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Abstract. Let (N, g) be a closed Riemannian manifold of dimensiam 2 1 and letl" — N—>N

be a Galois covering aV. We assume thdt is of polynomial growth with respect to a word metric

and thatA 7 is L2-invertible in degreen. By employing spectral sections withsgmmetry property

with respect to the-Hodge operator, we define the higher eta invariant associated wisigtegture
operatoron N, thus extending previous work of Lott. #,(M) — M — M is the universal cover

of a compact orientable even-dimensional manifeith boundary(d M = N) then, under the above
invertibility assumption oM, i, and always employingymmetricspectral sections, we define a
canonicalAtiyah—Patodi-Singer index class, ky(C; (")), for the signature operator of. Using

the higher APS index theory developed in [6], we express the Chern character of this index class in
terms of a local integral and of the higher eta invariant defined above, thus establishing a higher APS
index theorem for the signature operator on Galois coverings. We expect the notion of a symmetric
spectral section for the signature operator to have wider implications in higher index theory for
signatures operators.
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0. Introduction

Let (N, g) be a compact closed Riemannian manifold and let D be the signature
operator onN. We letI" = m1(N) be the fundamental group @f and consider
C*(T), the reduced *-algebra of the group. In this paper, unless otherwise stated,
we shall assumeE to be of polynomial growth with respect to a word metric.

Beside the numerical index of D, an integer, it is important to consider the
higher indexof D, a class inK,.(C*(I")). In order to define the latter we introduce
the flat bundle ofC*-algebras

V=N xp CI)
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and consider the signature operator with valueg jilenotedD. This is an elliptic
differential operator in the sense of Mishenko and Fomenko [17] and has a well-
defined index class: IfeD*) € Ko(C*(I")) if dim N is even (so thatD is Z,-
graded odd) and Ind@) € K1(C}(I")) if dim N is odd. The Chern character of

the higher signature index class can be computed through the Connes—Moscovici
higher index theorem, see [4] and, for a heat-kernel proof, see [9].

The aim of this paper is to establish a parallel result for manifolds with bound-
ary; we are thus interested in proving a higher Atiyah—Patodi—Singer index theorem
for the signature operatoon Galois coverings.

In order to understand the problems involved in the passage to manifolds with
boundary, we concentrate on the Abelian case and treat the closed case first. Thus,
we let N be a closed oriented even-dimensional manifold within) = Z*.

In this case, the higher index class {i") has, following Lustzig [13], a geo-
metric description. We consider the dual of(N) consisting of all irreducible
representation at1(N); in this particular case, we obtain tkedimensional torus

Tk = 7 = Hom(Z*, U(1)). Eaché e T* defines a flat unitary line bundlgy
over N. Considering the associated twisted signature operajomi@ obtain a
family of generalized odd.,-graded Dirac operator® = (Dy)ycrx and thus,
according to Atiyah and Singer, an index class(fad) € K°(T*). We shall call

the family D = (Dy)y< 7+ theLusztig familyassociated t@7. Notice that by Fourier
transformCo(T*) = C*(Z*) so thatk%(T*) = Ko(C%(T*)) = Ko(C*(Z*)) and

it is not difficult to see that, under this isomorphism, the Lustzig index class and
the Mishenko—Fomenko index class correspond. The higher index theorem, i.e. a
formula for CHInd(D ")) € H*(T*, C), has been established by Lustzig using the
Atiyah—Singer family index theorem [2].

Let now M be an oriented compact even-dimensional manifalth boundary
We fix a Riemannian metrig on M which is a product near the boundary. We
consider the associated Levi-Civita connectiétf and the signature operator D.
The boundary signature operator is denoted, as usualobWB further assume,
just to simplify the exposition, that, (M) = Z*.

Let D = (Dy)yerr be the Lusztig family associated 8. In trying to define a
higher signature index class, we are confronted with a rather fundamental problem.
In order to define amoothfamily of Fredholm operators out &b, we are obliged
to consider a spectral sectioh = (Py) for the boundary familyDy = (Do.g)ger*

(see [15] and, for a survey, [18]). The introduction of spectral sections is unavoid-
able here, the problem being that the family of Atiyah—Patodi—Singer spectral
projection (I1(#))- is not smooth ind € T*. Once a spectral section has been
chosen, we can define an index bundle(ldd, ) € K°(T*). However, differ-

ent choices of spectral sections produce, in general, distinct index classes; more
precisely given, two spectral sectiows, @, we have the relative index theorem
[15]:

Ind(D*, £) — Ind(D, Q) =[Q — £] in KOTH,
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with [@— 4] equal to the index class of the Fredholm fanti®; Qy): range Qy) —
range P).

Because of the geometric and topological significance of the signature operator
it is natural to ask whether there existsgecial clasf spectral sections having
all the same index class iK°(T*) and, moreover, with the lower index equal to
the signature oM. For this, it suffices to fix a subsétof the space of all spectral
sections with the property that

VP, QeS; [P—Q]l=0¢eKYTH. (0.1)

We will show (see Proposition 1.3 and Definition 3.2) that, thanks to the partic-
ular structure of the signature operator, it is possible to fix such a class of spectral
sections under the following assumption:

(H1) The boundary signature Laplacianajﬁf is L2-invertible in degree dinM /2.
Equivalently:

(H1") The family of boundary signature Laplaciat&y ) is invertible in degree
dimM/2.

