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ETA COCYCLES, RELATIVE PAIRINGS
AND THE GODBILLON–VEY INDEX THEOREM

Hitoshi Moriyoshi and Paolo Piazza

Abstract. We prove a Godbillon–Vey index formula for longitudinal Dirac
operators on a foliated bundle with boundary (X,F); in particular, we define a
Godbillon–Vey eta invariant on (∂X,F∂), that is, a secondary invariant for
longitudinal Dirac operators on type III foliations. Moreover, employing the Godb-
illon–Vey index as a pivotal example, we explain a new approach to higher index
theory on geometric structures with boundary. This is heavily based on the interplay
between the absolute and relative pairings of K-theory and cyclic cohomology for
an exact sequence of Banach algebras, which in the present context takes the form
0 → J → A → B → 0 with J dense and holomorphically closed in C∗(X,F) and
B depending only on boundary data. Of particular importance is the definition of
a relative cyclic cocycle (τ r

GV , σGV ) for the pair A → B; τ r
GV is a cyclic cochain on

A defined through a regularization à la Melrose of the usual Godbillon–Vey cyclic
cocycle τGV ; σGV is a cyclic cocycle on B, obtained through a suspension procedure
involving τGV and a specific 1-cyclic cocycle (Roe’s 1-cocycle). We call σGV the
eta cocycle associated to τGV . The Atiyah–Patodi–Singer formula is obtained by
defining a relative index class Ind(D,D∂) ∈ K∗(A,B) and establishing the equal-
ity 〈Ind(D), [τGV ]〉 = 〈Ind(D,D∂), [(τ r

GV , σGV )]〉. The Godbillon–Vey eta invariant
ηGV is obtained through the eta cocycle σGV .
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1 Introduction

The Atiyah–Singer index theorem on closed compact manifolds is regarded nowadays
as one of the milestones of modern Mathematics. The original result has branched
into several directions, producing new ideas, new results as well as new connections
between different fields of Mathematics and Theoretical Physics. One of these direc-
tions consists in considering elliptic differential operators on the following hierarchy
of geometric structures:

• fibrations and operators that are elliptic in the fiber directions;
• Galois Γ-coverings and Γ-equivariant elliptic operators;
• measured foliations and operators that are elliptic along the leaves;
• general foliations and, again, operators that are elliptic along the leaves.

One pivotal example, going through all these situations, is the one of foliated bun-
dles. Let Γ → Ñ → N be a Galois Γ-cover of a smooth compact manifold without
boundary N, let T be an oriented compact manifold on which Γ acts by orientation
preserving diffeomorphisms. We can consider the diagonal action of Γ on Ñ ×T and
the quotient space Y := Ñ ×Γ T, which is a compact manifold, a bundle over N
and carries a foliation F . This foliation is obtained by considering the images of the
fibers of the trivial fibration Ñ × T → T under the quotient map Ñ × T → Ñ ×Γ T
and is known as a foliated bundle. We also consider E → Y a complex vector bundle
on Y and ̂E → Ñ × T the Γ-equivariant vector bundle obtained by lifting E to
Ñ × T. We then consider a family of elliptic differential operators (Dθ)θ∈T on the
product fibration Ñ × T → T, acting on the sections of ̂E, and we assume that it
is Γ-equivariant; it therefore yields a leafwise differential operator (DL)L∈V/F on Y,
which is elliptic along the leaves of F . If dimT > 0 and Γ = {1} then we are in the
family situation. If dimT = 0 and Γ �= {1}, then we are in the covering situation.
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If dimT > 0, Γ �= {1} and T admits a Γ-invariant Borel measure ν in the Lebesgue
class, then we are in the measured foliation situation. Finally, if dimT > 0, Γ �= {1}
then we are dealing with a general, typically type III, foliation. As an example of
this latter type III situation we can consider T = S1, N a compact Riemann sur-
face of genus ≥ 2, Ñ = H

2 the hyperbolic plane, and Γ = π1(N) acting on S1 by
fractional linear transformations; we obtain a foliated bundle (Y,F), where Y is the
unit tangent bundle of N and F is the Anosov foliation of codimension one. It is
known that the resulting foliation von Neumann algebra is the unique hyperfinite
factor of type III1; in particular (Y,F) is not measured.

In the first three cases, there is first of all a numeric index and the index theorems
of Atiyah–Singer, Atiyah and Connes provide a geometric formula for it.

