbol a(y(D))(x;&) is the orthogonal
projection of w*(E,) onto ker (v —1¢(&) —1d).

)

dim ker (V= 1¢(¢) — Id) =dim ker (V—1¢(&) + 1d)

—1dim E,>2"".

Proof. (1) We denote by |D|7l the operator defined as the inverse of D on
Im DeL?*(M, E) and by zero on ker D. Identity (14) shows that the principal symbol
o(Id +B)(x, &) is the orthogonal projection of m*(E,) onto ker (v'=T¢(¢) — 1d).
Since y(D) — (Id + I_g\) is a smoothing operator, we see that y(D) and Id + % have
the same principal symbol, (1) is thus proved.

(2) This result is implicitly proved in the literature; we give the proof for the sake
of completeness. By writing the clifford module E, as a direct sum of irreducible
clifford modules, one can reduce oneself to the case where E| itself is irreducible.
Recall then that the Clifford algebra CI(C*"*!) is isomorphic to the algebra
M2 (C)@® My (C) so that CI(C*"*!) admits to inequivalent complex irreducible
modules #*, %~ of the same dimension 2", thus Ey is one of the #* and dim E, =
2" Moreover, there exists an algebra isomorphism 6:

0: CI(C* %) - Ende (ST @.97).

As usual, the CI(C*"*1) is identified to the even part CI’(C*"*2) of the Clifford
algebra CI(C*"?). By the isomorphism induced by the map éeC*""!' >ey,.0 - &
where e, is the last vector of the canonical basis of R*"*2. For any ¢ C*"*!, we
set ¢(&) = O(eyni2 - €), the operator ¢(&) sends &% into itself and its restriction to E,
(identified to one of the &%) coincides with the Clifford multiplication (also denoted
¢(&) above) induced by the principal symbol o(2)(x; &) of 2. So we have to prove
that for any e S? = {neR*"*!/||n|| = 1}:

dim ker (V=1c(&) = 1d) 4+ = dimker (vV=1c(&) +1d);- .
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Since m>1 (and thus 2m + 2>2), Definition 3.20 and Proposition 3.21 of [2]
show that

TrvV=1¢(&),y+ = Tr vV=1c(&)y-- (15)

Now we consider the Chirality operator f§= (\/—_lmﬂ)el ...€yny1; in  this

formula (ey, ..., exms1) is the canonical oriented basis of R>"1. Let £eS¥, recall

(see [2, pp. 109-110]) that B - expni2 - € = —eamia - & - B and 0(B)c(E) = —c(E)O(P).
Since 0(B) sends &* onto & F we then get

ker (V=Te(&) +1d) s ~ker (V=1c(&) F1d) o5 . (16)
Moreover, since (v—1¢(&))? = Id we have
Trv—le(¢ €)g+ = dim ker (V—lc(¢) — Id) )yt — dim ker (V—1Ic(¢ &) +1d) g (17)
Using the three equations (15)—(17) we get
dim ker (vV/—1¢(&) — Id) s+ = dim ker (V—=Tc(&) + Id) g+,
which proves the lemma. [

Lemma 4. Let y be a spectral cut. There exists a strictly increasing sequence of real
numbers (ay);. . Such that y is equal to 1 on Jag — 1, +oo[, lim ax = + o0 and for any
keN, one can find ¢, eCy (la, a1, R) and uce LZ(M,E ®c?'r) such that

(D) (ur); (D) (ug) > is invertible in A.

Proof. We fix a spectral cut y; whose support is contained in [ag + 1,4+ o[, thus y is
equal to 1 on an open neighborhood of the support of y;. We are going to show the
existence of ve L% (M,E ®c ¥ 'y) such that {z,(2)(v);%,(Z)(v)) is invertible in A.
Then one can find y € C,,, (R, [0, 1]) (with = 1 on a big enough interval) such that
<Y (D)1 (D) (0); ¥ (D)y, (2)(v) ) is invertible in A. This will imply the lemma in the
following way: we fix a;>ap such that the support of ¢, =y, is contained in
Jao, a1[, then, to construct ¢,;, we proceed as above, replacing ay by a;. Thus
inductively, we construct the a; and the ¢, satisfying the requirements of the lemma.

Let U be a (small) nonempty open subset of M over which the bundles £ and ¥
are trivial and for which there exists a diffeomorphism ¥ : U— B(0, ry) onto an open
ball B(0,ry) of R" where n = 2m + 1 is the dimension of M. For each re|0,ry|, we
shall set U, = ¥~ '(B(0,r))c U. Until the end of the proof of Lemma 4 we identify
each U, (r€]0,ro]) with the open ball B(0,r) of R" and Ey, with U, x C". Let D
denote the Dirac operator acting on the sections of E. Let ae C* (M, [0, 1]) with
support contained in a small chart and such that ¢ =1 on a neighborhood
of U. Since the principal symbol a(ayi(2))(x;¢) of ay}(2) is equal to
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a(ay}(D))(x; &) ®1d, we can find a A-pseudo-differential operator # of order—1
acting on the section of E ®¢ ¥ such that for any ue C*(U; E) one has

ar}(2)(ulr) = a (D) (u)lr + R(ulr).
We then observe that {ay?(Z)(ulr);ulr) is equal to

(@) Wlr); (D) lr) > = 1 (D) @)l[721r + <Rulp);ulr), (18)

where 1 denotes the neutral element of I', so that ul, is indeed a section of
E ®¢c ¥r. The idea of the rest of the proof of Lemma 4 consists in finding a

ue C* (U; E) such that ||y, (D)(u)||3>» = 1 and ||{ Z(uly);uly || <1, where || - ||  is
the C*-norm of A.

For any (x;&)eT*U\0 we shall denote by p(x;&) the projection of E, onto
ker (\/—_1(:(%) —1d) along ker(\/—_lc(ﬁ) +1Id). Let re]0,rp/4] and
aeCr(U; [0,1]) which is equal to 1 on Uy the choice of r will be made small
enough according to the next sublemma. Then there exists a pseudo-differential
operator T of order —1 such that for any ue C*(U,; E) one has

m(D)(u)(x)oc(x)QL)n /5 /TR pl A(E) i + T (19)

We fix a point (0; &) e S*U, (where 0 is the origin of R") and a small contractible
open neighborhood C(&)) of &, in S§U,. We still denote by C(&,) the open conic
neighborhood of &, in T3 U,\0 induced from C(&p) by R**-homogeneity. Since the
bundle defined by the range of p(0; ¢) is trivial over C(&,), we may find ve S(R"; CV)
such that [, |8(¢)] d¢ = (2n)" and

supp b= C(&)) n{¢leR"/ |£|=1/2},

Vee C(&), p(0;8)([®(¢)) =v(¢&).
Let fe CF (U [0, 1]) be such that f = 1 on an open neighborhood of 0 R". We then

set for any real R>2, ug(x) = ﬁ(x)Rg v(Rx). Lemma 4 is an easy consequence of the
following:

Sublemma 1. If r>0 (and thus also supp &) is small enough then one has:

(1) imgo oo [|u|l2 = 1 and limp_, 4 o |[ugl| -1 = 0.
(2) limg_, [[%1(D)(ur) L2>2/3-

Proof of Lemma 4 admitting Sublemma 1. With the notations of Eq. (18), let C be the
operator norm of Ze By(H\(M,E® 7 y); L3(M,E® 7 )). According to Lemma 1

T _ u
we choose r>0 and R>2 such that, setting u = Tt We have ||u||;»<3 and
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|[u]| ;1 <f5¢+75- Then, using the Cauchy-Schwartz inequality one has immediately

<A@l r);ulry [, <1,

where || || ; denotes the C*-norm of A. Next, using Eq. (18), one checks easily that
(D) (ulp);  (2)(ulr) ) is invertible in A which proves Lemma 4. O

Proof of Sublemma 1. (1) is easy and left to the reader. Let us sketch the proof of (2).
According to (1) and Eq. (19) we have to consider the following term:

1 —
(3) Gy [ (v Tx) plos OTR(E) i (20)
2n)" Jig=1
Then, by writing p(x; &) — p(0;&) = >77; x;g;(x; &), we see that at the expense of
shrinking r (and thus supp «), the L*-operator norm of the pseudo-differential
operator ZL] x;gj(x; D) will be small so that we may replace the term (20) by

1

o(3) [ exp(v/Tn) (0 TR i (21)
(2m) |&[=1

Now recall that 1 — «(x) is identically zero on a neighborhood of supp . Then, since
the operator with the following Schwartz kernel

1
0o g [ [ e/ Tx8) 0 )80 e

is smoothing we may replace (thanks to (1)) the term (20) by

1

th() = G A e/ p(0: 7R(E) .

But, using standard analysis and all the properties of the function v, one checks that
limg, 4o [[vR|[;2(®ey = 1, which proves Sublemma 1. O

Recall that our goal in this section is to provide a proof of the following.

Technical Lemma. Let y be a spectral cut. There exists an orthonormal sequence
(ex)pen Of elements of L3(M,E ®c ¥ 'y) such that Vk,leN, {ex;e;y = Splr and
1(Z)(er) = ex.

However, by setting for each ke N (and with the notation of Lemma 4):

er = (e (D) (), 0 (2) () ) (D) ()

one deduces immediately this result from Lemma 4.
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2.4. Existence of spectral sections in the odd-dimensional case

We begin by recalling the definition of noncommutative spectral section.
This definition is motivated by the family (i.e. commutative) case treated
in Melrose—Piazza [25]; the definition of noncommutative spectral section was
given in the unpublished paper [30] and recalled in [31] (which is a published

paper).

Definition 3 (Wu). A projection Ze BL%(M;E ®¢ 7 ) is said to be a noncommu-
tative spectral section for & if there exist two spectral cuts y;, y, such that y, =1 on
a neighborhood of the support of y;, and Im y,(2) =Im < Im y,(2).

We recall that & defines an index class Ind (2)e K (A); one way to define this
class is to apply isomorphism (4) to the projection, in the Calkin algebra C,(E),

|
defined by }(F + 1), with F = (1 + 2*)” 2%. The following theorem is stated by Wu
in [30,31].

Theorem 3. There exists a spectral section for 9 if and only if the index class Ind (2)
vanishes in K;(A).

Remark. Although we state the theorem for the particular C*-algebra A4 = C*(I), it
should be clear that the proof easily extends to any Dirac-type operator acting on the
sections of a 4-bundle, as in the work of Mishchenko—Fomenko, with 4 any unital
C*-algebra.

Proof of Theorem 3. First we remark that for any smooth spectral cut y, we have
Ind (2) = 6([x(2))); indeed § (F + 1) = x(2) in the Calkin algebra.

We start by proving that if a spectral section 2 exists, then é([y(2)] = 0. Let us fix a
spectral cut y. By the very definition of spectral section, # and y(2) induce the same
element in the Calkin algebra C,(E). So the K-theory class [y(2)] € Ko(C4(E)) is the
image of [#]e Ko(BsL%(M;E ®c 7)) by the map induced by the projection :
BALi(M,E @@ ”Vf)%CA(E) Since Ko(BALi(M,E ®@ /V/)) = {0}7 we see im-
mediately that [x(2)] = 0 and thus that Jé([x(2)] = 0.