These special spectral sections will be caldsthmetric Any choice of sym-
metric spectral sectior® defines acanonical index class independent of:
Ind(D+, £) = Ind(D) € KAUTH).

We can see the appearance of symmetric spectral sections in yet another way.
Let us go back to a closed manifaiwith 1(N) = Z* and let us try to define the
Bismut—Cheegeeta form[3] associated to the Lustzig's famil® (this eta form
is nothing but the higher eta invariant of [10] when the gréujs commutative).

For simplicity, we assume tha{ is odd-dimensional. Since the operators are not
invertible, the integral defining the Bismut—Cheeger eta form

2 (™ d
N /0 STrei (aBs) exp(—B2)ds (0.2)

(with B, the rescaled Bismut superconnection) is not known to be convergent. Let
us now assume the analogue of (H1), namely thatis L2-invertible in degree
(dimN + 1)/2: the K*-index class of the Lustzig’s family is then zero and, ac-
cording to [15], we can consider a spectral sectiifior D. This gives, in turn, a
P-eta formn, € Q*(T*)/dQ*(T*). We can see all these operations as a way of
regularizing the a-priori divergent integral (0.2).

Using thejump formulafor eta forms [15, sect. 16], we see that two different
regularizations are related by the formula

Np — e = Ch(P — @)
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and it is once again clear thatidf and@ aresymmetridhen the difference is zero
and we obtain aanonical higher eta form inQ*(T*)/d*(T*); we denote this
form by 7.

Going back to a manifold with the boundary satisfying assumption (H1), we see
that we can now define a higher eta invarigntassociated to the boundary of the
universal cover oM, 7, € Q*(T*)/dQ*(T*); our higher signature index theorem
expresses the Chern character of the canonical index class as the difference of the
usual local integral ang, /2.

Condition (H1) appears for the first time in [10]; as remarked there, itis-a
motopy invariant conditionThe use of symmetric spectral sections makes rigorous
an heuristic argument in [10] used in order to regularize Equation (0.2). It should
be also remarked that assumption (H1) can be regarded as the analytic analogue of
the antisimple conditiorof Weinberger, see [20]. For a different regularization of
the higher eta invariant for the signature operator, see also the recent preprint [12].

In the noncommutative case, we proceed analogously, using the APS index
theory developed in [5, 6] in place of the one in [15]. ThusMfis a compact
orientable manifold with boundary satisfying assumption (H1), we can define a
canonical index class It ) € Ko(C*(I")), ' = m1(M). If, moreover,r1(M) is
of polynomial growth, then we can define the higher eta invariant of the boundary
signature operator and prove a higher APS signature index formula. Notice that
the assumption thak, j; is L?-invertible in each degreavould be an unreasonable
one, see [11].

The right-hand side of this formula allows for the introduction of the higher sig-
natureso (M, 0M; [c]), [c] € H*(T', C), of a pair(M, d M) satisfying assumption
(H1). We can also assume that(M) = F x T, F finite, I" of polynomial growth,
then fix a representatiop: F — U (£) and considetwisted higher signatures
0,(M,9M; [c]),[c] € H*(I',C). One can conjecture that under the analogue
of assumption (H1), these (twisted) higher signatures are oriented homotopy in-
variants of the pai(M, aM). The conjecture appears for the first time in [10,
conjecture 2]. Our improvement with respect to [10] is twofold: first the higher
eta invariant for the signature operator is now correctly defined; second, the higher
signatures are now expressed through the Chern character of a higher index class.
This means that in order to prove the homotopy invariance of the higher signa-
tures, it now suffices to show the homotopy invariance of the canonical signature
index class IndD™) € Ko(C*(I')). See also the recent preprint [12] for a rigorous
treatment of the conjecture of [10].

For a positive answer to this conjecture in a special case (butfwatfowed to
be Gromov-hyperbolic), we refer the reader to [12].

The results of this paper have been announced in [11]; they have been
circulating as a Preprint IHES/M/98/40.
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1. Riemannian Fibrations, Signature Operators and Symmetric Spectral
Sections

We consider a smooth fibratiop: X — B of closed oriented odd-dimensional
Riemannian manifolds. The generic point Bfwill be denoted byo; each fibre

Xy = ¢ 1) is thus assumed to be diffeomorphic, through an orientation
preserving diffeomorphism, to a fixed closed oriented maniféléf dimenion

2m — 1.

We denote bygx, s the smooth family of Riemannian metrics in the vertical
direction. As Lusztig [13, sect. 3], we assume the existence of a Hermitian vector
bundle E over X with the additional structure of beirftat in the fibre direction,
thus the restriction of to each fibetX, defines a flat bundle denotét).