In this paper we are more generally interested in higher indices, numbers obtained
by pairing the index class, an element in the K-theory of a suitable algebra, with
cyclic cocycles of degree > 0 defined on the same algebra. Notice that in the case
of type III foliation, such as the example above, we must consider higher indices of
degree >0 (indeed, there is no trace on the foliation von Neumann algebra and thus
there is no numeric index).

The higher index problem can be stated as the problem of

• defining these higher indices;
• proving explicit geometric formulae for them, in the spirit of the original result

of Atiyah and Singer;
• studying their stability properties.

It is important to observe that stability properties are obtained by considering
the index class in the K-theory of a suitable C∗-algebra; in the case of foliated bun-
dles, which is our concern here, one considers the foliation C∗-algebra C∗(Y,F) and
the K-theory groups K∗(C∗(Y,F)). Equivalently, we can consider the index class in
the K-theory of the Morita-equivalent algebra C(T ) �r Γ. The index class, however,
is typically defined in a smaller algebra C∞

c (Y,F) ⊂ C∗(Y,F) and higher indices
are easily obtained by pairing this class, call it Indc(D), with cyclic cocycles τ c for
C∞

c (Y,F).1 There is then a subtle point that can be stated in the following way: it
might very well be possible to prove a formula for these numbers 〈Indc(D), τ c〉 with-
out connecting them with the C∗-algebraic index class Ind(D), which is the index
class showing the most interesting geometric properties. In order to achieve a com-
plete solution of the higher index problem for the cocycle τ c one is usually confronted
with the task of finding an intermediate subalgebra A, C∞

c (Y,F) ⊂ A ⊂ C∗(Y,F)
which satisfies the following crucial properties: it is big enough to be holomorphi-
cally closed in C∗(Y,F) and contain (specific) representatives of the C∗-index class
Ind(D) but it is small enough that the cyclic cocycle τ c extends from C∞

c (Y,F) to
A. Finding such an intermediate algebra can be a difficult task.

1 In the Morita-equivalent picture we would be considering the small algebra C(T ) �alg Γ ⊂
C(T ) �r Γ.
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Connes’ index theorem for G-proper manifolds [Con94], with G an étale grou-
poid, gives a very satisfactory answer to the computation of the pairing between
the index class Indc(D) for the small algebra and the cyclic cohomology classes [τ c]
of this same algebra. This higher index theorem applies in particular to a foliated
bundle Ñ ×Γ T (this is a G-proper manifold with G equal to the groupoid T � Γ).

One fascinating higher index is the so-called Godbillon–Vey index on a codi-
mension 1 foliation. In this case Connes proves the following [Con86]: there is an
intermediate subalgebra A, C(T ) �alg Γ ⊂ A ⊂ C(T ) �r Γ, which is holomorphi-
cally closed and contains the index class Ind(D); there is a cyclic 2-cocycle τBT on
C(T )�alg Γ (the Bott-Thurston cocycle) which is extendable to A; the general index
formula for the pairing 〈Ind(D), [τBT]〉 can be written down explicitly and it involves
the Godbillon–Vey class of the foliation, GV ∈ H3(Y ). This is a complete solution
to the higher index problem. For the particular 3-dimensional example presented
above this formula reads

〈Ind(D), [τBT]〉 = 〈GV, [Y ]〉 =: gv(Y,F) (1.1)

with [Y ] the fundamental homology class of Y and gv(Y,F) the Godbillon–Vey
invariant of the foliation (Y,F). Thus, a purely geometric invariant of the foliation
(Y,F), gv(Y,F), is in fact a higher index. For geometric properties of the Godbil-
lon–Vey invariant we refer the reader to the excellent survey of Ghys [Ghy89]. It
is worth recalling here the remarkable result by Hurder and Katok [HK84] relating
the Godbillon–Vey invariant to properties of the foliation von Neumann algebras; in
our case, this result states that the von Neumann algebra of the foliation contains
a nontrivial type III component if gv(Y,F) �= 0; thus the Godbillon–Vey invariant
detects type III properties of the foliation von Neumann algebra.