We shall now prove the converse. First of all we state the most important
consequence of our results in the preceding three sections. Let us fix a spectral cut y.
From Theorems 1 and 2 we infer that there exists a projection 2 in
BALY(M;E ®c V'r) such that 2 — y(2) is a A-compact operator. As pointed out
to us by Michel Hilsum, the existence of such a projection 2 was claimed without
explanation in [30]. Equipped with this fundamental result, we can now finish
the proof.

All the arguments we give from here until the end of the this section are due to F. Wu.
First we have the following lemma, which is a noncommutative generalization of
Lemma 1 of [25].
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Lemma 5 (Wu). Let & be a A-Hilbert module isomorphic to I>(A). Let 2 = 9* =
2*e€B4(&) be a projection and § € B4(&) such that |2 — #||<3. Then there is a
Sunction f, holomorphic in a neighborhood of the spectrum of |2.4%|, such that
P =f(F29%)eB,(&) is the orthogonal projection onto §2(&). Furthermore, if
92— JeH ,(8), then P — 2e A 4(&) too.

Proof. For any xe 2(&) one has x = 2(x) = #(x) + (2 — #)(x). Hence we have
Vxe2(8), [17(x)l= 3.

From this inequality, one deduces easily that #2 has closed range. Hence ( #2)* =
2. 7* has also closed range and Theorem 15.3.8 of [29] shows that

J2E) = ker (25%)" =ker (|27%)" = |2.7%((6),

& = ker (124%)) @ 7 2(6) = ker(|2.5*F) @ F2(6) = ker(725%) @ 5 2(&).

Therefore, 0 is an isolated point in the spectrum of |2,#*| and hence of |2 7% =
72 9% Letf () = 1 for 2 in a neighborhood of Spec(|2.#*|*)\{0} and f(4) = 0 for A
near 0. Then f is holomorphic in a neighborhood of Spec(|2.#%*) and

P =[(125%]) =f(F25%)

is the orthogonal projection onto #2(&).

Now we show that if in addition 2 — #e# 4(&) then Z — 2e #" 4(&). To this
end, we first observe that, since 2(&) = #2(&), we have 2(#2)= #2. Since
n(#2) = n(2) in the Calkin algebra (&), this implies that

n(Z2)n(2) = n(Z)n(f2) = (27 2) = n(J 2) = n(2) €Ca(&).

Taking adjoints on both sides, noticing that both n(#) and =(2) are self-adjoint
elements in €4(&), we get

n(2) = n(2)n(2). (22)

On the other hand, since ¢ : Q(&) — 2(&) is an isomorphism, # ' 2e B ,(&) is well-
defined, satisfying #( # '2) = 2. Passing to % (&) and noticing that n(2)n(¥) =
n(#)n(2), we obtain n(2)n(#) = n(2). From Eq. (22) we get n(2?) = n(2) in €1(&)
which proves the lemma. [

Proof of Theorem 3 Conclusion. Let o€ C°(R; [0, 1]) such that ¢(¢) = 1 for re[—1, 1]
and ¢(7) = 0 for 7] >2. We set ¢ (1) = ¢(t/N) for N e N*. One checks easily that as
N— + co:

on(2)U(Z) = 2)—>1(Z) - 2
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in the norm of # 4(&). Thus there is Ny such that
1(1d = 2) — 7[|< 5
where
S =1d=2(2) = on(2)2(Z) - ©).

Applying Lemma 5 to Id — 2 instead of 2 we see that there is a projection
Py = P¥ = P} in B,(6) such that (Id — 2) — (Id — 21) = € # 4(&) and

(Id = 21)(€) = #(1d — 2)(6).
Choose another spectral cut y, such that
70(2) =0 on Supp(l — y) U[—2Ny, 2Ny).

Then we have (1 — y)(1 — ) = (1 — ) and (1 — )@y, = @y,- Thus we have

(Id = %0(2))(ld = 2(2)) = (Id = x(2)),  (1d = 10(2)) P, (?) = Py, (Z).
This implies that (Id — y,(2))J = J. Hence we have

(Id — 21)(L3(M; E @ )
= Im(Id — 19(2))J (1d = 2) = (1d — 1o(2)) (L3 (M E ®c 7'y)).

Let y, be a spectral cut such that y,(¢) = | on a neighborhood of Supp(y,). Then we
get, for any xe L2 (M, E ®¢ 77):

1(2)(21(x) = 11 (2)(x) = 1 (2)((1d = 21)(x))-

Since Im(Id — 221) = (Id — 0(2)) (L3 (M;E ®¢ ¥7)), there is ye LA (M; E ®c7y)
such that (Id — 2)(x) = (Id — x,(2))(y). Hence

1(2)((Ad = 21)(x)) = 11 (2)(Id = 1(2))(y) = 0.

Therefore y,(2)?, = x;(2). Taking the adjoint shows also Piy;(2) = y,(Z). In
particular, we have found a spectral cut y; and a projection #; such that
Imy,(2) =Im(2).

We now proceed to modify the projection 2 to a spectral section of 2. Let y be a
spectral cut such that y(r) = 1 on [—1, 400 [, we set Y (1) = y(¢/N). Since y,(Z2) —
2, is a A-compact operator, one checks easily that

YD) (1 (2) — 21) -1 (2) — 2.
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Thus there exists No>0 such that y, (¢)y,(7) = z; () and
121 = 1(2) + ¥ (D) (101(2) = 21| = |21 = (2) 21| <3

Applying Lemma 5, we obtain a projection 2 = #* = 2* in B4L%(M;E Q¢ ¥'f)
such that

Im(2) = (2)PL(LE (M E®c Y ).

Let yx, be a smooth spectral cut such that y,(t)y,(¢) =y, (7). Then
(DWW N, (2)P1 = Yy, (2)21 and we have

PLYME @c 1)) = Im (2, (2)21) < Imiy (7).
On the other hand, since 2y,(2) = x,(2), we have
(D) =¥y (D) 0(D) = Yn (2)P100(D)-
This implies that
Im 3, (2) = Im(Y, (2)217:(2)) =Im (Y, (2)21) = Im 2.

Therefore, Im y,(2) =cIm 2 <=Im y,(Z) and 2 is a spectral section of &. Theorem 3
is proved. O

2.5. Difference classes and the noncommutative spectral flow

We recall the notion of difference class associated to two spectral section. The
definition is already given in [30,31] and it is an easy and natural extension to the
noncommutative setting of the definition given in [25]. We shall need the following
proposition of Wu whose proof (left to the reader) uses the same technique as in the
proof of Theorem 3.

Proposition 3. If there exists a spectral section for &, then for any spectral cut y;,
there is a spectral cut y, such that y,y, = x1, and a spectral section R satisfying
Im y(2)cIm Z<1m y,(2). Similarly, for any spectral cut y,, there is a spectral cut
%1 such that gy, = 1, and a spectral section 2 satisfying Im y,(2) cIm 2<Im y,(2).

This proposition implies immediately the following:

Corollary 1. Let 21,2, be two spectral section of 9. Then there exist spectral section
R, 2 such that for i =1,2

@19? = g@, = .@,‘ and @,Q = Qg, = 9.
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Definition 4. Let 2| and 2, be two spectral sections of &. Then there exists a class
[2) — P5] e Ky(A), called the difference class, which is defined as follows: choose a
spectral section 2 of Z satisfying 2,2 = 2 = 2%; for ie{l,2}, such a spectral
section 2 exists by Corollary 1. Then 2 — 2 and %2, — 2 are projections in
HA(LA(MGE ®c V7)) and [P — 2] = 21 — 2] — [#, — 2] is well defined as a
class in Ko(# A(L4(M;E Q¢ ¥77))) = Ko(A).

Remark. The definition is well posed, independent of the choice of 2. The proof of
this fact proceeds, mutatis mutandis, as in [25, p. 127].

Now we recall Wu’s definition of noncommutative spectral flow; this is an
extension to the noncommutative context of the notion of higher spectral flow given
by Dai and Zhang in [8].

Let (fu),c (0,1 be a continuous family of maps f,, : M — BI'. Let (gu) e (0,15 (Mu)yeo,]
and (VE’”)ue[o,l] be continuous families of respectively riemannian metrics on M,
hermitian metrics on E and Clifford unitary connections on (E, &) with respect to g,
for each uel0, 1]. Let (Z.),c(,) be the associated continuous family of Dirac-type
operators, where each 2, acts on L%(M;E ®¢ 77,). Recall that there exists an
isomorphism

U : Ky (C°([0,1]; C)®@A)~K;(A),

which is implemented by the evaluation map f(-) ® 1 — f(0)1. Now, assume that the
index 6([x(%o)]) vanishes in K;(A), then using the above isomorphism %, one gets
that 6([x((Zu),c(0,1))]) vanishes in K (CO([0, 1)) ®A).

Summarizing the family (Z,), | ) admits a (total) spectral section 2 = (Z.) ¢ (9 1)-

Definition 5. If 2, (resp. 2) is a spectral section associated with 2, (resp. &) then
the noncommutative spectral flow sf((@u)ue[()ﬂ]];{@o,,@l) from (2, 2y) to (21,2:)

through (Zy),c(o) is the Ko(4)-class:
StT((Zu)yefo s 20, 21) = [21 = 21] = [20 — Po] € Ko(4).

This definition does not depend on the particular choice of the total spectral
section 2 = (2),,¢c(0.1)-

If the family is periodic (i.e. 21 = 2,) and if we take 2| = 2, then the spectral flow
sf(((@u)ue[o_’l];,@g,,@o) does not depend on the choice of 2; = 2y and defines a K-
theory class which is intrinsically associated to the given periodic family; we shall
denote this class by sf((Zu),c 1 )-

More generally we can consider a periodic family of operators (2,) as above but
acting on the fibers of a fiber bundle P— S' with fibers diffeomorphic to our
manifold M. Also in this case there is a well-defined noncommutative spectral flow
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sf ((Zu),c51) € Ko(A4). We shall encounter an example of this more general situation
in Section 6.

Remark. 1. The spectral flow is additive with respect to the composition of path; this
means that if (/(7)),c(,p 18 @ l-parameter family of Dirac-type operators as in
Definition 5 and if (#(t)),., 1s a second such family such that 2(b) = +/(b),
then, for the family (2(7)),c(,q = (+/(1)) U (#(1)) the following additivity formula
holds

st((2(0)); Pu, Pc) = sE((A(1)); Pay Po) + SE(B(1)); Py, P:) in Ko(CHT)).  (23)

This formula follows immediately from the definition.

2. For a motivation behind Definition 5 we refer the reader to the original work of
Dai—Zhang [§].

3. The definition of noncommutative spectral flow, together with some
noncommutative extensions of results of Dai—Zhang, have been already published
in [16]. In particular, a formula for the Chern character of the noncommutative
spectral flow was proved there (Theorem 5.3); the formula involves the higher eta
invariant.

4. The definition of noncommutative spectral flow can be given for any 1-
parameter family of Dirac-type operators, not necessarily associated to a variation of
classifying map, of the metrics and of the connection. In fact, the definition can be
easily extended to the more general situation of Dirac-type operators on A-bundles,
as in the work of Mishchenko—Fomenko.

2.6. Existence of spectral sections in the even-dimensional case

Now we consider a smooth closed riemannian manifold M of dimension
2m, a continuous map f : M — BI' and a complex hermitian Z;-graded Clifford
module E=E"®E — M endowed with a unitary Clifford connection. Let
M—M be the I'-normal cover of M associated with f: M —BI'. Let 7 =
A xr M—M be the A-flat bundle associated to these data. Then we denote by
2 the A-Dirac-type operator acting on C* (M, E® 7 r) associated to these data.

