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Abstract

Let X be a compact manifold with boundary ∂X, and suppose that
∂X is the total space of a fibration

Z → ∂X → Y .

Let DΦ be a generalized Dirac operator associated to a Φ-metric gΦ

on X. Under the assumption that DΦ is fully elliptic we prove an index
formula for DΦ. The proof is in two steps: first, using results of Melrose
and Rochon, we show that the index is unchanged if we pass to a certain
b-metric gb(ε). Next we write the b− (i.e. the APS) index formula for
gb(ε); the Φ-index formula follows by analyzing the limiting behaviour
as ε ↘ 0 of the two terms in the formula. The interior term is studied
directly whereas the adiabatic limit formula for the eta invariant follows
from work of Bismut and Cheeger.

1991 Mathematics Subject classification: 58J20, 58J28
Key words and phrases: Dirac operators, index theory, adiabatic limit,
eta invariant

1



2 Eric Leichtnam, Rafe Mazzeo and Paolo Piazza

1 Introduction

Let X be an even dimensional, compact, oriented spin manifold with bound-
ary such that ∂X is the total space of a fibration Z` → ∂X

φ−→ Y k. (Thus
dim X = `+k+1 = 2m.) There are many interesting index formulæ for twisted
Dirac operators D on X corresponding to various different classes of complete
metrics g on the interior of X. Under certain hypotheses which ensure that D
is either Fredholm, or at least has finite L2 index, and that the usual Atiyah-
Singer density has finite integral, the goal is to identify the index defect, i.e.
the difference between Ind(D) and the Atiyah-Singer integrated characteristic
form. Most prominent, of course, is the Atiyah-Patodi-Singer theorem when g
has asymptotically cylindrical ends, in which case the index defect is (minus
one half) the eta invariant of the induced twisted Dirac operator on ∂X [9].
This does not take advantage of the fibred boundary structure. Two interesting
classes of metrics which do take this into account are the fibred boundary and
fibred cusp metrics, also called Φ− and d− metrics, respectively. These appear
naturally in many interesting geometric settings, cf. [4]: for example, complete
Ricci flat metrics are often Φ−metrics, while locally symmetric metrics with
Q−rank one cusps are d−metrics.

To define these, introduce the following notation. Fix a splitting T (∂X) =
TV (∂X) ⊕ TH(∂X) into vertical and horizontal subspaces, where TV (∂X) =
T (∂X/Y ) is the fibre tangent bundle, and TH(∂X) is identified with φ∗(TY ).
We consider metrics g̃ on ∂X and h on Y so that φ is a Riemannian submersion.
This means that the restriction of g̃ to TH(∂X) is identified with φ∗h, and the
subbundles TH(∂X) and T (∂X/Y ) are orthogonal. We write g̃ = φ∗h+κ, where
κ is a symmetric two-tensor on ∂X which is positive definite on T (∂X/Y ).

Let x be a defining function for ∂X in some neighbourhood of the boundary.
Suppose also that h and κ are allowed to depend smoothly on x, all the way
to x = 0. Then an exact b-metric and an exact cusp (c-) metric on X are ones
which have the form

dx2

x2
+ g̃,

dx2

x4
+ g̃

in this neighbourhood, respectively ; likewise, exact Φ− metrics and exact
d−metrics have the forms

dx2

x4
+

φ∗h

x2
+ κ, and

dx2

x2
+ φ∗h + x2κ,

respectively, in this neighbourhood. (The term ‘exact’ in each of these refers
to the fact that there are no cross-terms, at least to principal order; this is a
natural, but not a serious assumption, and there are generalizations of the ideas
and formulæ we discuss here to the various ‘nonexact’ settings.) For simplicity
in all of the discussion below, we usually label a metric as gb, gc, gΦ and gd to
indicate that it is one of these four types. Note also that when discussing b−
and c−metrics, it is not important that g̃ respect the fibration structure (nor,
of course, even that ∂X have such a structure).
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Assume that X and Y are spin, and fix spin structures on each of these
manifolds; there is an induced spin structure on the fibres φ−1(Y ) := Zy ⊂ ∂X.
The (Z2−graded) spin bundles on X, ∂X and Zy are denoted S, S∂ and SZy ,
respectively. Let E → X be an hermitian complex vector bundle endowed with
a unitary connection. Fixing also a metric g of any of the types above, we obtain
a twisted Dirac operator

D+
g : C∞(X, E ⊗ S+) → C∞(X, E ⊗ S−).