An alternative treatment of the fascinating index formula (1.1) was given by Mor-
iyoshi–Natsume in [MoN96]. In this work, a Morita-equivalent complete solution to
the Godbillon–Vey index theorem is given. First of all, there is a cyclic 2-cocycle τGV

on C∞
c (Y,F) which can be paired with the index class Indc(D). Next, Moriyoshi and

Natsume define a holomorphically closed subalgebra A, C∞
c (Y,F) ⊂ A ⊂ C∗(Y,F),

containing the index class Ind(D) and such that τGV extends to A. The pairing
〈Ind(D), [τGV ]〉, which is obtained in [MoN96] as a direct evaluation of the func-
tional τGV , is explicitly computed by expressing the index class through the graph
projection eD associated to D, considering sD, s > 0 and taking the limit as s ↓ 0.
Getzler’s rescaling method is used crucially in establishing the analogue of (1.1):

〈Ind(D), [τGV]〉 =
∫

Y
ωGV (1.2)

with ωGV an explicit closed 3-form on Y such that [ωGV ] = GV ∈ H3(Y ). In par-
ticular, we find once again that 〈Ind(D), [τGV]〉 = gv(Y,F).

Subsequently, Gorokhovsky and Lott [GL03] gave a superconnection proof of
Connes’ index theorem, including an explicit formula for the Godbillon–Vey higher
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index. See also the Appendix of [GL06]. Yet another treatment was given by Gorok-
hovsky in his elegant paper [Gor06].

In the past 40 years this complex circle of ideas has been extended to some geo-
metric structures with boundary. Let us give a short summary of these contributions,
with an emphasis on the higher case. First, in the case of a single manifold and of
a Dirac-type operator on it, such an index theorem is due to Atiyah–Patodi–Singer
[APS75]. Assume that D is an odd Z2-graded Dirac operator on a compact even-
dimensional manifold M with boundary ∂M = N acting on a Z2-graded bundle
of Clifford module E. Assume all geometric structures to be of product type near
the boundary. For simplicity, here and in what follows always assume the boundary
operator D∂ to be invertible. Then the Dirac operator D+ with boundary conditions
{u ∈ C∞(M,E+) | u|∂M ∈ KerΠ≥} with Π≥ = χ[0,∞)(D∂), extends to a Fredholm
operator; the index is given by the celebrated formula of Atiyah–Patodi–Singer

indAPSD
+ =

∫

M
AS − 1

2
η(D∂) (1.3)

with AS the Atiyah–Singer form associated to M and E and η(D∂) the eta invariant
of the formally self-adjoint operator D∂ , a spectral invariant measuring the asymme-
try of the spectrum of D∂ . The number η(D∂) should be thought of as a secondary
invariant of the boundary operator. The Atiyah–Patodi–Singer index is also equal
to the L2-index on the manifold with cylindrical end V = ((−∞, 0] × ∂M) ∪∂M M.
See Melrose’ book [Mel93] for a thorough treatment of the APS index theorem from
this point of view.

Let us move on in the hierarchy of geometric structures considered at the begin-
ning of this Introduction. For families of Dirac operators on manifolds with boundary,
the index theorem is due to Bismut and Cheeger [BC90a,BC90b] and, more gener-
ally, to Melrose and Piazza [MP97a,MP97b]. The numeric index theorem on Galois
coverings of a compact manifold with boundary was established by Ramachandran
[Ram93], whereas the corresponding higher index problem was solved by Leichtnam
and Piazza [LP97,LP98], following a conjecture of Lott [Lot92]. See [LP04] for a
survey. The numeric index theorem on measured foliations was established by Ra-
machandran in [Ram93]. See also [Ant09] for the cylindrical treatment. Finally,
under a polynomial growth assumption on the group Γ, Leichtnam and Piazza
[LP05] extended Connes’ higher index theorem to foliated bundles with boundary,
using an extension of Melrose’ b-calculus and the Gorokhovsky-Lott superconnection
approach. For general foliations, but always under a polynomial growth assumption,
see also the recent contribution [Esf12]. Notice that, by a result of Plante, foliations
with leaves of polynomial growth are measured.

The structure of the (higher) index formulae in all of these contributions is pre-
cisely the one displayed by the classic Atiyah–Patodi–Singer index formula recalled
above, see (1.3). Thus there is a local contribution, which is the one appearing in
the corresponding higher index formula in the closed case, and there is a boundary-
correction term, which is a higher eta invariant. This higher eta invariant should be
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thought of as a secondary higher invariant of the operator on the boundary (indeed,
the index class for the boundary operator is always zero). Geometric applications of
the above results are given, for example, in [BG95,LP01,PS07a,PS07b,CW03].

Now, going back to the task of extending the Atiyah–Patodi–Singer index for-
mula to more general geometric structures, we make the crucial observation that
the polynomial growth assumption in [LP05] excludes many interesting (type III)
examples and higher indices; in particular it excludes the possibility of proving a
Atiyah–Patodi–Singer formula for the Godbillon–Vey higher index.