These data define in a natural way a family of twisted odd signature operators
D = (Dy)gep With Dg: Q*(X4, Eg) — Q*(Xy, Ep),

Do(¢) = (vV=D)" (=1 (e xd — dw)¢p

with e = 1if ¢ € Q¥ (Xy, Ep) = Q7 ande = —1if ¢ € Q¥ 1(Xy, Ep) =
Qe

We know that each Psends forms of even/odd degree into forms of even/odd
degree. Moreover, pcommutes with the isomorphism® = (—1)”x on bothszg”
andQ?”"'. Thus D, = D&"*"@ D% with D3 = DS, For each fixed € B
the Hodge theorem implies the following orthogonal decomposition of the space
of differential forms onX, with values inEjy:

Q= Qoo -dy e H) !
QA ed O H @ d QT - @ Q2

Consider for each fixed € B the subspace o} given by Vy, = d*Qy &
dQy~t. This space isnvariant under D). Moreover, the first summang%? =
d*Q is invariant for (3% and the second summan{f’ = dQ;'~* is invariant for
D§'e". We denote the orthocomplementafin 25 by Wy,

Wo=Q@eQlae - -dr *oHy ToH o d' M e e QY

and we haveV, = W% @ we.
Finally, we denote by, the restriction of [ to V, and byGy the restriction of
Dy to Wy:

Co O
Cy =Dylv,:  Go = Dglw,: m=(§ %).

Notice thatG, = G3%@® G'. We now define
Q= QoQe Qrliode?
Q; — d*QgH-l D le-l-l B ng—1.
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As usual, these two subspaces decompose in even and odd forms. Movéower,
Qo H "o H!"®Q;.
We now make the following assumption

(H1) The family of twisted signature Laplacians is invertible in degreen.

Thus there exists amoothfamily of pseudodifferential operatol8 = (Fp)yep,
Fy € V72(Xy, A™(Xp) ® Ep), such thalAg)™ Fy = Fy(Ag)"™ = Idgy.

Notice that assumption (H1) also implies the invertibility of the family of twis-
ted Laplacians in degree — 1. In particular,H)" = Hg’”*l = {0} for eachd € B
so thatW, = Q7 @ Q5 and thus®j = V, @ (5 @ 7). Following [10, 19] we
now define an involutiom, on Wj:

ap=1d on QF, ay=—Id on ;.
It is immediate from the structure of,Qhat
Gg 0059+Ol90G9 =0.

In other wordsg, gives a grading tdv,, W,” = Q5, W, = Q; and the family

g = (Gy)eep is 0dd with respect to such a grading. It is important to notice that,
because of assumption (H1), the decompositiih= V, & Wy, the operators
Cy, Gy and the involutiony,, all depend smoothly upah e B.

PROPOSITION 1.1If the family D = (Dy), satisfies assumptiofH1), then its
K'-index class vanishe$nd(D) = 0in K*(B).

Proof. It suffices to show that the famil§ has zerak *-index. However, this is
clear since the familg is homotopic, through self-adjoint Fredholm families to

d g
gt —Id
which is invertible. O

According to proposition 1 in [15], there exists a spectral seciior= (Ps)gep
for D. Thus,# is asmoothfamily (Py)scp Of self-adjoint projections withP, <
WO(X,; A*(Xy) ® Ey) and satisfying the following property:

Pou=u ifA>R

Pou=0 ifA <—R. (1.1)

3R € R such that: Du:ku:{

Since O decomposes diagonally with respect to the decompositio® W,
we can choose a spectral section which is also diagonal. NamelyCbeth(Cy)
andg = (Gy) are self-adjoint families witl® invertible by construction; thé *-
index class of both families is zero and we can choose a spectral section for each
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of them. This will produce a diagonal spectral section for the familyin fact, we
can choose a diagonal spectral section

P = (Py =Ts 9+ P)ocs,

where for eacly, I1- 4 is the APS spectral projection f@r, and P, is a spectral
section forGy. We will setIl. = (I1s p)pep and P’ = (P,)pep SO thatP =
1> + &' If, in addition,

Pioa+aoP,=a« (1.2)

on W,, then we shall call such a spectral sectaymmetric A symmetric spectral
section is thus a spectral section which is diagonal with respect to the splitting
Qy = Vy & Wy, it is equal to the APS spectral projection & andit is a Cl(1)
spectral section o, with respect to the involutior, see [16].

PROPOSITION 1.2If the family of twisted signature operato® = (Dy)
satisfies assumptiofH1), then it admits a symmetric spectral sectighdefined
by a smooth familyP,), as above.

PROPOSITION 1.3If # and @ are two symmetric spectral sections f@r =
(Dy), then

[ —-@Q]=0inK°B)®Q.

PROPOSITION 1.4Under the above assumptions, there is a well-defined eta form
7 € Q*(B)/dQ*(B) associated to the familg.

Proofs In order to prove Proposition 1.2, we must show, according to [16,
proposition 2], that the odd,-graded familyg = (G,) has zerok °-index class.
To this end, we recall the map: Q; — ; equal to(—1)”+ on Q2 andQ2”.
Then we have

OV, =V,, OQ =97, 0Q; =Q;, Dy0 =06D,.