In fact,
g 0 9
72

defines an odd self-adjoint unbounded regular operator acting on the A-Hilbert
module L% (M,E ®¢ 7).

Let t denotes the grading of L%(M,E®c7,) induced by the
grading automorphism tr defining the splitting £ = E*@®E~ We clearly have
9t = —19.
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Definition 6. A CI(1)-spectral section for & is a spectral section % with the additional
property that

PT+1P =1.

Lemma 4.3 of [18] shows the following:

Theorem 4. Z admits a CI(1)-spectral section € B4(L3(M,E ®¢ V7)) if and only if
the index of I is zero in Ko(A).

3. Manifolds with boundary, spectral sections and index classes
3.1. APS and b-index classes in the even-dimensional-case

Let (M, g) be a smooth riemannian manifold of dimension n = 2m with boundary,
E=E"®E a Z)-graded hermitian Clifford module endowed with a unitary
Clifford connection V. We assume that on a collar neighborhood (~[0, 1] x M) of
OM, g and V have a product structure. We consider also a finitely generated group
I', a classifying map f : M — BI' and denote by A the reduced C*-algebra of I'. Let
M — M be the associated I'-normal cover. We consider ¥~ r=AXr M, a flat bundle
over M. These data define a Z,-graded A-linear Dirac type operator & acting
on C¥(M,7 "y ®cE) which, in a collar neighborhood (~[0,1] x M), may be

written as:
9= 0 7
“\agt o )

where 7" = 6, (dx) (& + %), 2 is the induced boundary operator acting on
the sections of (¥7y ®cE™)yy and I~ = o (£ +0"%go~) where we have set
0* =0,+(dx). We now consider the A-Hilbert modules L%(M,7 ;®E) and
L% (oM, (“Vf@Ei)‘aM) defined by the above data. Then the operator &, defines a
self-adjoint regular unbounded A-linear operator acting on L2 (OM, (¢ f®E)‘ o)
By the cobordism invariance of the index class (see, for example, [16,
Proposition 2.3]) we know that Ind & is zero in K;(A); thus Theorem 3 shows
that 2, admits spectral section 2eBL%(0OM, (V" /'®E+)\3M)> moreover (see
[16, Theorem 2.6 1]), one may assume that £ is a A-pseudo-differential
operator of order zero. Then we define an odd operator acting on
L (OM, (Vy ® E) p1) by



370 E. Leichtnam, P. Piazza | Journal of Functional Analysis 200 (2003) 348—400

Next we introduce the domain dom(%») of & associated with the global APS-
boundary condition defined by £:

dom(Z) = {Ee Hy(M, Vs ®E)/Bs(&om) = 0}

and will denote by 24 the restriction of & to dom(%4). In a similar and obvious
way one defines 75 . We also set

dom(Z2%) = {{edom(Z»)/Z(¢)edom(Z»)}.

Then Wu has shown in [31, p. 174], that the heat operator H(s) = ¢*7>7» is well
defined for s real >0 as a A-compact operator sending L% (M,¥ r®E) into
dom(Z2%) and that Id + 22 is invertible with an inverse being A-compact. Thus
D po f(fw H(s) ds is a parametrix for &/, and &, is indeed a A-Fredholm operator
from dom (Z%,) to L% (M, 7"y ® E~); we will denote by Ind***(2", 2) e Ky(A) the
associated higher (APS) index class.

Now we are going to recall the definition of the b-higher index class (see [14,16])
associated to 2. For background material on the b-calculus we refer the reader to
the basic reference [24]. According to [31,16] there exists a A-compact self-adjoint
operator .«/% e KL% (0M, (7'r ®E) py) such that 7§ + </ is invertible and

1 g+ A
P == ld+L’0} .
2 2§ + Y

It is proved in [16, Proposition 2.10] that the operator 42/%, can be chosen to be a A-
smoothing operator.

We add to M a cylinder [0, 1] x OM and still denote by M the extended manifold.
Then we extend the metric g to a b-metric having a product structure ("—\f)2 + gom ()
on [0,1/2] x OM (this amounts to add an infinite cylinder). Then we denote by %
the b — A-operator associated to & acting on Li.A (M, 7"y ®E) (see [14, Section 11]).
Let peC*(R,R") be a nonnegative even smooth test function such that
J p(x)dx =1. We set p,(x) =1 p(%) and then consider the Fourier transform of p,:

Then there exists an operator /»e¥, (M, ®E",7y®E") such that the
indicial family of *Z" + .o/, is given by

10T + A p,2) = Do + iz + p(z) ALY

and is invertible for any zeR (see [25,16, Lemma 6.1]). So ?@" + .« belongs to
the b — A-calculus and is a A-Fredholm operator from Hj ,(M,7 s®E") to
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L; (M, 7y ®E"). We shall denote by Ind,("Z", 2) e Ky(A) the associated higher
index class.

Theorem 5. With the above notations, the following equality holds:

nd**(z*, 2) = Ind,(*7", 2).

Proof. Let pe C*([0,1];[0,1]), such that ¢(x) =0 for 3<x<1 and ¢(x) =1 for
O<x<%. For each €0, 1], one defines two perturbed Dirac-type A-linear operators
by setting: Z7(f) = ot (L + P+ tp(x)/}) and: D (1) =0~ (L +0H (%o +

to(x)/%)a7). We then set
B 0 (1)
7(1) = (93*(1) 0 )

Wu has constructed (see [31]) for each s>0 a heat operator e—*? () which sends
L%(M,7;®E) into dom(Z%). Observe that for each re[0,1], Z*(1) — Z*() is a
smoothing operator. Thus, using Duhamel expansion’s formula one then defines
for each s>0 the heat operator e?’() which sends L3(M,7;®E) into
dom (Z2%). Then,

s9?

+0o0
(1) / e 071 gy
0

defines a parametrix for 27 (¢). So the (27 (r)) refo,1] define a continuously family of
A-Fredholm operators from HY(M,7 y®E") to L3(M,7 y®E~). Thus for any
te0,1], Ind**S(2(1)*, 2) = Ind**3(2(1)", 2). Now, following closely the argu-
ments of Section 10 of [12], one easily checks that Z(1)" induces a A-Fredholm
operator, denoted ¥'%(1)" from H) ,(M, 7y QE") to L} ,(M,7y®E~) and that:

Ind(M2(1)") = Ind, ("2, 2) e Ko(A),

Ind(¥2(1)") = md**S(2(1)", 2).

Since we have seen that Ind*™(2(1)",2) = Ind*™®(2(0)*,2) the theorem is
proved. [

By combining the previous theorem and Proposition 6.1 of [18], i.e. the relative
index theorem for b-index classes, one gets at once the following relative index
theorem for APS-index classes:
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Theorem 6. With the above notations, let 2, 2' be two spectral section for 9. Then
one has

Ind*"S(77, 2) — Ind™S(9%, 2') = [#' — 2| Ky(A).

3.2. APS- and b-index classes in the odd-dimensional case

We shall now address the odd-dimensional case. Let (M,g) be a smooth
riemannian manifold with boundary of dimension n»=2m+ 1, E a hermitian
Clifford module endowed with a unitary Clifford connection V. We assume that in a
collar neighborhood of OM, (~[0,1] x OM ={(x,y)}), g and V have a product
structure. We fix a Clifford action Cly of T*OM on Ey = Epy by setting for any
neT*OM, Cly(n) = Cl(dx)Cl(n) where Cl denotes the Clifford action of 7*M on E.
We set ©=+/—1Cl(dx); since 1> =1d, Ey=Ef ®E, is Zp-graded with Ef =
ker(t — +1d).

We consider a finitely generated group I', and a classifying map /' : M — BI'. These
data define as before a A-linear Dirac type operator & acting on C* (M, 7 s ®¢ E)
which, in a collar neighborhood (~[0, 1] x M), may be written as:

0
9 = O'@(dx) <(9X+ @0),

where % is the induced boundary Z,-graded operator acting on the section of
(77 ®c E)|aM- The operator %, is a seclf-adjoint regular unbounded A-linear
operator acting on L%(OM, (Vs ®E)py); we know that Ind 7 is zero in Ko(A),
so Theorem 4 shows that %, admits a CI(1)-spectral section 2eBL*(OM,
(Vs ®E) gy ); by definition we have 12 + #t = r. One may assume as in the even

case that 2 is a A-pseudo-differential operator of order zero. We fix such a CI(1)-
spectral section 2 in the rest of this section. We can find (proceeding as in the even-

dimensional case) a self-adjoint odd A-compact operator &/g, acting on
L% (oM, (7y ®E)py) such that o + </ is invertible and

1 0
p=ay D7 (24)
2 |J0+%|

The fact that .p/f,?} be odd is implied by the condition 12 + #1 = 1, as in [26].
We denote by % the b-operator induced by Z. Proceeding as in [25, Lemma 9]
and in [16], one checks the existence of a self-adjoint operator .o/€ ?’;ff

(M, 7 y®E,? s ®E) with indicial family is given by
10D+ o,2) = Do+ iz + p, (2) 4. (25)

This indicial family is invertible for any ze R.
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Proposition 4. The operator *D + o/ » is self-adjoint reqular on L}zl AM, 7V RE).

Proof. We follow [31, p. 174]. Proceeding as in [17, p. 328] and as in [25, Proposition
8] one constructs for any s>0 a heat operator H(s) = e="7+42)" quch that R =
Jo e H(s)ds sends L} (M,7y®E) into H} ,(M,7y®E) and (Id+ ("2 +
o/ )?)oR = Id. Thus (Id + (*Z + .o/ »)*) is surjective. Moreover, for any &, &eH) ,
(M, 7 s ®E) one has

D+ 9)(E1);6) = Ei; O D+ A )(E) ) €A,
which completes the proof of the proposition. [

Proceeding along the same lines, one proves the following:

Proposition 5. Let QZQPS be the operator induced by 2 defined on the domain
dom (24" = {gyeHbl,A(M, VyQ®E)] P(pom) =0} Then 585 is a self-adjoint
unbounded regular operator on L3 (M, ¥ s ®E).

Definition 7. One defines two suspended families indexed by 7€ [0, ] by the following
two formulae:

(NVZ(Z + o4 5), = V1A + ("D + A 5)* cost +V=1("D + .o »)sin t.
The family X("Z + o/ ») = (X("Z + A4 »)),c 19 defines a (C(]0,7[) ® A)-linear
operator acting on C?(]0,7[) ® H, ,(M, 7 s ® E).

Q)(Z(Z8P5)), = \/1d + (2475)? cos t + V=124 sin 1.

The easy proof of the next proposition is left to the reader.

Proposition 6. (1) The index class Ind(Z(°Z + ./5)) is well defined in
Ko(C2(10, 7)) @ 4) ~ Ky ().
(2) The index class Ind(X(25%)) is well defined in Ko(C°(]0,n[) ® A) ~K;(A).

We can use suspension in order to extend to the odd-dimensional case Definition
4. We follow Proposition 4 of [26].