If g is of one of the preceding types, then we also write Db, Dc, DΦ, Dd for the
corresponding Dirac operator to indicate its asymptotic type. The associated
boundary operator D∂ induces a family of Dirac operators {D∂

y}y∈Y , where each
D∂

y acts on C∞(φ−1(y), E ⊗ S∂
y ).

For b− and c− metrics, the simplest form of the APS occurs when D∂ is
invertible, although the general result if this is not satisfied is not much more
difficult. In the other two settings, however, the analogous hypothesis is the

1.1 Assumption. For some δ > 0,

spec(D∂
y ) ∩ (−δ, δ) = ∅, ∀ y ∈ Y (1.2)

The index formula for Dg is known when g is a metric of type b, c or d; as
already noted, the first of these is just the APS theorem, while the second in
fact reduces to this theorem in a rather simple way. (This is proved below.)
The index formula for d−metrics is due in the special case of locally symmetric
metrics to Müller [11], and in this general geometric setting was accomplished
by Vaillant [14]. The index defect in this case is the integral over Y of the
Bismut-Cheeger eta form. (Actually, Vaillant’s result holds under the weaker
hypothesis that kerD∂

y has constant rank, in which case the index formula has
an additional boundary contribution.)

Assuming (1.1), D+
Φ is a fully elliptic operator in the (pseudo)differential

Φ−calculus developed in [7] and [14], and the parametrix construction there
shows that D+

Φ is Fredholm acting between the appropriate (Φ-) Sobolev spaces.
Answering a question raised in [7], we prove here that

1.3 Theorem. Assuming (1.1), and using the notation above, we have

Ind(D+
Φ ) =

∫
X

Â(X, gΦ) ∧ ChE − 1
2

∫
Y

Â(Y, h) ∧ η̃, (1.4)

where η̃ ∈ Ω∗(Y ) is the Bismut-Cheeger eta form [3] for the boundary family
(D∂

y )y∈Y .

While it is likely that the index formula for this operator can be obtained by
methods similar to those employed in [14] for d-metrics, that proof is very long
and difficult, and it is a reasonable goal to obtain this formula as a consequence
either of that theorem or of the APS theorem.
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The reduction of the Φ− index theorem to the d− index theorem (when
the boundary family is invertible) has been accomplished recently by Sergiu
Moroianu [10]: for exact d− and Φ−metrics gd = x2gΦ, one has Ind(DΦ) =
Ind(Dd). Vaillant’s formula gives

Ind(Dd) =
∫

X

Â(X, gd) ∧ ChE − 1
2

∫
Y

Â(Y, h) ∧ η̃,

so it suffices to show that the integral is the same as the corresponding one for
gΦ:

1.5 Lemma.
∫

X
Â(X, gΦ) ∧ ChE =

∫
X

Â(X, gd) ∧ ChE.

Notice that the two integrals are well defined: this is discussed in [14, Sec-
tion 1]. Lemma 1.5 follows simply because Â(X, gΦ) = Â(X, gd) pointwise, by
conformal invariance. Note too that by a standard transgression argument, the
integrals are equal even when gd and x2gΦ coincide only in a neighbourhood of
∂X.

The proof of (1.4) here is indirect too, but it involves only a reduction
to the much simpler APS theorem. We shall use the technique of adiabatic
limit, as described below. We first deform gΦ to a b-metric gb(ε). The index is
unchanged through this deformation, and hence equals the index of the Dirac
operator corresponding to gb(ε). This follows from the analysis of Melrose and
Rochon [8], specifically their construction of parametrices which are uniform in
an adiabatic parameter ε for certain parts of this metric deformation. In the
(APS) index formula for this b−metric we then take the limit as ε → 0. The fact
that the eta invariant term has the correct limiting behaviour follows from the
Bismut-Cheeger theory [3] so it remains only to analyze the limiting behaviour
of the interior integral, which is the new calculation here. The particular metric
family gb(ε) is chosen because the Atiyah-Singer integrand for it has the best
behaviour in the limit.

In the initial stages of our work, the plan was to develop a more direct
deformation connecting gΦ and gb and to use a parametrix method to analyze
this adiabatic limit. However, just at this time the paper of Melrose and Rochon
[8] appeared, and Lemma C.1 there (i.e. Lemma 2.7 below) allowed us to
develop the particular and much shorter route presented here. By relying on
their substantial and deep work, as well as that of [3], we are able to give a
fairly quick proof of this index formula.