ThusG, = ©G, ©. Consider now the famiyG,: Q5 — Q;. This is aself-
adjoint family; thus theK°-index class is equal to zero. On the other hand, the
latter index class is precisely I0g™) since® defines a family of isomorphisms.
Thus, Indg™) = 0in K°(B) as required. Notice that the spalég is not the space
of sections of a vector bundle. However, an inspection of the proof of the existence
of spectral sections in [15, 16] shows that this is not a problem.

In order to prove Proposition 1.3, we consider two symmetric spectral sections
P, @. With respect to the decompositi@ej, = V, & Wy we write P = I1. + &P’
and@ = I1. + @’ as before the statement of Proposition 1.2. Then we obtain

[P —-@Q] = Tl +P -1, —Q1=[ld—aP'a —ld+ aQ'«]

= [@aQa —aPa]=[Q — P ]=[Q - P]=—-[P — Q]
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Thus 22 — @] = 0in K°(B); Proposition 1.3 is proved.
Proposition 1.4 follows at once from Propositions 1.3, 1.2 and the jump formula
for eta forms proved in [15, proposition 17]. O

Notice that if B is a torus,B = T*, thenK°(T*) has no torsion anfi? — @] = 0
in K9(T*) for two symmetric spectral sections.

Remark For simplicity, we have proved the existence of symmetric spectral
sections and, thus, of a canonical eta form, under assumption (H1). Suppose, more
generally, that the following holds:

(H2) The spaceH;' of twisted harmonic forms in degree is of constant
dimension irg € Zk.

Under this weaker assumption we can still prove Proposition 1.1 and give the
notion of symmetric spectral section: for this it is enough to consider the new
decomposition

QU =V, ®Q; ®Q; with Vy = H" '@ d*'Qy @ dQ) ' @ H)".

It is clear that Propositions 1.2, 1.3 and 1.4 still hold.

2. Z*-Galois Coverings and Higher Eta Forms

We shall now specialize the above general picture to the Lustzig family. We con-
sider a closed oriente@mn — 1)-dimensional compact manifoldl and az*-Galois
coveringZ* — N — N. (At some point, we shall tak¥ to be the boundary of an
even-dimensional manifolt/ with fundamental grouZ* andN = dM, M being

the universal cover a#f.)

We denote by a classifying map: N — BZ* and follow the notations of
section 3 of [10]. The spacBZ* is ak-dimensional torus. It is the dual torus to
Tk = 7Zk = Hom(Z*, U(1)). On the produc(T*)* x T*, there is a canonical
Hermitian line bundleX with a canonical Hermitian connectid@’. The bundle
H is flat when restricted to any fibre of the projectiofi)* x 7% — Tk, see
[13]. Using the map x Id: N x T* — (T*)* x T*, we obtain a line bundl&,
on N x T* with a natural Hermitian (pulled-back) connecti&tf°. We are now
within the framework of the previous section, namely we have a fibration of odd-
dimensional closed manifolds: N x T — T*, with fibres diffeomorphic to a
fixed (2n — 1)-dimensional manifold, a Hermitian line bundkg, over the total
space with a flat structure in the fibre directions.

Let D = (Dy)yert the associated family of twisted odd-signature operators.
We assume thaD satisfies assumption (H1).

DEFINITION 2.1. If the family £ satisfies assumption (H1) we define the
higher eta invariant for the signature operator of the covellhg—~ N — N,
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7 e Q*(Th/dQ*(T*), as theP-eta formy, associated to one (and therefore any)
symmetricspectral sectiot.

It follows from Proposition 1.4 that this definition is well posed. For the defin-
ition of the #-eta form we refer the reader to [15]. Notice that one can extend
Definition 2.1 to the case in whici® only satisfies assumption (H2).

3. Manifolds with Boundary

Let M be a Zz-dimensional oriented manifold with boundary. We fi¥-anetric

gum on M [14] which is a product near the boundary. We denotev§ythe asso-
ciated Levi-Civita connection and by D the signature operatde oAssume now
thatm (M) = ZF. Letvy: M — BZF be a classifying map fod. We identify
BZF with the Albanese variety a#f, Alb(M) = Hi(M,R)/Hy(M, Z)modTor AS

in [10], we choosev, to be constant in the normal direction near the boundary
and in the same homotopy class of the Albanese map. The dual torus @ Alb
is the Picard variety P{@7). As in the previous section, we denote By and
V# the canonical Hermitian line bundle of Al¢) x Pic(M) and its canonical
partially flat connection. We denote B the pulled-back bundlé,, x Id)*H on

M x Pic(M); we endow this bundle with the pulled-back connectiof?. In this
way, we obtain a family ob-differential operators o parametrized by P{@1),

D = (Dy)oecriqm), With Dy equal to the signature operator with values in the flat
line bundle Eg|x9. We shall call this family thd_usztig family ofM and pose
Pic(M) = T* and BZF = (T*)*.

We denote byDy = (Dog)gerx the boundary family ofD. It is important to
make the identifications used in [15, 16] explicit. It suffices to specify these iden-
tifications for the signature operator ofi: we identify® A+ (M) |y With A*(dM)
through the map/+ : PA* (M) |y — A*(OM), M+ = (1)L, with

T ATOM) = PAT (M) gy T (@) = @y + cl(@m)ay,
wy being the chirality operator of/ defined by theéb-metric g, cl(wy)? = 1d.
We then defineM—: PA~(M) |y — A*(OM) to be M* o cl(v/—1dx/x). The

following lemma gives a concrete expressionMf and we leave the easy proof
to the reader.