One primary objective of this article is to prove such a result, thus establishing
the first instance of a higher APS index theorem on type III foliations. Consequently,
we also define a Godbillon–Vey eta invariant on the boundary-foliation; this is a type
III eta invariant, i.e. a type III secondary invariant for Dirac operators.

In tackling this specific index problem we also develop what we believe is a new
approach to index theory on geometric structures with boundary, heavily based on
the interplay between absolute and relative pairings. We think that this new method
can be applied to a variety of situations.

Notice that relative pairings in K-theory and cyclic cohomology have already
been successfully employed in the study of geometric and topological invariants of
elliptic operators. We wish to mention here the paper by Lesch, Moscovici and
Pflaum [LMP09b]; in this interesting article the absolute and relative pairings asso-
ciated to a suitable short exact sequence of algebras (this is a short exact sequence
of parameter dependent pseudodifferential operators) are used in order to define and
study a generalization of the divisor flow of Melrose on a closed compact manifold,
see [Mel95] and also [LPf00].

Let us give a very short account of our main results. First of all, it is clear from the
structure of the Atiyah–Patodi–Singer index formula (1.3) that one of the basic tasks
in the theory is to split precisely the interior contribution from the boundary contri-
bution in the higher index formula. We look at operators on the boundary through
the translation invariant operators on the associated infinite cylinder; by Fourier
transform these two pictures are equivalent. We solve the Atiyah–Patodi–Singer
higher index problem on a foliated bundle with boundary (X0,F0), X0 = M̃ ×Γ T,
by solving the associated L2-problem on the associated foliation with cylindrical
ends (X,F). Thus, after explaining the geometric set-up in Section 2, we begin by
defining a short exact sequence of C∗-algebras

0 → C∗(X,F) → A∗(X,F) → B∗(cyl(∂X),Fcyl) → 0.

This is an extension by the foliation C∗-algebra C∗(X,F) of a suitable algebra of
translation invariant operators on the cylinder; we call it the Wiener–Hopf exten-
sion. We briefly denote the Wiener–Hopf extension as 0 → C∗(X,F) → A∗ →
B∗ → 0. These C∗-algebras are the receptacle for the two C∗-index classes we will
be working with. Thus, given a Γ-equivariant family of Dirac operators (Dθ)θ∈T

with invertible boundary family (D∂
θ )θ∈T we prove that there exist an index class

Ind(D) ∈ K∗(C∗(X,F)) and a relative index class Ind(D,D∂) ∈ K∗(A∗, B∗). The



GAFA THE GODBILLON–VEY ETA COCYCLE 1715

higher Atiyah–Patodi–Singer index problem for the Godbillon–Vey cocycle consists
in proving that there is a well defined paring 〈Ind(D), [τGV ]〉 and giving a formula
for it, with a structure similar to the one displayed by (1.3). Now, as in the case of
Moriyoshi–Natsume, τGV is initially defined on the small algebra Jc(X,F) of Γ-equi-
variant smoothing kernels of Γ-compact support; however, because of the structure
of the parametrix on manifolds with cylindrical ends, there does not exist an index
class in K∗(Jc(X,F)). Hence, even defining the index pairing is not obvious. We
shall solve this problem by showing that there exists a holomorphically closed inter-
mediate subalgebra J containing the index class Ind(D) but such that τGV extends.
More on this in a moment. This point involves elliptic theory on manifolds with
cylindrical ends in an essential way.

Once the higher Godbillon–Vey index is defined, we search for an index formula
for it. Our main idea is to show that such a formula is a direct consequence of the
equality

〈Ind(D), [τGV ]〉 = 〈Ind(D,D∂), [(τ r
GV , σGV )]〉 (1.4)

where on the right hand side a new mathematical object, the relative Godbillon–Vey
cocycle, appears. The relative Godbillon–Vey cocycle is built out of the usual Godb-
illon–Vey cocycle by means of a very natural procedure. First, we proceed algebrai-
cally. Thus we first look at a subsequence of 0 → C∗(X,F) → A∗ → B∗ → 0 made of
small algebras, call it 0 → Jc(X,F) → Ac → Bc → 0; Jc(X,F ) are, as above, the Γ-
equivariant smoothing kernels of Γ-compact support; Bc is made of Γ×R-equivariant
smoothing kernels on the cylinder of Γ×R-compact support. The Ac cyclic 2-cochain
τ r
GV is obtained from τGV through a regularization à la Melrose. The Bc cyclic 3-cocy-

cle σGV is obtained by suspending τGV on the cylinder with Roe’s 1-cocycle. We call
this σGV the eta cocycle associated to τGV . One proves, but it is not quite obvious,
that (τ r