Definition 8. Consider two Cl(1)-spectral section Py, P, of 9y, let &/(},j (je{l1,2}) be
a Z,-graded self-adjoint A-compact operator acting on L% (0M; (7 r®E)py) such
that for each je e{1,2}, 2 + &/(1))/_ is invertible and

1 Do + A,
P=-(1d+——"0 )
2 %0 + /5]
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Then for any 7€[0, n],
D) = 1(1d + (2o + %)) P cos t + (2o + o3 ) sin ¢

is invertible, where © = v/—1 Cl(dx) is the involution of Epy. Let P;(¢) denote the
projection onto the positive part of @6([) According to Corollary 1, we consider a
continuous family (Q(7)),c (o of projections in ByL2(0OM; (V" r ®E) ) such that
for any r€[0, 7] and je {1,2}, P;j(¢)Q(t) = O(t)P;(t) = Q(t). Then

[P = Po] = [(P1(2) = P2(0) ] = [(Pi(2) = Q1)) = [(P2(2) = Q(1)) ]

is a well-defined class in Ko(C(]0,n[) ® A) ~K;(A) which does not depend on the
choice of &{(},j (je{1,2}) and (Q(2)),co-

Remark. In fact the previous definition of difference class [P, — P,] holds equally
well when one replaces OM (resp. f : OM — BI') by a closed manifold F (resp. a map
f'": F— BI') which is not necessarily the boundary of a manifold.

There is a third index class that one can consider. Following [26], we are going to
associate a Dirac suspension to the A-operator @ 4 .. For any 0eR/2nZ, we
denote by Ly the line bundle over R/nZ obtained by identifying (0,v) with
(m,exp(—v/—10)v), ve C. Notice that the first circle has length 27 whereas the second
circle has length 7. We then denote by . the bundle of C°(R/nZ)-modules over
R/2nZ whose fiber over 0e R/2nZ is given by ¥y = C°(R/nZ; Ly) (recall that the
%y are topologically trivial). We set

SA = C'R/7Z)® A.
Proposition 7. One can define a Dirac suspension of "% + o/ » which is a Z»-graded
SA-Fredholm operator, b@i,:
Hy g (R/21Z x M; & Q¢ VyQEQC*) > Ly s, (R/2nZ x M; ¢ ®¢ V1 ®EQC?),
which thus has a well-defined index class Ind (*Z%) e Ko(SA).
Proof. We follow Section 5 of [26] and explain the modifications that are needed in

the present noncommutative context. We introduce the following operator acting on
C*(R/2nZ,%):

P
ot = —\/—13+\/—1—2.
00 v

Then, for each e R/2nZ and ne Z, we consider the section e,(,0) of Ly defined by
en(t,0) = V=10 if 1[0, 7] and e,(r,0) = ¥ 1=10 if =7 Next, we fix ¢>0
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and >0 two small (enough) reals and a function f; s C ([0, n] x R) which is equal
to zero on {0} x R and {1} x R and equal to one on [6,7 — 6] x [=},4]. Then we

introduce the C°(R/nZ)-linear operator R, ;s acting on C*(R/2nZ, g) and defined
by the following Schwartz kernel:

K(R,5)(1,6,7,0) Zfo(thr 1/2))5,_@(e,,a,e)@en(r,e’)).

neZ

Then the required Dirac suspension %7 is defined to be

O 8L®Id+ld®\/—l@+R;b®V_1£{
I ®Id—1d®V—12 — R,;®@V—1.o 0 '

This operator is the sum of a Dirac b—SA-operator and a b—SA operator of order
—o00; moreover its indicial family is invertible for ze R; it follows from [16] that the
operator is SA-Fredholm. The proposition is proved. [

In the next theorem we relate the three index classes introduced above; we also
state the relative index theorem in the odd-dimensional case. We devote the next
subsection to its proof.

Theorem 7. With the notation introduced above we have:

(1) Ind (2(°Z + o)) = Ind (2(25™)).
(2) Let j: Ky(C%(0,n]) ® A) > Ko(SA) be the map induced by the inclusion
10, n[— R/nZ. Then

j(Ind (2(*2 + o »))) = Ind (*Z2) € Ky(SA).

(3) Let 21,2, be two CI(1)-spectral section for %y, then
Ind(Z(Z475)) — Ind(2(7375)) = (22 — 21 e Ki(A).

We can also give the odd-dimensional version of Definition 5 thus introducing the
noncommutative spectral flow for an odd-dimensional manifold F endowed with a
Z,-graded hermitian Clifford module E.

Let (fu),c(0,1) be a continuous family of maps f, : = BI'. Let (gu) e (0.1> (M) yepo,1)»
and (VE’u)ue[o,u be continuous families of respectively riemannian metrics on F,
hermitian metrics on E, and Clifford unitary connections on (E, h,) with respect to
gu for each ue |0, 1]. Let (Z4) o 1) be the associated continuous family of odd Dirac-

type operators (as above) where each 2, acts on L% (M;E ®c ¥~ r,). Assume that the
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index Ind  vanishes in Ko(A). Then Ind (Z;),.c (o Vanishes in Ko(C°([0,1])®4)
and thus (Z4),c |,y admits a CI(1)-spectral section (24), (o -

Definition 9. If 2, (resp. 2,) is a CI(1)-spectral section associated with & (resp. Z)
then the noncommutative spectral flow sf((Zu),cp 13 20, 21) from (Zo,2) to

(21, 2,) through (Z.),c(0, is the K;(4)-class:

uell

Sf((@u) [0‘1];,@075@1) = [,@1 — /71] — [,@0 — 90}6[(1 (/1)

ue

This definition does not depend on the particular choice of the spectral section
(97’”)”6[0,]]. If moreover the family is periodic (i.e. 2y = Z;) and if we take 2p = 2,

then sf ((2,) 0.1); 920, 20) does not depend on the choice of 2y = 2.

uell

Remark. As in the even case, the definition of noncommutative spectral flow can be
given for any l-parameter family of Dirac-type operators.

3.3. Proof of Theorem 7

This section can be skipped at first reading. We shall adapt to the noncommutative
context the arguments in [26]. This proceeds in a rather straightforward way; in fact,
the suspension-arguments do not distinguish very much between the commutative
and noncommutative context.

(1) Our goal is to show that Ind (£(*Z + 7)) = Ind (2(25"®)). We adapt to the
noncommutative setting the proof of Proposition 5 of [26]; we shall also employ
arguments used in a similar proposition proved in [12, Theorem 10.1]. Let
@eC™([0,1];[0,1]) such that ¢(x) =1 for 0<x<1/2 and ¢(x) =0 for 3/4<x.
By considering the family of operators

0
2(t) =09 (8x+ Do + t(p(X);zf%,)

and using an homotopy argument one can replace, in the definition of D@fj}P S 9 by
7(1). We shall denote by Z475(1) the associated self-adjoint A-Fredholm operator.
Then let x>0 such that [—pu, u] nspec(Zg + /%) = 0. We observe that we do not
change the index class if, in Definition 7, we take instead of ((2(Z%"®)),) the family:

(2575(1) + sV—=11d)  (_/2,/0- Now, for any se[—pu/2, 1i/2] we set

) 1 Do+ Ay + sV 11
2., 1==1d 2 :
‘ 2 | Do + o4 + sV —11]

Proceeding as in [26, p. 303], using the family (2, ), and an homotopy
argument, one checks easily the following:
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Lemma 6. Ind (X(25")) coincides with the index class defined by the suspended
Sfamily (parametrized by se[—u/2, u/2)):

25°5(1) + svV/—11d : Dom,— L% (M, 7 ®E),
Dom, = {ue Hy(M, 7' ®E)/?, /~(Ejom) = 0}

Now we extend M to a manifold M., with cylindrical end and the boundary
defining functions related by x = exp(X). Let us fix ye C* (R, R) such that y(x) = 1
for x<1 and y(x)eC*(M,) has support in the collar neighborhood of the
boundary. Following closely [26, p. 303], we embed Dom, into H}}’A(Me,"/f(@E)

and obtain the decomposition
Dom, @ Gs = H, (M., 7y QE),
where
G, = {ueHgyA(Me, ViQE)/ P, /(Ux=1) = =y and Vx>1 u = y(x)u—1}.

Moreover, (1) induces an operator, denoted ®'%, from HAA(ME,”V‘J«-@E) to
Lﬁi A(M,, 7y ®E). Then, proceeding as in [26, pp. 303-304], one checks easily that

for se] — p,uf, ¥'Z» — v/—1s1d induces an invertible operator from G, onto its
range denoted H, and that

L} (M., y®E) = L*(M, 7y ®E)® H,.

From this and Lemma 6, we conclude that Ind (X(24%)) = Ind (2(*'Z4)). Lastly,
an homotopy argument (see [12, Section 10]) shows that Ind(Z(°Z + 7/5)) =
Ind (2(*'%»)) which completes the proof of (1).

(2) Let j: Ko(C2(J0,n[) @A) —> Ko(SA) be the map induced by the inclusion
10,7[—R/nZ. Our goal is to prove that j(Ind (2(*Z + /»))) = Ind (*%3) € Ky(SA).
We observe that Lj,(R/21Z x M; % ®¢ V' ®E®C?) is isomorphic to the
field of continuous A-Hilbert modules over R/nZ given by @ ,cz Ce,(t,.)®
Li, A(M e /'®E®Cz). Now an easy translation in the noncommutative setting of
the proof of the Proposition 6 of [26, pp. 308-309] allows to finish the proof of (2).

(3) We shall now prove the relative index theorem in the odd-dimensional case
Ind(Z(@Q}?S)) — Ind (Z(QZ@,];S)) = [?, — 21]e K (A). We follow the proof of Propo-
sition 11 of [26] and explain the modifications allowing to extend it to our
noncommutative setting. We fix three real numbers, a<0, b>1 and ¢>0. We
consider a function ,(¢,4) e C* ([0, ) x R) which vanishes on the complement of
the open rectangle |0, z[x]a,a + br[ and is equal to one on the rectangle [¢, 7w — ¢] X
[a+¢a+br—e¢). Next we introduce the C°(R/nZ)-linear operator R, acting
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on C*(R/2nZ,¥) and defined by the following Schwartz kernel:

( l 07Z70/ Z lﬁ ( i)&t’@(en(n 9)®en(t7 0/))

neZ

We fix two operators ﬂf;,i (je{l,2}) as in Definition 8 and we associate to them two

operators 42{9?/ as in (25). Then, we consider the Dirac suspension b@é/ defined by

0 I RId+1d®V—1Z + R,®V—1.,
O ®Id—1d ® V=17 — R,®V—144, 0 '

Next we observe that L} g,(R/21Z x OM; & ®c ¥y ® Ejgy) is isomorphic to the
field of continuous A-Hilbert modules over R/nZ given by Vy(¢) @ V(t) where

Vo(t) = Ceo(t,.) @ L (0M; V" ® Ejour),

V()= ;@{0} Cen(t,.) QLY (OM; V' ® Ejpur),
nelz\

where we have written 77 instead of (777) ;.
Now we consider the two following families of operators:

(Id + (2o + 45)%) e cos t + (% + 45, ) sin t, (26)
N 1/2
(Id + (@o + ¥, (l,%) &{9]/) ) TCOS !t
+ (@0 + ¥, (t(l_inlﬂ)) ,52/9]/,) sin 7, (27)

where je{l,2}. Observe that for each 7€(0,x], the operators of (26) and (27) are
invertible, then by considering the projections onto their positive part, one defines
the class [#% — 2| € K, (A) exactly as in Definition 8. Proceeding as in [26, pp. 316—
317], one checks that

[75 — 2{] = Ind(2(25;®)) — Ind (2(25°)).
Since the operators in (26) and (27) are invertible and coincide for at least one real

te]l/2,n], we have [#} — Pi] = [Pr — 2.
The theorem is now completely proved.
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4. A splitting formula for index classes
4.1. The even-dimensional case

In this section we shall establish a splitting (or gluing) formula for index classes;
this result is stated without proof in [19]. Our first task consists in computing higher
APS-index classes for the cylinder in the even-dimensional case.