LEMMA 3.1. Letwyy, be the chirality operator o M. Let
0 dx 1 00 b A *
a=a’+—nateC®@OM x [0,1]; "AL(M))
X

be ab-differential form wherex®, o do not involvedx /x. Thencl(wy)(a) = « if
and only ifa® = — cl(wyr) (at). Moreover, ifcl(wy) (@) = o thenM* (@) = o°.
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With these identifications, the boundary fami}y = (Do )47« Decomes a family
of twisted signature operators of the type described in Section 1. We now make
the following assumption on theoundaryfamily:

(H1) The family of boundary signature Laplaciafigy, 6 € Pic(M), is smoothly
invertible in degreen = dim M /2.

Equivalently, we could assume that
(H1') The signature Laplacian ah is L2-invertible in degreen.

Thanks to Proposition 1.2, we can thus fixsgmmetricspectral section
P = (Py) for Dy.

DEFINITION 3.2. Let M be an orientable manifold with boundary with
m(M) = ZF and satisfying assumption (H1). The higher index clasa/ofin
KO(Pic(M)) = K°(Z*), is the index class associated to the generalized Atiyah—
Patodi-Singer boundary value problem (@, $) fixed by one (and therefore
any) symmetric spectral sectiop.

That this is a well-posed definition follows immediately from Proposition 1.3
and from the relative index theorem of [15] which states that(dhd, ) —
Ind(D*, @) = [@ — £]. We denote the higher index class Mf by Ind(D™).
Notice that assumption (H1) also implies the existence of a higher eta invariant
My € QX(T*)/dQ*(T").

Making use of the APS family index theorem proved in [15], we can now state
the following higher APS index theorem for the signature operator

THEOREM 3.3 LetM be a manifold with boundary with fundamental group equal
to Z* and satisfying assumptiofH1’). For the Chern character of the canonical
index class o the following formula holds:

1
Ch(lnd(:l)+)) = / L(M, VM) A e*(VEO)Z _ E’ﬁa
M
in H2:(Pic(M)) = H2A(ZH). (3.1)

The curvature of the line bundlg; can be explicitly computed, s§H, 13]
Remark.The higher index class Iriegb*) can also be defined under the weaker
assumption considered at the end of Section 2, namely:

(H2) The signature Laplacian ofM acting on forms of degree = dim M/2
has a gap ab.
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There is a corresponding higher APS signature index theorem. We leave the precise
statement and the proof to the reader.

4. Noncommutative Symmetric Spectral Sections

We now pass to the noncommutative case. We first assumeénhg) is a closed
(2m — 1)-dimensional compact orientable Riemannian manifold and Ehat

N — N is a Galois covering oiV. We endowN with the lifted metricg. We
consider the (odd) signature operators DMmndD on N. We denote byD the
signature operator with values in the f@gt(I")-bundle’y = N xp C’(T") ; thus

D:Q(N,V)=C>®(N, VR A*(N)) > C®(N,VQ A*N) = Q*(N, V).

Notice thatD = ++/—1(e x dy — dy*) with dy the exterior differentiation with
values inV. The space2*(N, V) has a natural structure of pre-Hilbef{ (T")-
module; we denote b7 ,(N, V) the associated Hilbert module.

We now make our fundamental assumption:

(H1) The signature Laplacian 5 is L2-invertible in degreen.

Remark.Notice that the assumption thaty is L?-invertible in each degree
would be an unreasonable one, see [11]. It is precisely this remark that makes
the treatment of higher index theory for the signature operator more complicated.
Notice, finally, that assumption (H1) implies tfi&-invertibility of A5 in degree
(m—1).

We then have the following proposition:

PROPOSITION 4.1Under assumptiorfH1) there exist orthogonal decomposi-
tions:

Q"(N,V) = dyQ" YN, V) @ d, Q" (N, V),

(N, V) = dyQ"- (N, V) @ dj,Q"TL(N, V). (4.1)

Proof. Let us first prove the second decomposition. Assumption (H1) implies
that ImA"! = Q,(N, V). Moreover, we certainly have

Im ALY C dyQnI(N, V) @ dyQnti(N, V);

since the two terms in the above right-hand side are orthogonal, we immediately
obtain the second decomposition in Equation (4.1). Now we get the left-hand
side formula by first observing that’} is an elliptic pseudo-differential operator
inducing an isomorphism of2” (N, V) and then proceeding as above. O
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A similar decomposition holds faR”~1(N, V). Thanks to the above proposition,
we can consider the orthogonal decompositieh N, V) = V & W with (we
abbreviate* (N, V) = Q%)

V = dyQrodyQrt, W =05 097,
Q; = Qeete - QrliedQn?
Q,T} — d*vQ$+l®Q$+l”.€BQ%mfl

We still denote by the natural involution orW equal to the identity o275 and
minus the identity orQ25,. The operatorD splits diagonally with respect to the
decompositior*(N, V) = V @& W. Moreover, its restriction t&V anticommutes
with «.