GV , σGV ) is a relative cyclic 2-cocycle for Ac → Bc. We obtain in this way a
relative cyclic cohomology class [(τ r

GV , σGV )] ∈ HC2(Ac, Bc). All of this is explained
in Section 5; at the end of this section we also explain how this natural procedure can
be extended to other higher indices, producing each time an associated eta cocycle.
Once the algebraic theory is clarified, we need to pair the class [τGV ] ∈ H2(Jc) and
the relative class [(τ r

GV , σGV )] ∈ HC2(Ac, Bc) with the corresponding index classes
Ind(D) ∈ K∗(C∗(X,F)) and Ind(D,D∂) ∈ K∗(A∗, B∗) (in fact we shall have to
consider the cocycles defined by suitable powers of the S-operation). To this end
we construct an intermediate short exact subsequence 0 → J → A → B → 0 of
Banach algebras, sitting half-way between 0 → C∗(X,F) → A∗ → B∗ → 0 and
0 → Jc(X,F) → Ac → Bc → 0. Much work is needed in order to define such a
subsequence, prove that

Ind(D) ∈ K∗(J) ∼= K∗(C∗(X,F)), Ind(D,D∂) ∈ K∗(A,B) ∼= K∗(A∗, B∗).

and establishing, finally, that the Godbillon–Vey cyclic τGV and the relative cyclic
(τ r

GV , σGV ) extend from Jc and Ac → Bc to J and A → B. They therefore define
cyclic cohomology classes [τGV ] in HC∗(J) and [(τ r

GV , σGV )] in HC∗(A,B).
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We have now made sense of both sides of the equality (1.4), 〈Ind(D), [τGV ]〉 =
〈Ind(D,D∂), [(τ r

GV , σGV )]〉. The equality itself is proved by establishing an excision
formula: if αex : K∗(J) → K∗(A,B) is the excision isomorphism, then αex(Ind(D)) =
Ind(D,D∂) in K∗(A,B). The index formula is obtained by writing explicitly the
relative pairing 〈Ind(D,D∂), [(τ r

GV , σGV )]〉 in terms of the graph projection eD, mul-
tiplying the operator D by s > 0 and taking the limit as s ↓ 0. The final formula
in the 3-dimensional case (always with an invertibility assumption on the boundary
family) reads:

〈Ind(D), [τGV ]〉 =
∫

X0

ωGV − ηGV , (1.5)

with ωGV equal, as in the closed case, to (a representative of) the Godbillon–Vey
class GV and ηGV expressed in terms of the eta cocycle and the graph projection
associated to the cylindrical Dirac family tDcyl. Our main result is stated in Theorem
9.7.

Observe that by Fourier transform the Godbillon–Vey eta invariant ηGV only
depends on the boundary family D∂ ≡ (D∂

θ )θ∈T . Notice, finally, that this is a com-
plete solution to the Godbillon–Vey higher index problem on foliated bundles with
boundary, in the spirit of Connes and Moriyoshi–Natsume.

The paper is organized as follows. In Section 2 we explain our geometric data.
Section 3 is devoted to a discussion of the operators involved in our analysis. In
Section 4 we define the Wiener–Hopf extension 0 → C∗(X,F) → A∗ → B∗ → 0.
In Section 5 we restrict our analysis to a subsequence 0 → Jc → Ac → Bc → 0
of small dense subalgebras. We begin by defining the eta 1-cocycle associated to
the usual trace-cocycle τ0. This is nothing but Roe’s 1-cocycle σ1; we define a rel-
ative 0-cocycle for Ac → Bc by considering (τ r

0 , σ1), with τ r
0 the regularized trace

of Melrose (b-trace). We also discuss the relation of all this with Melrose’ formula
for the b-trace of a commutator. Next we pass to the Godbillon–Vey cocycle τGV ,
defining the associated eta 3-cocycle σGV on Bc and the associated relative Godbil-
lon–Vey cocycle (τ r

GV , σGV ), with τ r
GV defined via Melrose’ regularization. In the last

Subsection of this Section we also discuss briefly more general relative cocycles. In
Section 6 we construct the intermediate short exact sequence 0 → J → A → B → 0.
In Section 7 we define the index class IndD ∈ K0(C∗(X,F)) and the relative index
class Ind(D,D∂) ∈ K0(A∗, B∗) and we prove that they correspond under excision. In
Section 8 we prove that the two Godbillon–Vey cocycles extend to the subalgebras in
the exact sequence 0 → J → A → B → 0. We also show how to smooth-out the two
C∗-index classes and define them directly in K∗(J) and K∗(A,B). In Section 9 we
then proceed to state and prove the main result of the paper. We also make some fur-
ther remarks; in particular we explain how to get the classic Atiyah–Patodi–Singer
index theorem from these relative-pairings arguments. The proof of the APS formula
using relative-pairings techniques and the Roe’s 1-cocycle σ1 was obtained by the
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first author in 1988 and announced in [Mor98]. Long and technical proofs have been
collected in a separate Section, Section 10.