Let N be a closed manifold of dimension 2m + 1, f : N — BI' a continuous map
and E— N be a Clifford hermitian module over N endowed with a unitary Clifford
connection. Let 2y be the associated A-Dirac-type operator acting on
L%(N,7®E). We fix a constant map c¢:[—1,1]>BI'. Let & be the associated
Z,-graded Dirac-type operator acting on L2([-1,1] x N, ’VfXC®E®(Dz), with
boundary operator equal to Zy at {—1} x N and —Zy at {1} x N (notice that the
normals to the two components of the boundary are inward pointing at —1 x N and
outward pointing at {1} x N. We fix a spectral section 2 at {—1} x N for the
boundary operator outward pointing at {—1} x N and consider the spectral section
Id — 2 at {1} x N.

Lemma 7.

Ind*™(2,2,1d — 2) = 0 Ky(A).

Proof. Let .szf(;, be a self-adjoint A-compact operator such that Py + ,sz{(;, is
invertible and £ is the projection onto to the positive part of Zy + .o/ 9,7 We consider

the operator %%, defined by
0 og,
cyl@; 0 ’

where M7, = Cl(t£5) (1 — x?) £+ Zy + /%) and 97, is the adjoint of V7.
The boundary operator of 7%, at {+1} x N is F(Zy + ./%). Then, proceeding as
in Section 10 of [12], one checks that ®'Z, is A-Fredholm from H/},A([_L 1] x
N,V ®@EQC?) to L} 1([-1,1] x N, ¥4, ® EQC?) and that Ind*"(2,2,1d —
2) = Ind(*'Z},). But using Mellin transform on the cylinder one sees that ¥'%2, is
invertible, because &> 4 (Zy + .o/%)” is invertible on L2(R,d&)® L(N, ¥ s ® E). So
the index class is zero, which proves the lemma. [

Lemma 8. We use the notations of the previous lemma. Let 2 and 2 be two spectral
section for Dy at {—1} x N. Then
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Proof. Theorem 6 implies that
Ind*™S(2,2,1d — 2) — Ind*™ (2, 2,1d — 2) = [2 — Z].

Since Lemma 7 implies that Ind***(Z, 2, 1d — ) = 0 one gets immediately the
lemma. O

Now we are going to prove the gluing formula for index classes; before stating it,
we introduce suitable notations. Let (M, g) be a smooth closed riemannian manifold
dimension n =2m, E = ET®E~ a Z,-graded hermitian Clifford module endowed
with a unitary Clifford connection V. We consider also a finitely generated group I,
a classifying map f : M — BI' and denote by A the reduced C*-algebra of I'. Let
M — M be the associated I'-normal cover. We consider the following flat bundle
over M:

Vi=Axr M.

These data define a Zp-graded A-linear Dirac-type operator & acting on
L% (M, 7 ;®E). This operator has a well-defined index class Ind(2") e Ky(A). Let
F be a closed cutting hypersurface of M such that M = M, U M_ where M, are two
manifolds whose (common) boundary is F. We assume that all these data have a
product structure near F. Let 2 and 2 be two spectral section for the boundary
operator of the operator induced by the restriction &, of % to M; observe that
Id — 2 is a spectral section for the boundary operator of &, .

Theorem 8. Ind(7") = Ind*™ (7}, ,2) + Ind*™(2},, ,1d - 2) + [7 - 2].

Proof. One just has to adapt to the noncommutative setting (and the even-

dimensional case) the proof of Theorem 3.1 of [7]. Thus following an idea of Bunke
[4], one considers a unitary map W =a+ b+ ¢ — d from

Ly(M, 7y ®E)@Ly([~1,1] x F,(V s ® E)_ y1.p)
to
Ly(M,u[0,1] x F, ("/f®E)M+u[0,1]xF)®L%1(M—U[_lvo]
X F, (’V/'®E)M,u[71,o]x1?)»
where a,b,c, and d are defined as in [7, p. 315]. Then one finishes the proof as

in [7] by using Lemma 8 instead of Theorem 3.3 of [7]. We omit the (easy)
details. [

Remark. In this even-dimensional case, but for more general boundary value
problems, Hilsum has also established the above gluing result, with a different proof.
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See [9, Theorem 9.2]. Notice that our formula

Ind (2") = Ind*™ (2,

s ?) + Ind (2],

b 1d - 2)

is a direct consequence of the APS-theory on Galois coverings developed in [16,31]
and of the ideas of Bunke (and Dai—Zhang). This much has been known to us since
the appearance of [7] and of [15], but the lack of geometric applications of such a
formula has held us from publishing the result until now; the applications we shall
give, in Section 6, to the cut-and-paste invariance of higher signatures seem to be a
good enough motivation to finally write down the (easy) proof.

4.2. The odd-dimensional case

Our next task consists in computing higher APS-index classes for the cylinder in
the odd-dimensional case. Let N be a closed manifold of dimension 2m, f : N— BI'
a continuous map and E— N be a Z,-graded Clifford hermitian module over N
endowed with a unitary Clifford connection. Let & be the associated A-Dirac-type
operator acting on L% (N, 7 s ® E). We fix a constant map ¢ : [—1,1]— BI'". Let Z be
the associated Z,-graded Dirac-type operator acting on L%([—1,1] X N, 7 /. ®

E®C?), with boundary operator equal to +%y at {F1} x N. We fix a CI(1)-
spectral section 2 at {—1} x N and consider the CIl(1)-spectral section Id — 2
at {1} x N.

Notation. In order to simplify the notation we denote by IndAPS(Q, 2) the K;-index
class appearing in the statement of Theorem 7.

The proof of the following lemma is basically the same as the one of Lemma 7 and
will be omitted.

Lemma 9.

nd*™(2,2,1d — 2) = 0e Ko (C°(10, 7)) @ A) ~ K; (A).
Lemma 10. We use the notations of the previous lemma. Let P and 2 be two CI(1)-
spectral section for Dy at {—1} x N. Then

Ind*™S(2,2,1d — 2) = [2 — 2| K, (A)

Proof. Theorem 7.3 implies that

IndAPS(QZ,e@, 1d — Q) — IndAPS(@7QJ77Id — /7) = [o@ — @]
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Since Lemma 9 implies that Ind**(Z,Id — 2, 2) = 0 one gets immediately the
lemma. O

Let (M,g) be a smooth closed riemannian manifold dimension n =2m+ 1, E a
hermitian Clifford module endowed with a unitary Clifford connection V. As in the
even case we consider a finitely generated group I', a classifying map f : M — BI" and
denote by A the reduced C*-algebra of I' and by

%j':AXrM

the associated flat bundle. These data define a A-linear unbounded self-adjoint
Dirac-type operator & acting on L% (M, (7"y ® E)). This operator has a well-defined
index class Ind(2) € K (A) which is defined by suspension. Let F be a closed cutting
hypersurface of M such that M = M, U M_ where M, are two manifolds whose F
has (common) boundary is . We assume that all these data have a product structure
near F. Let 2 and 2 be two CI(1)-spectral section for the boundary operator of the
operator induced by the restriction %y, of & to M. Then we have

Theorem 9. Ind (Z) = Ind**® (2, 2) + Ind*** (2, ,1d — 2) + [2 - 2).

Proof. Once again the proof of Theorem 3.1 of [7] (which follows an idea of
Bunke [4]) extends without problems; we simply have to use Lemma 10 instead of
Theorem 3.3 of [7]. We omit the details. [

5. Index classes and the noncommutative spectral flow
5.1. A variational formula for APS-index classes

Let X be an even-dimensional riemannian manifold with boundary and let £ be a
Z,-graded complex vector bundle over X. We assume that there exists a 1-parameter
family of riemannian metrics {g,},.(; ) on X and a l-parameter family of hermitian
metrics {h£}
(X, g.). We also assume that there is a 1-parameter family of connections V= that
are unitary with respect to hf and Clifford with respect to the Levi-Civita
connection associated to g,. We assume that these data depend continuously on
ue([l,2]. Let D, be the Dirac operator associated to (g,,hZ VE). Let
fu: X—>BI'ue[l,2] be a 1-parameter family of continuous maps. Let {Qu}ue[l.z]v
Dy € (X, EQV,)->€* (X,EQ7",), be the resulting family of C*(I')-linear
operators.

12 on E so that (E, hy) is a unitary Z>-graded Clifford module for

ue

Proposition 8. Let us denote by {(2.4),} the family of boundary operators associated
to {2, ue(l,2]}. We fix noncommutative spectral section Py, P, for (Z1),
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and (2-),, respectively. Then

Ind*™ (74, 2,) — nd*S(2], 2)) = st({(Z)o}; P2, P1)  in Ko(CHI)).  (28)

Proof. We are going to extend to the noncommutative setting the proof of Theorem
5.2 of [8]. Let (2(u)),c[1 5 be a total spectral section for the family {(Z.),, ue[l,2]}.

Then we get a continuous family of elliptic boundary value problems (Z2,, 2(u)),
1 <u<2. By the homotopy invariance of the K-theoretic index class we get

Ind(2],2(1)) = Ind((25, 2(2)).
By the relative index Theorem 6 we get
Ind(27,2(1)) = Ind(2],2) + |21 — 2(1)]
and
Ind(Z5,2(2)) = Ind(25, 2,) + 22 — 2(2)].

The proposition is then an immediate consequence of the definition of the higher
spectral flow and of the three previous equalities. [

Remark. 1. A similar result holds for any l-parameter family of Dirac-type
operators, not necessarily defined by a variation of the geometric data.

2. One can immediately extend the previous proposition to the odd-dimensional
case; in such a case we need to fix CI(1)-spectral section.

Notation. In order to treat simultancously the odd- and even-dimensional case, from
now on we shall not write the superscript + in the even-dimensional case (see
formula (28)); thus both in the even- and in odd-dimensional case we shall simply
write Ind*"(2, 2) for the index class associated to & and the choice of a spectral
section for the boundary operator. We shall implicitly choose Cl(1)-spectral section
in the odd-dimensional case.

5.2. Index classes on the cylinder and the noncommutative spectral flow

It is well known that for a smooth l-parameter family {D(u)},c(y, of Dirac
operators on a closed odd-dimensional manifold N, there is a formula equating the
spectral flow of {D(u)},co to the index of the operator 0/0u+ D(u) on the
cylinder [0, 1] x N with APS-boundary conditions. In this section we shall extend
this result to the higher case. Thus let {Z(u)}, [ be a smooth family of A-linear
Dirac-type operators as in Section 2.5; without loss of generality we may assume that
this family is constant near u = 0 and 1. We first treat the case in which N is odd
dimensional. We fix reference spectral section 2y and 2; for 2(0) and 2(1)
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respectively; we can consider the noncommutative spectral flow sf({D(u)};
20, 21) e Ky(A) and the index class, associated to the cylinder [0, 1] X N,

Ind”PS (a% + D(u); 29,1d — ,@1) e Ko(A).