Recall that the notion of spectral section has been extended to the noncommut-
ative context by Wu [21]. Proceeding as in Section 1, we see that under assumption
(H1), the operatorD has a trivial index class irK1(C*(I')). Thus, according
to theorem 2.2 in [21] (and its sharpening in [10, th. 2.€)),admits a spectral
section? e \ygﬂr)(N, A*(N)® V).

DEFINITION 4.2. The spectral sectio® is symmetricif & is diagonal with
respect to the splittin@*(N, V) = V & W and

‘(/)|V:HZ’ ﬂ’lwoa+aof|W:a.

In the commutative case, we remarked that this last condition simply means that
P|w is a Cl1)-spectral section for [, the latter operator being,-graded odd

with respect to the grading given lay. The existence of Cl)-spectral sections

for odd Z,-graded operators was left open by Wu. Thus, we need to prove the
following lemma.

LEMMA 4.3. Let A be a unitalC*-algebra and let# be aZ,-graded full Hilbert
module forA. We denote by the grading on#. Let £ be an odd, self-adjoint,
densely defined, A-linear, unbounded regular operator. |fKheéndex class ofD*
is trivial in Ko(A), then there exists @l(1)-spectral sectio for D, i.e. a spectral
section with the property that

Poa+aoP =uq. 4.2)

Proof. Observe that since is odd and self-adjointD has trivial K;1-index.
Thus, there certainly exists a spectral secti®hfor £. The basic remark to be
made is that, given a free submodu¢ of #, we can find aR > 0 such that if
¢ is a compactly supported smooth function with valuegiriL] and equal to one
on[—R, R], theng (D) (H) contains a free sub-module isomorphicHE. Using
proposition 2.5 and corollary 2.6 in [21] together with the above remark, it is easy
to see that for any free submodulg® of # there exists a new spectral section
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@’ with the following two properties@’ o ' = £’ o @' = &’ and the range of
Q' — &’ contains a free sub-module isomorphicH8. The proof proceeds now as
in [16]. We omit the details. O

PROPOSITION 4.4if the signature Laplacian oV satisfies assumptici1) then
D admits a symmetric spectral sectiogh Moreover, if@ is a second symmetric
spectral section, then

[P — @] = 0in Ko(C*(I) ® C. (4.3)

Proof. We proceed as in the commutative case, see the proof of Proposition 1.2:
the existence of Cl)-spectral sections for odfl-graded operators with vanishing
Ko-index is provided by Lemma 4.3 above. O

Remarklf we relax assumption (H1) and only assume that
(H2) The signature Laplacian 5 has a gap in middle degree,
then we can consider the finitely generated projective modules of harmonic forms

H" C QL ot Q’{}fl. Using once again the Mishenko—Fomenko calculus,
we obtain a Hodge decomposition

Q"(N,V) = H"®dyQ" XN, V) @ d, Q" (N, V),

QT2N,V) = H" @dyQn=H(N,V) @ dyQm+L(N, V)

and similarly forQ"—(N, V), Q’f{l(N, V). Using this Hodge decomposition we
can extend the notion of a symmetric spectral section as in Section 1 and prove the
analogue of Proposition 4.4.

5. Higher Eta Invariants and Higher p-Invariants for Signature Operators

Let (N, g) andI’ — N — N be as in the previous section. Recall thaFifs

of polynomial growth with respect to a word metric, then we can consider the
dense subalgebr&> C C(I') of rapidly decreasing functions i@} (I") and

YV =N Xr B*.

PROPOSITION 5.1Let assumptiorfH1) hold and let the grouf™ be of polyno-
mial growth. Then we can always choose a symmegfic-spectral section, i.e. a
symmetric spectral section ih%w(N, VYV ® A*(N)).

Proof. The proof follows immediatly from theorem 2.6 of [6] and Proposi-
tion 4.4. 0

We can now give the following fundamental definition:
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DEFINITION 5.2. If assumption (H1) holds and is of polynomial growth, we
define the higher eta invariaftof the signature operatad associated t&" — N

as theP-higher eta invarianfj, € ﬁ*(£°°)/d§*(£°°) associated to one (and
therefore any) symmetri@>°-spectral sectio for D.

It follows from Equation (4.3) and formula (5.1) in [6] that this definition is well
posed. For the definition aP-higher eta invariant, we refer the reader to [6]. The

spaceQ, (B>) is the space of noncommutative differential forms with rapidly
decreasing coefficients modulo the closure of the space of graded commutators.
We shall now investigate the variational propertiesjo& 7». The higher eta
invariant just defined depends on several choices: Lott’s conneetidepends on
a functions on N; the signature operator involves the metric and, of course, we had
to choose a trivializing operatot?, associated with the symmetric spectral section
P . That the higher eta invariant is independent of the choice of the particular trivi-
alizing operator is proved in [6]. Thus, we consider the variation with respect
to the functions and to the metrig. Recall that assumption (H1) isdependent
of the metricg (it is a homotopy invariant condition).
Consider a 1-parameter family of input informations, with parametef0, 1].
We choose symmetric spectral sectiafis for D (0) and @, for D(1). Since
{D ()} has trivial index class iIrK:(C[0, 1] ® 8°°), we can choose a spectral
section = {£,} associated t¢D(r)}. We can and we shall chooge symmetric
for eachr. By definition of higher spectral flow [6, 21] and by Propaosition 4.4, we
have that the higher spectral flon(&D(r)}; Qo, @1) from (Dg, Qo) t0 (D1, @1)
is zeroin Ko(C(I')) ® C. Recall now theorem 5.3 of [6]:

1
(D1, Q1) — 1(Do, Qo) = 2Ch(s{D (M)} Qo, (521))—/0 ag(rydr  (5.1)

with ag local and more precisely given by the regularized limitsas 0, of

12 d
/0 ESTPCI(D |:d—r(Bs(”)) eXp(—Bf(”))}
with
Bs(r) = YV(r) +os(D() + ¢(S)K%r), r € [0, 1],

(¢(s) being a smooth function which is zero fer < 1 and one fors > 2).
Since@q and @, are symmetric, the left-hand side of Equation (5.1) is equal to
the difference of the higher eta invariants®f and g and we can thus conclude
that this difference igocal. It is important to point out that this local expression

involves Lott's bi-forme (see [6, prop. 27]). Thus, if we decompd2e(B8>) into

a direct sum of subcomplexes labeled by the conjugacy clas$esvef see that the
difference of two higher eta invariants defined in terms of two different input data is
concentrated in the subcomplex labeled(by the conjugacy class of the identity.
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Recall [10] that givenc € T it is possible to define a cochain compléx with
HY = H¥(N,); here N_,. is the quotientx}\C,, with {x} equal to the cyclic
group generated hy and C, the centralizer of in I"; the cyclic cohomology of
CT can be expressed in terms&f (N,,,). Givenc € Z¥, there is a cyclic cocycle
7. € ZC*(CT) defined as

if yo -y & (x)
(Vor s Vi) = . / 5.2
w0, - 1) {C(g,gyo,...,gyo...yk_l) it oy = g trg. )

We have thus proved

PROPOSITION 5.3Let 7. be the cyclic cocycle given by Equation (5.2). We
assume thaiv satisfies(H1) and thatT" is of polynomial growth. Suppose that
extends as a cyclic cocycle 8. If x # e, then the pairing7, z.) is independent
of h and of the Riemannian metricon N.

Let = @®uemn((x)) the expression of the higher eta invariant in terms of the

subcomplexes of2, (B8>) labeled by the conjugacy classeslofFollowing what

Lott has done in the invertible case [6], we can now defireehigherp-invariant

for a signature operatosatisfying assumption (H1) @8= @) 7({x)). This is

a closed noncommutative form. Moreover, because of the above remarks (and the
properties of Lott's bi-form) its class i#f,(8>) is a metric invariant It would

be very interesting to express this class as the Chern character of a secondary
signature class iKy(8>°). Notice that the numbers appearing in Proposition 5.3
are precisely the pairing @f with z..

6. A Higher APS Index Theorem for the Signature Operator

Let M be a 2z-dimensional compact orientable manifold with boundary. We fix an
exactb-metric g on M [14] and consider the lifted metrig on the universal cover
I' =11 (M) — M — M. We denote by the Levi-Civita connection associated
to g.

We denote by DD and D the signature operators o, M and onM with
values in the flat bundl®’ defined byM and C*(I"). We denote by B, Do and
Dy the associated boundary operators. Notice that the boundary-coverirg
oM — M and the operator

Do: C(OM, V]yy @ A*(OM)) = Q*OM, V|yy) — QL (OM, V]ym)

are of the type considered in the previous section.
We now make the assumption

(H1) The boundary signature Laplacian, ;; is L?-invertible in degreen.
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In order to prove that this assumption implies the existencecahanicalindex
class, as in the commutative case (see Definition 3.2), we need to extend to the
noncommutative context the relative index theorem proved in [15]. Since the index
class IndD™, ) is defined through the trivializing perturbatiot9 (on aM)
and the associated regularizing opera®t + A}, (on M), this needs an extra
argument.

Although we only state it for the signature operator, it will be clear that the
proof applies to any Dirac-type operator associated to an éxantric.

PROPOSITION 6.1Let D be the signature operator with valuesih If £, and
P, are two spectral sections for the boundary operafoy, then

Ind(:D*, 3)2) — Ind(:D*, J)l) =[P — P2]. (61)
Proof. We choosef; and #, as in the proof of proposition 16 in [15], using
the results of Wu [21]. We obtain a family of trivializing operata®g(r) on 9 M,

r € [—1, 1], together with the corresponding regularizing operatdrs) on M.
See [MP 1] for the details. By construction, we have

INd(D*, P2) = Ind(D(-=DT) Ind(DT, £1) = Ind(DD)).