It should be possible, and would still be of genuine interest, to prove the
Φ−index theorem directly using heat equation methods. In particular, one
would hope to obtain another derivation of the fundamental Bismut-Cheeger
result in the course of this.

We conclude this discussion by noting that Lauter and Moroianu [6] prove
formula (1.4) in the special case Y = S1. In fact, in their earlier paper [5],
they also treat the case where Y is arbitrary and establish a less precise index
formula using homological methods based on ideas of Melrose-Nistor. We refer
also to [12] for a related formula when φ : ∂X = S1 × S2 → S2.
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We shall prove formula (1.4) assuming that E is the trivial line bundle X×C.
This is for notational simplicity only, and the general formula may be deduced
using exactly the same reasoning. In the next section we introduce the sequence
of metric homotopies and prove that the index is unchanged under these defor-
mations. In the third section we analyze the other side of the index formula,
and especially its behaviour in the adiabatic limit.

Acknowledgments. We wish to thank Richard Melrose and Frédéric Rochon
for explaining their work to us, and also Sergiu Moroianu for making some
valuable suggestions on an early draft of this note. This work was initiated
during a visit by the third author to Stanford University, and he wishes to
thank that department for its hospitality. The research of Eric Leichtnam and
Paolo Piazza is partially supported by a CNR-CNRS bilateral project. Rafe
Mazzeo was supported by the NSF grant DMS-0505709.

2 Reduction of Ind(DΦ) to Ind(Db)

In order to avail ourselves of the work of Melrose and Rochon, the homotopy of
metrics we consider consists of the following steps: first deform gΦ to the cusp
metric

g1
c (ε) :=

dx2

x4
+

φ∗h

(x + ε)2
+ κ; (2.1)

next, deform g1
c (ε) to the cusp metric

g0
c (ε) :=

dx2

x4
+

φ∗h

ε2
+ κ; (2.2)

from here deform in succession to the following three b-metrics:

g0
b (ε) :=

dx2

x2
+

φ∗h

ε2
+ κ (2.3)

g1
b (ε) :=

dx2

x2
+

φ∗h

(x + ε)2
+ κ (2.4)

g2
b (ε) :=

(dx)2

x2(x + ε)2
+

φ∗h

(x + ε)2
+ κ (2.5)

Of course we have only specified the forms of these metrics in a fixed collar
neighbourhood of ∂X, but we can extend these to the interior arbitrarily, and
standard results show that neither their indices nor the integrals depend on
these extensions.

We denote by Dj
∗(ε), ∗ = c, b and j = 0, 1, 2, the Dirac operators associated

to these metrics, respectively.
The first main fact is the

2.6 Lemma. Assuming (1.1), then each of the operators Dj
∗(ε) is fully elliptic

when ε > 0 is sufficiently small.
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Full ellipticity in either the b− or c− pseudodifferential calculi is simply
the assumption that not only the interior symbol but also the boundary ‘indi-
cial operator’ is invertible. This follows from Theorem (4.41) in [3] when ε is
small. Using the full ellipticity, one may construct parametrices modulo com-
pact remainders in the appropriate pseudodifferential calculi. Hence each of the
operators Dj

∗(ε) is Fredholm on the appropriate geometric Sobolev spaces.
From now on we shall omit mention that the hypothesis (1.1) is always in

force here. Furthermore, we shall always assume that 0 < ε < ε0 for some
sufficiently small ε0.

We deform to g2
b (ε), rather than any of the ‘simpler’ b-metrics because this

is the metric for which we can more effectively analyze the limit of the Atiyah-
Singer integrand as ε ↘ 0.

We now present a series of lemmata which state that the indices of the Dirac
operators remains the same through this entire deformation.

The first step uses the work Melrose and Rochon and is the most serious one
analytically. [8].

2.7 Lemma. Ind(DΦ) = Ind(D1
c (ε)).

Proof. In Appendix C of [8], Melrose and Rochon consider an adiabatic met-
ric deformation connecting a Φ metric to a c-metric. Actually, they consider
a slightly more general situation where ∂X is the total space of a tower of fi-
brations ∂X → Ỹ → Y , and a corresponding transition between a Φ−metric
associated to the first fibration and a Φ−metric associated to the second. By
constructing parametrices in an adiabatic calculus, they prove in Proposition
C.1 of [8] that the indices of the Dirac operators associated to the metrics in this
family remain invariant in this passage to an adiabatic limit. This assumes that
the ‘boundary symbols, i.e. the normal operators ad(P ) and N(P ) are invertible,
which follows directly from our hypothesis (1.1).