Theorem 10. The following formula holds in Ky(A):
IndAPS (% + Z(u); 20,1d — ,@1> =sf ({Du)}; 20, 2)). (29)

Proof. Consider a total spectral section (2),,¢ o) for our family {Z(u)},c(o ;- We
attach a cylinder [—1,0] x N on the left of our cylinder [0, 1] x N; we also attach a
cylinder [1,2] x N on the right and consider the differential operator 9/du + P (u) on
[—1,2] x N with Z(u) = 2(0) for ue[—1,0], Z(u) = Z(u) for uel0,1] and P (u) =
2(1) for uell,2]. Consider the operator 9/du + 2(u) with APS-boundary condition

9y at u= —1 and APS-boundary condition Id — 2; at u =2. From the gluing
formula of Theorem 8 we know that

IndA"(9/0u + 2 (u); 20,1d — 2))
= Ind*"S(0/du + 2(0); 20,1d — 2¢) + Ind*"5(9/0u + D (u); 2o, 1d — 2))
+ Ind*™S(0/0u+ 2(1); 2,,1d — 2,);

for the first and third summand on the right-hand side we can use Lemma 8,
obtaining

Ind*"S(0/0u + Z(u); 20,1d — 2))
= [Py — 2] + Ind**5(8/0u + Z(u); Py, 1d — 21) + [2) — 21].

Since sf({D(u)}; 20, 21) = [21 — 21] — [20 — Po|, we are left with the task of proving
that Ind*PS(8/0u + @(u); 2,,1d — 2,) = 0. By the equality of the APS-index and of
the b-index (see Section 3.1) it suffices to show that

Indp(u(1 — u)0/0u + 2(u); 2, 1d — 1) = 0.
We know that the latter index class is associated to a perturbation

u(l — u)d/u+ D(u) + A5 + /3 e p) .
We also know that Ind*"s(9/du + 2(0); 2,,1d — 2,) = 0. Thus

Indy(u(l —u)d/0u + 2(0); 2o, 1d — #y) =0,
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which means that the operator u(1 — u)d/0u + 2(0) + o/ _1,2,? + o/ ;}im has zero index.
We only need to show that the b-pseudo-differential operators
u(l — u)d/ou+ D(u) + LG + /5™ u(l —u)d/ou+ 2(0) + A5 + A5

are homotopic through A-Fredholm operators. Consider the 1-parameter family of
b-pseudo-differential operators

B(s) = u(l — u)d/0u + D(su) + L5 + #5s€(0, 1],

where we recall that (%),
1-parameter continuous family of b-pseudo-differential operators connecting

0.1 18 the chosen rozal spectral section. Then B(s) is a

u(l — u)d/ou+ 2(0) + /5 + /5" and  u(l — u)d/du+ F(u) + LS + S,

Each B(s) is clearly b-elliptic (i.e. the b-principal symbol is invertible outside the 0-
section of the compressed cotangent bundle). We only need to show that the indicial
family 7(B(s), 4) is invertible for each s€[0, 1] and for each 1€ R. The indicial family
of B(s) on the left boundary is fixed and invertible, being equal to (Z(0)), + il +
ﬁs(i)y/(}y“. Thus we concentrate on the right boundary; there the indicial family is
equal to

i~ (D)) — P(2) S,

This is invertible (for a fixed s) for every 2R if and only if it is invertible in 1 = 0;
but this is clear, as p,(0) = 1 and ;sz},s is, by construction, the perturbation that
makes (Z(s)), invertible. Summarizing B(s) is a family of (symbolically) elliptic b-
pseudo-differential operators with invertible indicial family 7(B(s), 4), 2€ R, for each
s€[0,1]. By the b—A-calculus these operators are A-Fredholm acting on Hb‘7 4 The
theorem is proved. [

Remark. A similar result holds for even-dimensional closed manifolds N.

6. Cut and paste invariance for higher signatures

6.1. A defect formula

Let (M;,r;) (1<i<2) be a closed oriented smooth manifold endowed with a
continuous map r; : M;— BI'.

Definition 10 (Karras et al. [I11]). We say that (M;,r;) and (M>,r;) are SK-
equivalent if there exist decompositions

My =My )Mo, My= My g, M-
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with
OM, =F=0M_, ¢,;eDiff*(F)

and such that (r1),,, ~(r2))),, (~ meaning homotopy equivalence).

Notice that F is, by assumption, an embedded hypersurface in M; and in M,
which is endowed with the orientation induced by the one of M, and the inward
normal vector to M . The orientation-preserving diffeomorphism ¢ is thought as
going from OM, to OM_; by construction (;’,-)WM+ = (”i)\aM, o¢p. Notice finally that
the orientations of TM, and T'M_ are opposite over the boundary F. For simplicity
we assume that F is two-sided (i.e. the normal bundle to F is trivial).

Let (M;,r;) (1<i<2) be as in Definition 10. We denote by M; the I'-coverings
defined by r;. Thus M; = (r)*ET". We also let F;— F be the covering associated with
(r,-)‘F : F— BI'. We consider the flat bundles ¥, = M; xr A over M;. We now
introduce riemannian metrics g; on M; and endow the coverings M; with the lifted
metrics. We denote by 9;",1%""”' the associated signature operator on M; with

sign,r;

coefficients in 77;. The restriction of this operator to M will be denoted by Z;; ™

we use the precise notation 93%;:‘ for the associated boundary operators.
Our goal in this section is to express the difference

Ind Z35" — Ind 735" €K, (CH(I))

in terms of a noncommutative spectral flow, on F, naturally associated to the above
geometric data.

To do so, we need an extension of the glueing formula proved in Sections 4.1 and
4.2. Let more generally M =M, vy M_ with OM_ =F,, OM_=F_ and ¢:
F, — F_ adiffeomorphism; let us fix a metric g on M and a map r : M — BI'. Giving
such a metric ¢ is equivalent to giving a metric g(+) on M, and a metric g(—) on M_
such that ¢*(g(=)|z ) = g(+)| r.- Similarly, the map r defines by restriction maps
r+ : My — BI" such that (ri)|z = (r-)|p o¢. For the sake of brevity we denote
(r+)|F+ = rﬁ and (r_)|p = r?: we also write ’V?r for the flat bundle defined over F,
by rfz and we write 7" for the analogous bundle over F_. The pull-back ¢* defines
an isometry between the L>-Hilbert module L (F_, A*F_®7?) defined by g(—)|,
and the L>-Hilbert module L2 (F;, A*F, ®7"9) defined by g(+)|,. One checks
easily that with our conventions

T = (7 (9% (30)

7]
"

Let £ be a spectral section for @;fn" ) and consider the projection

7= () 2
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then it is clear from (30) that the projection Id — (¢*)"'2¢* is a spectral section
ign,(r?)
for 7.
The gluing formula of Section 4 becomes in this more general setting:

IndZ3"" = Ind ™73, 2) + Ind*PS (755 1 — 27). (31)

The proof of formula (31) proceeds exactly as the proof of the gluing formula in
Section 4 (see Theorems 8, 9) once we use the following lemma. First we fix
notations. Let Cyl, = ([-1,0] x Fy) Uy ([0,1] x F_) so that OCyl, = F, UF_. Let
g¢ any metric on Cyl, such that

(9o)lacy, = ¢*hh

with /s a metric on F_. Let ¢ : [—1,1] - BI' be a constant map and let ry : Cyl, — Bl
the map induced by ¢ x rJ : [—1,0] x Fy —BI' and ¢ x r? : [0,1] x F_— BI".

Lemma 11. Let Ycy, be the signature operator on Cyly associated to gy and ry. Then
for each spectral section P as above

Ind(Zcy,; 2,1d — 2%) =0 in K, (CHI)).

Proof. The diffecomorphism ¢ induces in a natural way a diffeomorphism ¢ :
[—1,1] x F;. > Cyl,. On [-1, 1] x F; we consider the pull-back metric @*g, and the
product metric di* + ¢*h. Let &, p. the signature operator on [—1,1] x F
associated to the metric ®*gy and to the map ¢ x ”(3 and let Z|_ «p+ be the
signature operator associated to the product metric and to the map ¢ x ri. We

then have
Ind(Zcy,; 2,1d = 27) = Ind(Z7 | ) 2, 1d — 2)
—Ind( ll><F+ Qld 7)—0

the first equality follows from the fact that the two boundary problems are obtained
one from the other by conjugation; the second equality follows from the fact that the
two metrics are equal in a neighborhood of the boundary, the third equality follows
from Lemmas 7 and 9. The Lemma is proved. [

We now go back to our problem of expressing in a suitable way the difference
Ind(,@sf‘fn ") —1In d(@Slgn "2). We perturb the metrics g; and g, so as to be product-like
near F. Thanks to the additivity formula (31) we have

Ind(% Slgnrl) IndAPS(J;}gnrl 2 )+IndAPS( ;llgn” 1— g}?l) (32)



388 E. Leichtnam, P. Piazza | Journal of Functional Analysis 200 (2003) 348—400

with 2, a noncommutative spectral section for the boundary operator leg" ",
Similarly,

Ind(Z58™") = Ind**S(Z38"2, 2,) + Ind P (758" 1 — 29) (33)

with 2, a noncommutative spectral section for 93%2’2 Consider (g1),,, and (g2),y,
and let g ,, with u€[1,2], be a path of riemannian metrics on M. connecting them.
We can choose these metrics to be product-like near the boundary of M,. By
assumption there is a continuous family of classifying maps ri, : M, —BI,
uell,2], connecting (r1),,, and (r2),. Thus, there is a 1-parameter family of
Dirac-type operators on M, {EZS'gn “}uep 2 With boundary family {@Slgn “Yuep- We
can thus apply the variational formula in Section 5.1 and obtain

Ind*"S(Z35"", 2,) — Ind**S(735"", 7))
= sSf{ 255"} 22, 21) in K, (CHI)). (34)

Notice that it does not make sense to take a path joining g, and g, (indeed, M, and
M, are in general different manifolds).

We apply the same reasoning to M_. Thus by assumption there is a continuous
family of classifying maps r_, : M_—BI', ue[l,2], connecting (r1),, and (r2),
and; we also choose a path of metrics g- ,, u€[1,2], connecting (g1);), and (g2) , -

sign,u

We obtain a family of operators 752" connecting 752" and Z5™"" together with

the formula
Ind"PS (2582 1 — 202) — Ind S (25 1 — 20
SE{ 2381 — 2021 — 20 (35)
Summarizing, in K, (CF(I')):
Ind Z35"" — IndZ55""
=St({ 235"} P2, P1) + SEU Do Y5 1 — 29,1 — ). (36)

Notice that 93%,‘;;1 is conjugated through ¢7 to —92%,’,‘;1 and that @gfyf is conjugated
through ¢% to —Z32"*; on the other hand Doy and Z5" are in general unrelated
for ue(1,2).

We can put together the family @3’%}1”, ue(l,2] and the family @Zﬁr}", uell,2);
with an harmless and obvious abuse of notation we are thus considering the family

{Zr(0)}pest = {“@f‘)}%}lj}ue[lﬂ {@fjl%;,u}uep,l] (37)
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which is a S'-family acting on the fibers of the mapping torus M (F, cf);lo ¢)—S".