The family D (r) on M is a family of C*(I")-Fredholm operators on unweighted
b-Sobolev spaces exceptat= 0. At r = 0, the boundary operator associated
to D(0), i.e. the trivializing operatoeDy(0), has null space which is a finitely
generated projective module equal to the rangésf — #,). This means, see
[5], that the operatorD (0) will be C*(I')-Fredholm acting ontz-weighted b-
Sobolev spacesg, > 0, r small. Let Ind(D(0)") be ther-weighted index class.
Then, proceeding as in the commutative case, it is easy to see that

Ind—(D(0)F) — Ind, (D)) = [NUll(Do(0)] = [P1 — 2]

(the point being here that we have different weightsthatsame operata® (0)*).
On the other hand, a simple homotopy argument shows that

Ind_(DO") = Ind_,(D(=DT), Ind;(DO)") = Ind)(DD)T).
We then have
Ind(D*, P2) — Ind(D*, P1) = Ind(D(-1)") — Ind(DD))
= Ind_n(D(=D*) — Ind,,(DD))
= Ind_(DO)") — Ind,(D(O)")
= [null(Do(0)] = [P1 — P2l.

The proposition is proved. O
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DEFINITION 6.2. Let M be a compact orientable even-dimensional manifold
with boundary with fundamental group and let assumption (H1) hold. We
define the canonical signature index class(#d), in Ko(C*(I')) ® C, as the
Atiyah—Patodi—Singer index class associated to one (and thereforeyamg)etric
spectral sectio@ for the boundary operatapy.

The relative index (Propisition 6.1) and Proposition 4.4 imply that this is a well-
posed definition.
We can now state the higher APS index theofenthe signature operator

THEOREM 6.3.Let assumptior{H1) hold and letI" be of polynomial growth.
Then
1. There exist a symmetri8*>°-spectral sectior” for the boundary operatoDo.

2. The higher eta invariantj; = 7, € Q.(8>) and the higher index class
Ind(D") = Ind(D™, ) are well defined, independent of the particular choice
of symmetric spectral section.

3. Letwy € Q* (M) ® ﬁ*(fB"O) the biform introduced by Lott in his heat-kernel
proof of the Connes—Moscovici higher index theorem; for the Chern character
of the canonical index cladad(D™) = Ko(B>) € Ko(C*(I")) the following
higher APS index formula holds:

Ch(Ind(D™)) = U LM, V™Y A wy — %’ﬁa} in H.(B8%).
M

Proof. Part (1) follows from Proposition 4.4. Part (2) has already been proved.
Part (3) is a direct application of the main theorem in [6].

DEFINITION 6.4. LetM be an even-dimensional oriented manifold with boundary
with fundamental group® of polynomial growth and satisfying assumption (H1).
Let[c] € H*(T', C) and letz. € HC*(CT") be the cyclic cohomology class asso-
ciated to the corresponding (extendable) cyclic cocycle. Following [10] we define
the higher signatures a@ff as the complex numbers

M 1.
o(M, oM, [c])E</ LM,V )/\CU—EUBM’ ‘L’C>. (6.2)
M

We conjecture that these numbers are homotopy invariants of th&airM).
Thanks to the above higher APS index formula this conjecture would follow from
the homotopy invariance of the canonical index classdd) € Ko(C*(I)).

RemarkSo far we have treated the case in which the manifold with boundary is
of even dimension. The odd dimensional case is reduced to the even-dimensional
one by suspension, as in [16]. In order to contain the size of this paper, we only
sketch the arguments, leaving the details to the interested reader. Notice that not all
results of [16] have been extended to the noncommutative context. Thus a rigorous
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treatment of what follows would indeed require a few careful explanations in
which these results are established.

Let M be odd-dimensional, so that difm/) = 2m. One can give, in general, the
notion of a symmetric GlL)-spectral section for a twisted signature operaboon

a closed #&-dimensional manifoldv satisfying assumption (H1) (i.e\y is L?-
invertible in degreen). The definition makes use of the decomposition, analogue of
that considered after Proposition 4L5(N, V) = V @ W with V = Qf & dQ) &
d*Q% andW the orthogonal complement. Using the usual natural gradiog W,

we get a decompositio = Q3 @ Q3, and a C{1)-spectral sectior is said to be
symmetric if it is diagonal with respect to this decomposition, it is the APS spectral
projection onV and satisfies condition (1.2) d#. The difference class? — @] €
K1(C!(')) ® C is zero for any pair of symmetric Cl)-spectral sections. Using
this result and the jump formula for the odel-higher eta invariant (this follows
from the noncommutative analogue of lemma 6 in [16]), one can défimedd
higher eta invariari§ of a closed even-dimensional manifaldsatisfying (H1) and
with a fundamental group of polynomial growffie ﬁ*(:/g“)/dﬁ*(!B“). We can
apply these arguments 16 = oM and to thel'-coveroM — oM, " = m1(M).

The use of symmetric Cl)-spectral sections gives both a higher eta invarignt,
and a canonical signature index class(ldd € K1(C;(I')). Observing that the
suspended Dirac family considered in [16] in nothing but the Lustzig family of
S x M and extending to the noncommutative context the computation presented
in [16], one can prove, by suspension, that the Chern character @hid equal

to the noncommutative de Rham class of the usual local integral Mjn@s
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