2.8 Lemma. We have Ind(D1
c (ε)) = Ind(D0

c (ε)), Ind(D0
b (ε)) = Ind(D1

b (ε)) and
Ind(D1

b (ε)) = Ind(D2
b (ε)).

Proof. In each case we simply follow the obvious homotopy of metrics. Thus,
for the cusp setting, let

gc(t, ε) :=
dx2

x4
+

φ∗h

(tx + ε)2
+ κ , 0 ≤ t ≤ 1, (2.9)

so that gc(0, ε) = g0
c (ε), gc(1, ε) = g1

c (ε). The indicial family of the corresponding
Dirac operators Dc(t, ε) is independent of t, and hence each Dc(t, ε) is Fredholm,
so the index is constant. The argument in the other two cases is the same.

2.10 Lemma. Ind(D0
c (ε)) = Ind(D0

b (ε)).

Proof. As in [8], Lemma (14.1), Ind(D0
c (ε) equals the index for the incomplete

metric du2 + φ∗h/ ε2 +κ with APS boundary conditions. Since the boundary
operator is invertible, this also equals Ind(D0

b (ε)).
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Taken together, this chain of equality gives the

2.11 Proposition. Ind(DΦ) = Ind(D2
b (ε)).

3 The adiabatic limit

At this point we simply notation and simply write g(ε) instead of g2
b (ε) .

We begin with the

3.1 Proposition. Assuming, as always, that (1.1) holds, then for ε sufficiently
small,

Ind(DΦ) =
∫

X

AS(g(ε))− 1
2
η(D∂

g(ε)). (3.2)

Proof. Define ξ = x/(x + ε), so that dξ/ξ = ε dx/x(x + ε). In terms of this new
boundary defining function, g(ε) := ε−2 ĝ, where

ĝ =
dξ2

ξ2
+ ε2

(
φ∗h

(x + ε)2
+ κ

)
.

The middle term on the right has been kept expressed in terms of x simply
to emphasize that ĝ is an exact b-metric which induces ε2 times the boundary
metric induced by g(ε).

Applying the usual APS formula to ĝ gives

Ind(Dĝ) =
∫

X

AS(ĝ)− 1
2
η(D∂

ĝ ). (3.3)

However, clearly Dg(ε) has the same index as Dĝ, which is then the same as
Ind(DΦ). Furthermore, using the fact that ĝ and g(ε) differ by a constant, we
get both ∫

X

AS(ĝ) =
∫

X

AS(g(ε)), and η(D∂
ĝ ) = η(D∂

g(ε)).

Replacing each term in (3.3) with the corresponding quantity for g(ε) gives
(3.2).

The final steps of the proof of the main theorem consist in analyzing the
limiting behaviour as ε ↘ 0 of the two terms on the right in (3.2).

3.1 Limiting behaviour of the integrand

3.4 Proposition. The integral of the Atiyah-Singer density for g(ε) converges
to that for gΦ, i.e.

lim
ε↘0

∫
X

AS(g(ε)) =
∫

X

AS(gΦ) . (3.5)
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Proof. This is a computation. We shall use the method of moving frames, cf.
[13] for more on this formalism. Recall that if ω0, . . . , ωn is any orthonormal
set of one-forms, then the connection one-forms ω j

i are determined uniquely by
the equations

dωi = ωj ∧ ω i
j , ω i

j = −ω j
i .

From these we define the curvature two-forms

Ω j
i = dω j

i − ω k
i ∧ ω j

k .