Recall that the mapping torus M (F, ¢, 'c ¢,) is obtained from F x [1,2]UF x [1,2]
by identifying (¢, (x), 1) (in the first F x [1,2]) with (x, 1) (in the second F x [1,2])
and similarly (¢,(x),2) with (x,2), for any xeF.

Using (23) we can then write

ST ) 22, 20) + sE{ D550} 1 = 251 = 20) = SE{Zr(0)} st (38)
obtaining, finally, a proof of the following.
Theorem 11. The following formula holds in K, (C*(I')):
Ind 758" — Ind 235" = st({Zr(0)}gesr): (39)

where {Zr(0)}y.q is the S'-family of twisted signatures operators on F defined
by (37).

One important consequence of our discussion so far is the following

Corollary 2. Assume that I' is such that the assembly map of the Baum—Connes
conjecture is rationally injective. Let (My,r1), (M3, r2) be two SK-equivalent pairs as in
Definition 10. If, with the above notations,

SE{Zr(0)}ges) =0 in K, (CH(I) @2 Q
then the higher signatures of (My,r1) and (M>,r;) are the same.

Proof. It is proven in [13] (just after Theorem 0.5) that, under the stated assumption
on I', the equality of the two index classes imply the equality of the higher signatures.
The proposition is then a consequence of Theorem 11. [

6.2. Remark

1. Formula (39) is a higher version of formula (25.22) in [3]. In the numerical case
treated there, the numerical spectral flow is also equal to the numerical index of the

mapping torus defined by the diffeomorphism y = ((f)z)f1 o¢p,;. We shall now discuss
the extension of the latter result to the higher context. We consider two SK-
equivalent pairs (My,r1), (M>,r;) as in Definition 10. We consider the mapping
torus M (F,y).

As explained in [11, p. 16], see also [13], the mapping torus M (F,y) comes with a
map 7 : M(F,y)— BI' such that

(Mz,rg) — (Ml,rl) is bordant to (M(F,lﬁ),f) (40)
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Let us recall the argument: one considers the space Y obtained from M; X
[0,3]w M, x [0,3] and the following identifications: for x e F identify (x,¢)e M x
[0,1] with (¢,(x),7)eOM[0,1] and (x,f)edM, x [2,3] with (P,(x),1)edM_
x[2,3]. Then, after smoothing, 0Y = M} — M, — M(F,y). Moreover the two
homotopies (ry) ), ~(rj);y, can be used to define a map R: Y — BI', with Ry, = rj;
one then sets 7= Ry (ry) which proves (40). Using the metrics considered in the
discussion preceding the statement of Theorem 11 we can endow the mapping torus

M (F, ) with a riemannian metric; we shall then denote by ,,@j‘if“":

(F) the signature

operator with coefficients in the flat bundle associated with 7.

Proposition 9. One has

Ind @ngn‘rz — Ind Qil,;gln"" = Ind @;lfz}";w). (41)
Proof. According to (40) the difference of pairs [M,,r|] — [M2,r;] is bordant to
[M(F,\),7]. By the cobordism invariance of the index class (see, for example,
[16, Proposition 2.3], one gets immediately the proposition. [

From the previous proposition and Theorem 11 we immediately obtain the
following higher analog of Proposition 25.1 in [3].

Corollary 3. With the notation introduced above the following formula holds in
K, (CI)

Ind 7355, = sSE{Zr(0)}ycs)- (42)

2. We have obtained formula (41) by exploiting two different ways for computing
the difference Ind 237" — Ind 237" . In fact, a direct proof of this fact is essentially
given in [30] using the intersection product in KK-theory.

3. One can also establish formula (41) using the gluing formula for index classes.
In the even-dimensional case, this is the route that is taken in [9]. See Theorem 14.1
there. The cut-and-paste results for higher signatures are then obtained in [9], always
in the even-dimensional case, by giving sufficient conditions for the index class of the
mapping torus to be zero. Corollary 3 shows why the approach we follow here,
directly inspired by [12], and the approach in [9] are compatible.

4. For future applications, we briefly point out that the defect formula (39) is still
valid if one replaces the signature operators by Dirac-type operators. In this
generality one needs to give the appropriate definitions. Thus, we assume that we are
given metrics g; on M and ¢, on M, and Clifford bundles E; on M/ and E, on M.
We let Dy and D, be two Dirac-type operators on these bundles. We assume that the
two bundles are obtained by a clutching construction involving two Clifford bundles
E.—>M,, E.—>M_ and two bundles isomorphisms (E.) ), ~(E-)j covering,

respectively, ¢, and ¢,. Given two classifying maps r; : M; - BI' (1<;j<2) as above
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one defines two A-linear Dirac-type operators 9;{4/ Moreover, assuming that the two

paths of metrics {g; ,,u€[l,2]} and {g_,,ue([l,2]} considered in Section 6.1 induce
(now) a Clifford action on, respectively, E; and E_ for each ue(l,2], one may define
an associated S'-family ({Zr(0)}).s) so that the defect formula (39) holds
verbatim. A typical example of this situation is given when A; are spin manifolds
and the operators are Dirac operators. We leave the details to the interested reader.

6.3. Vanishing spectral flow in the even-dimensional case

In this section we consider two SK-equivalent pairs (M,r1), (Ma,r2) as in
Definition 10 such that dim M; = dim M, = 2m. We shall give sufficient conditions
for the noncommutative spectral flow appearing in the defect formula of Theorem 11
to be zero. Let F be as in the previous subsection and consider r = (ry) s : F—BI".

Following [21] and then [12] we shall make the following:

Assumption A. Let Q(/z)(F , V")) denote the L2 -completion of Q' (F,V",). We assume
that the operator

d: QU (F, 7)) = Qpy(F, 1)),
with domain equal to A-Sobolev space H\, has closed image.

This assumption appeared for the first time in [21, Section 7]; there it was assumed
that the L2-spectrum of the differential form laplacian of F (the covering defined by
r: F— BI'), acting on the vector space of differential forms of degree m, has a full
gap at zero. Assumption A (which is a homotopy-invariant assumption) is equivalent
to the slightly weaker assumption that the differential form laplacian of F has a
strictly positive spectrum on L2(F, A"~ T*F)/ker(d). We refer the reader to [12] for

a proof of this fact and for examples where Assumption A is fulfilled.
We first recall (and slightly extend) the definition of symmetric spectral section

[17]. Under Assumption A we have

QU (F,7",) =dQ (F, 1) @ () (F, 7)),

QUM (F, 7)) =d*QBy (F, 7)) @ (d*Qpy (F, 7))
Then, we can write Q*(F,7",) = V@ W where (we abbreviate QF. = Q*(F,7",)):

V=d*Q) +dQ7, W=0;007,
Q=@ @ @ (d* Q)"

Q=@ Y e e @,
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It is clear that 25" sends V (resp. W) into itself. Using Assumption A and

proceeding as in the proof of Lemma 2.1 of [12], one checks easily that D@ﬁg“’r induces
an invertible operator on the L%-completion of ¥ (with domain H') and we denote
by II. the projection onto the positive part. Moreover, the proof of Theorem 2
shows immediately that the restriction of @?gn’r to the L%-completion of W admits a
spectral section. Notice that although W is not the space of section of a A-bundle
over F the proof of Theorem 2 still applies in this case. Then, Lemma 4.3 of [17]
shows that Qﬂgn’r admits a symmetric spectral section 2 in the sense that 2 is
diagonal with respect to the decomposition Q*(F,7",) = V@ W and

g‘V:H>, e@‘WOOC—FO(Og‘W:OC,

where o is the involution of W equal to identity on Q5 and to minus the identity on
Q7. Recall from [17, Proposition 4.4] that if 2 is another symmetric spectral section
then [Z — 2] = 0 in Ky(4) ® zQ. We immediately obtain the following.

Proposition 10. Let (M,,r,), (M2, r2) be two SK-equivalent pairs as in Definition 10.
We set r = (r1) . If Assumption A holds for (F,r) then

SE{Zr(0)}ges) =0 in K, (CHI)) ®2 Q.

Proof. In the definition of sf({Z7(0)},.s1), We can assume that a/l the spectral
section involved are symmetric. Since, by definition, the noncommutative spectral
flow is given in terms of difference classes associated to these symmetric
spectral section, it follows by Proposition 4.4 in [17] that sf({ZF(0)},.) is zero
in Ko(C*(I')) ®z Q. The proposition is proved. [

Remark. Notice that because of the homotopy-invariance of Assumption A we
could equivalently set = (r2) 5y, -

We have now obtained an analytic proof of the main result in [13].

Theorem 12. Assume that I' is such that the assembly map of the Baum—Connes
conjecture is rationally injective. Let (My,r) and (M, r;) be two SK-equivalent pairs
as in Definition 10. We assume that Assumption A holds for (F,r) with r = (r1)p.

Then the higher signatures of (My,ry) and (M, r;) are the same.
The proof is a direct consequence of Proposition 10 and of Corollary 2.

Remark. The previous theorem was first proved by Leichtnam-Lott—Piazza in [12]
in the case of virtually nilpotent or Gromov hyperbolic groups. It was then extended
by Leichtnam—Lueck [13], using techniques from algebraic surgery, to the case where
I' satisfies the assumption of Theorem 12.



E. Leichtnam, P. Piazza | Journal of Functional Analysis 200 (2003) 348—400 393
6.4. Vanishing spectral flow in the odd-dimensional case

In this section we consider two SK-equivalent pairs (M,,r1), (M2, r2) as in
Definition 10 such that dim M| = dim M, =2m+ 1. Let F be as in the previous
section and consider r = (1) : F > BI".

As in the even case we shall make the following assumption on (F,r):

Assumption B. The operator
d: QU (F, 7)) > Qb (F, 7))
with domain equal to A-Sobolev space H', has closed range.

It is proved in [12] that Assumption B is equivalent to the hypothesis that L>-

spectrum of the differential form laplacian of F acting on the vector space of
differential forms of degree m admits a gap at zero.

Assumption B (in the slightly stronger form of requiring L*-invertibility in middle
degree) appears for the first time in Section 7 of [21].

We refer the reader to [12] for examples where Assumption B is satisfied.

Now we recall results and notations allowing to introduce the concept of
symmetric CI(1)-spectral section. We define the rescaled flat exterior derivative

d:Q%(F,7°,)»Q*"\(F,7",) by setting
VoeQ(F, 7)), do)=i"do.
Then using the Hodge duality operator * one defines the involution 7:
YoeQ(F, 7)), t(w)=i1*CmloD g,

We refer to the Section 1 of [12] for the definition of the quadratic form Q and the A-

hermitian scalar product { ; » on Q*(F,¥",). The signature operator Z5£"" is then

equal to d — tdr.

Let H"(F,7",) denote the mth cohomology group of the locally constant sheaf
¥",. Using Hodge duality and Assumption B one proves easily that the two following
orthogonal decomposition holds:

Qp(F,7") =H"(F,7",) @tde(Q"(F, 7)) @d(Q" " (F, 7)),

Q% (F, 7)) =V@W with

m

V=Q4(F.7 )@ (Hy(F; NT*FR77,), W=V",
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V being a closed complementable A-Hilbert submodule of Q’(“z) (F,7",). We observe

that both &£ and the grading 7 send V' (resp. W) into itself.
We shall consider the involution o of W such that « induces Id (resp. —Id) on the
differential forms of degree <m (resp. >m).

