Geometria I. Prof. P. Piazza. a.a. 2017-18.

Sesto compito a casa.

Esercizio 1 . Piano proiettivo $P^2(\mathbb{R})$ con coordinate omogenee x_0, x_1, x_2 . Consideriamo le due rette $r: x_0 + x_1 = 0$ e $r': x_0 - x_2 = 0$. Siano λ, μ coordinate omogenee di r nel sistema di riferimento che ha i punti [0,0,1] e [1,-1,0] come punti fondamentali e [1,-1,2] come punto unità. Siano λ', μ' coordinate omogenee di r' nel sistema di riferimento che ha i punti [0,1,0] e [1,0,1] come punti fondamentali e [2,3,2] come punto unità. Fissiamo il punto $P_0 = [1,0,0]$, che è esterno sia ad r che a r', e consideriamo l'applicazione

$$\pi_{P_0}: r \to r'$$

che associa a $P \in r$ il punto $P' = L(P_0, P) \cap r'$. Scrivere l'espressione di π_{P_0} nelle coordinate $[\lambda, \mu]$ e $[\lambda', \mu']$ verificando in particolare che trattasi di un isomorfismo di rette proiettive.

Esercizio 2. Spazio euclideo E^3 con coordinate cartesiane x,y,z. Si consideri il luogo $\mathcal Q$ dei punti di E^3 le cui coordinate soddisfano

$$x^{2} + y^{2} + z^{2} - 2x - 2y + 4z + 5 = 0.$$

- 1. Verificare che $\mathcal Q$ è una sfera 1 determinandone il centro e il raggio.
- **Suggerimento:** quale è l'equazione della sfera di centro (x_0, y_0, z_0) e raggio R?
- 2. Verificare che il piano π di equazione

$$x + y - z = 3$$

è secante Q, $\pi \cap Q \neq \emptyset$, e determinare centro e raggio della circonferenza \mathcal{C} ottenuta intersecando Q con π .

¹con ciò si intende una superficie sferica