Here, and elsewhere below, summation on repeated indices is intended.
The strength of this method, of course, is that it can be adapted to the

specific geometry. Thus here we shall choose the coframe for g(ε) as follows.
Let Y = ∂X. Choose an orthonormal coframe ω̃α, 1 ≤ α ≤ k, for (Y, h), and
ωµ, k + 1 ≤ µ ≤ n, for the restriction of κ to each fibre. These forms may also
depend smoothly on ε and x (in x ≥ 0, ε ≥ 0), and in addition, the ωµ may
also depend on y ∈ Y . In the following, we shall use the Chern convention that
Roman indices i, j, . . . vary between 0 and n, while the Greek indices α, β, . . .
vary between 1 and k and µ, ν, . . . vary between k + 1 and n. Now define

ω0 =
dx

x(x + ε)
, ωα =

φ∗(ω̃α)
x + ε

;

Then
{ω0, ω1, . . . , ωk, ωk+1, . . . , ωn}

is an orthonormal coframe for g(ε).
After some computation we obtain

dω0 = 0
≡ ωα ∧ ω 0

α + ωµ ∧ ω 0
µ

dωα = − dx

(x + ε)2
∧ φ∗(ω̃α) +

dx

(x + ε)
∧ (φ∗(ω̃α))′ + ωβ ∧ φ∗(ω̃ α

β )

≡ ω0 ∧ ω α
0 + ωβ ∧ ω α

β + ωµ ∧ ω α
µ

dωµ = dx ∧ (ωµ)′ + (x + ε)ωα ∧ E µ
α + ων ∧ E µ

ν

≡ ω0 ∧ ω µ
0 + ωα ∧ ω µ

α + ων ∧ ω µ
ν .

Here the ′ denotes differentiation with respect to x, and E j
i denotes terms

(involving the curvature and second fundamental form of the fibres) which are
uniformly bounded (with respect to the unscaled metric g̃ on ∂X) along with
their derivatives as x, ε → 0.

More specifically, in the formula for dωα, we use that d commutes with φ∗.
The expression for dωµ contains ωα factors corresponding to the derivative of
the fibre metric in the horizontal direction, and also to the variation of the
horizontal subspaces in the fibre direction. We refer to [4] §5.3.1 (particularly
(43)-(45)) for the precise details, but note simply that the ωα ∧ ων components
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correspond to the second fundamental form in the normal direction eα to the
fibre (with respect to the scaled metric on ∂X for a given x and ε), and are
indeed of the form (x+ ε)E µ

α , while the ωα ∧ωβ components in dωµ correspond
to the curvature of the horizontal distribution, which are of the form (x+ε)2E µ

α ,
hence even lower order. Next, the terms E µ

ν are precisely the connection one-
forms ω µ

ν for the metric induced by κ on the fibres; in particular, these do not
involve any ωα factors. Finally, we have included the extra terms involving the
x derivative of ω̃α and ωµ since we do allow the metric h on Y and symmetric
two-tensor κ to depend smoothly on x.

Using this same E j
i notation for all ‘negligible’ bounded terms, we now claim

that
ω α

0 = − x

x + ε
ω̃α + xE α

0 , ω µ
0 = x(x + ε)E µ

0 ,

ω β
α = E β

α , ω µ
α = (x + ε)E µ

α , ω ν
µ = E ν

µ .

To verify this, we simply need to show that these forms satisfy the structure
equations and are skew-symmetric in their indices, for then Cartan’s lemma
guarantees uniqueness. The equations for all terms except the ω µ

α (which by
skew-symmetry, we require to be equal to −ω α

µ ) are clear enough. For these
terms, first note that the equation for dωα has no vertical components, which
means that ωµ ∧ ω α

µ must vanish. This means that

ω α
µ = cα,µ,νων , and cα,µ,ν = cα,ν,µ.

(The point is that there can be no ωβ or ω0 components.) Finally, setting this
into the equation for dωµ, and noting that the E ν

ν term is already accounted
for by the ω µ

ν , we must have ω µ
α = (x + ε)E µ

α , as claimed.
When computing each of the curvature two-forms Ω j

i , we write all forms in
terms of dx, ω̃α and ωµ, which are smooth in the ordinary sense up to ε = x = 0.
We single out the particular terms which help or hurt us, and as before gather
all the harmless remaining factors into terms F j

i , which are uniformly bounded
in x, ε ≥ 0. Thus, after further work, we obtain

Ωα
0 = dx ∧

(
− ε

(x + ε)2
ω̃α + F α

0

)
+ xF α

0 ,

Ωµ
0 = (x + ε)F µ

0 ,

Ω β
α = F β

α ,

Ωµ
α = dx ∧ F µ

α + (x + ε)F µ
α ,

Ω ν
µ = F ν

µ .