Proposition 11. At the expense of replacing F by two disjoint copies of F, one can find
a finitely generated projective A-submodule N of V such that:

©0) 3= (N)eN, Nt ~N",

(1) ©(N)e N and H"(F,7",)= N as a A-submodule.

(2) N admits a lagrangian A-submodule L with respect to the quadratic form Q and
the orthogonal A-projection P; from N onto L is well defined.

(3) V=NeN-*.

We will say that such an L is a stable lagrangian of H" (F, ¥",) (associated with N).

Proof. The index class of the signature operator on F with values in ¥, is zero in
Ky(A), by cobordism invariance. Notice that this index class is the sum of the index

classes associated to the restrictions &y, 9y of the signature operator ,@?g”” to V
and W, respectively. Under Assumption B, one checks easily that

(T)'a = T

and so 2 Ind 2}, = 0 in Ko(A). Replacing F by the disjoint union of two copies of F,
we may assume that Ind 2}, = 0 in Ko(A). Therefore, we may conclude that the
index class associated to @}ig"’r restricted to V is also zero. Extending the proof of
Proposition 2 on page 295 of [26] to the case of (Qig”"‘)w along the lines of [18, see

Lemma 4.3]), we infer that there exists a real number R> 0 such that for any spectral
section P’ as in the statement of the theorem, N = ker(P’ + tP't) is a finitely
generated projective submodule of ¥ containing H”(F, ¥",) and such that

(a) N is the range of a projection of ¥ and thus NN+ = V.
(b) N=NT@®N ", with N* = {w;tw = +®} and N* isomorphic to N~.
Let then j : N* — N~ be a unitary isomorphism; our lagrangian L is given by
{o+j(w),weN"}.
The proposition is proved. [

Remark. 1. Notice that, as in [26, p. 295], we have in fact proved the following more
precise statement: one can find a real number R >0 such that for any spectral section

2 of (Qign"‘)w satisfying 9"05((@2@”)“,) =0 for any ¢eC*(R,R), £E=0 on
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[R,+ o[, the module N := ker(2' + tP'7) is finitely generated projective and satisfies
the 4 properties of the above proposition.

2. This notion of stable lagrangian is essentially the same as the one used in
Section 3 of [12].

3. In the previous proposition one may assume that N is included in the range of
Y(Z3#"|V) for a suitable function y e CZ, (R; R).

comp

Now, let L be a stable lagrangian of H"(F,7",) (associated with N) as in

Proposition 11. We observe that Qj;gn’r is diagonal with respect to the decomposition

Q4 (F,7) = (NON )@ W

and that the restriction of Z5£"" to N is invertible. We shall denote by IT- (N ) the

APS projection onto the positive part of the restriction of @?gn"' to N*+. We then
may give the following:

Definition 11. Let 2 be a spectral section € B, (W) for Z53£"|W which is CI(1) for
both a and 7. The self-adjoint projection

P(LR) =2, @ (N ) DR
of B4(Q%)(F,77,)) is called symmetric CI(1)-spectral section for g

One checks the existence of a spectral section # as in the above proposition by
proceeding as in the proof of Lemma 4.3 of [18]. Therefore, there exists such
symmetric CI(1)-spectral section.

Let L and L' be two stable lagrangians for H"(F, 7",), as in Proposition 11. The
proof of the proposition and the arguments of [26, p. 295] shows that if in the
statement of Proposition 11 one replaces the real number R by a bigger one then N £
gets replaced by N* @ M* where (Z5"")" induces an isomorphism from the finitely
generated projective C*(I')-module M onto the C’(I')-module M~. Thus, at the
expense of replacing L by

{0®F +/()® (Z5) (B), (0.5)eN* x M}

(and similarly for L’), one may assume that both L and L’ are associated with the
same N.

Definition 12. Let L,L’ be two lagrangians as above. Let 2;, ?; be the A-
endomorphisms of N given by the orthogonal projections onto L, L' respectively.
According to Definition 8 these two projections define a difference class [#, —
P1]eKo(C2(10,n[) @A) = Ky (A); we set [L — L'] = [P — PL/].

Remark. 1. The class [L — L' e K;(A) depends only on L and L'.
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2. One can give a different definition of the class [L — L' € K;(A) (see [12, Section
3]:if j,j’ are two unitary isomorphims N*— N~ such that L = {w +j(w)/weNt},
L = {w+j(w)/oeN*}, one defines the class [L — L'] to be [jo(j/) '] e K| (A). The
two definitions should be compatible through the suspension isomorphism, but we
have not looked into the details.

We have the following relative result (where we are always under Assumption B):

Proposition 12. Let L and L' be two stable lagrangians as in Definition 12. Let
P(L,R) and P(L',R') be two symmetric CI(1)-spectral section for 23" as in
Definition 11, then one has

[P(L,R) — 2L, H)| = [L—-L] inK(A);0Q.

Proof. We set 2| = 2(L,#) and 2, = (L', #') and assume that L and L’ are
associated with (the same) N. We then consider the odd self-adjoint A-compact
operator ,;z/%,j associated with 2, (je{1,2}) as in Definition 8. Thus Z}£"" + Jzig/,] is
invertible and we can moreover assume that ,sz/g,/ is diagonal with respect to the
decomposition

Q4(F, 7)) = (NON )@ W

and that its restriction to W, denoted QQ{?(W), is odd with respect to the grading o.
Of course we can assume that the restrictions of ;zfg,j to N+ coincide.

Now, for je{1,2} and 7€(0, 7], we denote by #;(¢) the projection onto the positive
part of

sign.,r 1 ign,r .
t(Id + [ 23| W + /) (W)]P)2 cos t + (T3 |W + /) (W) sin t.
Since 1o = —orr and both Z32'|W and the /(W) are odd with respect to the
grading o, one checks immediately that o(2,(1) — P,(t)a = —(P(t) — P1(t)) for
any r€[0, z]. Therefore
[(21(0) = 22(0)) 1 pp.m) = —[(21(1) = 22(1))c o) in Ko(CP(0, ) @A) (43)
and this K-theory class is rationally zero.

Next, we denote by &/?(N) the restriction of ;zig/,/ to N for je{l,2}. For t€[0, ]
we denote by 2;(¢) the projection onto the positive part of

. 1 .
t(Id + [Z3|N + /) (N)]P)2 cos t + (73 |N + o/%(N)) sin 1.
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Then by Definition 12 of the difference class one has
[(21(8) = 22(0) e o] = [L = L] in Ko(CL(10, 7)) ® 4) = Ky (4). (44)

By combining the two Eqgs. (43) and (44) and recalling Definition 8, one gets
immediately the result of the proposition. [

We recall that (M, r) and (M>,r,) are two SK-equivalent pairs of dimension
2m + 1 as in Definition 10. Let us fix metrics g; on M, and g, on M,; we can assume
these metrics to be product-like near the hypersurface F. Recall that we are trying to
give sufficient conditions for the noncommutative spectral flow appearing in the

defect formula Ind(@jif]“’r‘)— Ind(@’ﬁ;”'z) =sf({ZF(0)}).51) to be zero. We thus
consider the S'-family

{91’( )}QES‘ - {ggdll%/zu}ue 1,2] {@“gnu ue(2,1]

defined on the fibers of the mapping torus M(F, ¢, loqbl) by (37). Since the
noncummutative spectral flow of {Zr(0)},.¢ is the sum of two terms, one coming
from a variation in M, and the other coming from a variation in 9M_, we can look
separately at each of them.

By following the proof of Proposition 11 we may construct two continuous

51gn u

families of spaces N,/, and V,/, uell,2] (associated with 7 ), we can also fix

u
smoothly-varying families of Lagrangians L < N,
We thus consider the stable lagrangian L and a CI(1)-symmetric spectral section

for 93%}2 of the type #(L;, RJ); similarly we consider L and a CI(1)-symmetric
spectral section for J“gnl of the type #(L{,R[). Consider the CI(1)-symmetric
spectral section Id — .@(L;r, %’j*)d)/, j=1,2, for @gﬁzj; then, using formula (30), one
checks easily that we may write

d—2(Lf, 2" = 2((¢; 'L R ™),

where of course ((jbj_1 )*LJJr is a stable lagrangian and R;"p’ = (qﬁj_l)*@;”qb]”‘ We know
that

Ind(Z5§"") — Ind(Z35™")
= Sf{Zy5 Y 2 (LY RY), 2L, RY))
+ st{ 255" 1d — 2(LE, RY),1d — 2(L, RD)™).
Weset Ly = (gbz_1 )*L;; by following the proof of Proposition 11 we can construct a

continuous family of stable lagrangians L, ue[l,2] extending L; down to u = I;
notice that we are flowing from # = 2 to u = 1. These stable lagrangians are thus
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associated with 93%;;“ and are constructed out of a continuous family of spaces N,
as in Proposition 11. We denote the value at u = 1 of this family by L (¢,).

The definition of spectral flow depends on the choice of a total spectral section we
choose for {JSlg“ “} a total spectral section of the type (L}, R}) and we choose for

{238} a total spectral section of the type 2(L,, , R, ) with L as above. With these

choices the first spectral flow appearing on the right-hand side of the above formula
is equal to zero, whereas for the second we obtain the following simple expression:

(&7 )*Lf = Ly (¢2)]e Ki(CHI) @20 (45)
here Proposition 12 has been used. Summarizing
Ind 738" — Ind Z38™" = [(¢ )L} — Ly (¢,)] € Ki(CHI)) ©®2 Q. (46)

We shall say that the family (2r(0)),. s admits an invariant stable lagrangian (see
also [12, pp. 625-627]) if we can choose the above stable lagrangians so that

(p7")*L{ = Ly (¢,). We can then state the main result of this subsection.

Proposition 13. Let (M,,r1) and (My,ry) be two SK-equivalent pairs of dimension
2m+ 1 as in Definition 10. If Assumption B holds for (F,r = (rl)‘F) and if the family

(2r(0)),€S" admits an invariant stable lagrangian then

sf({@F(G)}gesl) =0 in Kl(/l) ®z@

and so

Ind 735" = Ind Z35™"  in Ki(4) ®70.

The previous proposition implies the main result of [13]:

Theorem 13. Assume that I' is such that the assembly map of the Baum—Connes
conjecture is rationally injective. Let (My,ry) and (M, r;) be two SK-equivalent pairs
of dimension 2m + 1 as in Definition 10. If Assumption B holds for (F,r) and if the
Samily (27 (0))yes admits an invariant stable lagrangian then (My,r\) and (M>,r))
have the same higher signatures.

Remark. 1. The previous theorem was first proved by Leichtnam—Lott—Piazza in [12]
in the case of virtually nilpotent of Gromov hyperbolic groups. It was then extended
by Leichtnam—Lueck [13], using techniques from algebraic surgery, to the case where
I' satisfies the condition of Theorem 13.

2. As a final remark we point out that our K-theoretic approach to the cut-and-
paste invariance of higher signatures can be extended to foliations. This is not the
case either with the original approach in [12] (which uses local index formulae) or
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with the algebraic-surgery approach of [13]. In fact, finding a proof of the cut-and-
paste results in these papers that could be generalized to foliations was one of the
motivations for proving Theorem 11. We plan to deal with the technicalities of this
program in a future publication.
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