Only the first of these requires more explanation. We have

dω α
0 − ω β

0 ∧ ω α
β − ω µ

0 ∧ ω α
µ

= d

(
− x

x + ε

)
∧ ω̃α + dx ∧ F α

0 − x

x + ε

(
dω̃α − ω̃β ∧ ω̃ α

β

)
+ xF α

0 .
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The first terms on the right, involving dx, and the final term, correspond to the
assertion above. The middle terms appear not to be of the correct form, but
the particular combination in parentheses is just the structure equation for the
connection one-forms and hence vanishes.

Recalling that dim X = n + 1 = 2m, the integral
∫

X
Â(g(ε)) is a linear

combination of terms of the form:∫
X

TrRm1(ε) . . .TrRmp(ε), m1 + . . . + mp = m.

To fix the ideas and simplify the notation we focus on∫
X

TrRm(ε),

since all other terms are handled the same way. In terms of the curvature
two-forms,

TrRm(ε) =
∑

Ω i2
i1

Ω i3
i2
· · ·Ω i1

im
. (3.6)

Now substitute in this the expressions we have obtained for the Ω j
i . Using

the boundedness of all of the E j
i , the only terms in any of these curvature forms

which is not bounded near x = ε = 0 is Ωα
0 , and in fact only its first term

ε(x + ε)−2dx ∧ ω̃α causes difficulties. Thus we may as well suppose that this is
the first term, i.e. i1 = 0 and i2 = α, and we can replace the entire two-form
Ωα

0 by this single bad term. The final term in the entire product is either Ω 0
µ or

Ω 0
β for some µ or β. In the former case this contains a vanishing factor (x + ε),

while in the latter, only the part of this two-form which does not contain a dx
contributes, and this has the same vanishing factor. Thus in all cases, the entire
2m-form is bounded (though not necessarily smooth!) near ε = x = 0, and we
can pass to the limit, as desired.

3.2 Adiabatic limit of the eta invariant

We briefly recall the context of the Bismut-Cheeger theorem [3]. Let M be an
odd dimensional, compact spin manifold which is the total space of a fibration

Z → M
φ−→ Y

where the base Y is also spin. We fix a connection TM = TH(M) ⊕ T (M/Y ),
where TH(M) ' φ∗(TY ) and T (M/Y ) denotes the vertical tangent bundle. Let
h be a Riemannian metric on Y and κ a symmetric two-tensor on TM which
restricts to a metric on each Zy and which annihilates the horizontal space,
and introduce the Riemannian submersion metric g̃ := φ∗h + κ. Denote by ∇
and ∇M/Y the Levi-Civita connection for gM and the induced connection on
T (M/Y ) obtained by compressing ∇ by the projections P : TM → T (M/Y ).
Let S be the vertical spinor bundle and E → M an additional Hermitian bundle
endowed with a unitary connection. The bundle F := S⊗E is a vertical Clifford
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module. Finally, let F := φ∗(Λ∗Y )⊗F . To fix the notation we assume that the
fibers are even dimensional.

To this entire set of data one associates the rescaled Bismut superconnection

At : C∞(M, F) → C∞(M, F) ,

cf. [2] and [1]. The operator dAt/dt exp(−A2
t ) is a vertical family of smoothing

operators (Ky)y∈Y with coefficients which are differential forms on the base Y .
From this family one obtains a differential form of odd degree on the base Y ,

Str
(

dAt

dt
exp(−A2

t )
)

.

The value of this form at y ∈ Y is obtained by restricting Ky to the diagonal
∆y ⊂ φ−1(y)× φ−1(y), taking its supertrace and then integrating over ∆y.

Assume now that the vertical family of Dirac operators (Dy)y∈Y associated
to the data above is invertible. Then the integral∫ ∞

0

1√
π

Str
(

dAt

dt
exp(−A2

t )
)

dt

converges and defines the eta form η̃ ∈ C∞(Y,Λ∗Y ) associated to the family
(Dy)y∈Y .

The adiabatic limit formula of Bismut and Cheeger states that if η(ε) is the
eta invariant for the Dirac operator associated to the metric

gM (ε) :=
φ∗h

ε2
+ κ ;

then
lim
ε→0

η(ε) =
∫

Y

Â(Y, h) ∧ η̃ .

Applied to the boundary operator D∂
g(ε) on M = ∂X, we obtain the limiting

behaviour of the final term in (3.2). This completes the proof of the index
formula for Dirac operators associated to Φ−metrics in the fully elliptic case.
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