Table of symbols

N A closed manifold 2.1
Γ → Ñ → N A Galois covering on N 2.1
T A smooth oriented compact manifold with a left Γ-

action
2.1

Y = Ñ ×Γ T A foliated bundle on N 2.1
(Y,F) The induced foliation on Y 2.1
M A closed manifold with boundary 2.2
M̃ A Galois Γ-over of M 2.2
X0 = M̃ ×Γ T A foliated bundle on M 2.2
(X0,F0) The induced foliation on X0 2.2
F∂ The foliation induced on ∂X0 2.2
V M with a cylindrical end attached 2.2
Ṽ M̃ with a cylindrical end attached 2.3
X Ṽ ×Γ T 2.3
cyl(∂X) R × ∂X0 2.3
G = (Ṽ × Ṽ × T )/Γ Holonomy groupoid 2.4
END(E) The endomorphism bundle 2.4
ωGV The Godbillon–Vey 3-form 2.5
Cc(X,F) = Cc(G) Compactly supported continuous functions on G 3.1
D = (Dθ)θ∈T A Γ-equivariant family of Dirac operators 3.2
D∂ = (D∂

θ )θ∈T The boundary family defined by D+ 3.2
Dcyl The family of operators induced by D∂ on

(cyl(∂X),Fcyl)
3.2

C∗(X,F) The foliation C∗-algebra 4.1
W ∗(X,F) = EndΓ(H) The foliation von Neumann algebra 4.2
Gcyl Holonomy groupoid on cyl(∂X) = R × ∂X0 4.3
Bc = Bc(cyl(∂X),Fcyl) A ∗-algebra of translation invariant smoothing oper-

ators
4.3

B∗ = B∗(cyl(∂X),Fcyl) The C∗-closure of Bc 4.3
χ0

R
, χ

R
The characteristic function of (−∞, 0] and its smooth
approximation

4.4

χ, χcyl Induced smooth functions on X and cyl(∂X) 4.4
χλ, χλ

cyl (−∞,−λ]-characteristic functions on X and cyl(∂X) 4.4
A∗ = A∗(X;F) The Wiener–Hopf extension 4.4
Jc, Ac, Bc Small subalgebras of C∗(X,F), A∗(X,F),

B∗(cyl(∂X))
5.2

ωΓ The weight associated to a transverse measure 5.10
τGV The Godbillon–Vey cyclic cocycle 5.10
σGV The eta cocycle associated to τGV 5.11
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ωr
Γ The regularized weight 5.12
τ r
GV The regularized Godbillon–Vey cyclic cochain 5.12

(τ r
GV , σGV ) The relative Godbillon–Vey cocycle 5.12

Im(X,F) Schatten-type ideal 6.2
Jm(X,F) A Banach subalgebra of Im(X,F) 6.2
Bm(cyl(Y ),Fcyl) A Banach subalgebra of B∗ 6.4
Am(X,F) A Banach subalgebra of A∗ 6.4
Jm, Am, Bm Smooth subalgebra of Jm(X,F), Am(X,F), Bm(cyl(Y ),Fcyl) 6.5.2
eD The graph projection associated to D 7.2.2
Ind(D) The Connes–Skandalis index class 7.3
Ind(D,D∂) The relative index class 7.4
IndGV (D) The Godbillon–Vey higher index 9.1

The results of this paper were announced in the July 2009 preprint [MoP09].2

2 Geometry of Foliated Bundles

2.1 Closed manifolds. We shall denote byN a closed orientable compact man-
ifold. We consider a Galois Γ-cover Γ → Ñ → N, with Γ acting on the right, and
T, a smooth oriented compact manifold with a left action of Γ which is assumed
to be by orientation preserving diffeomorphisms and locally faithful, as in [MoN96],
that is: if γ ∈ Γ acts as the identity map on an open set in T, then γ is the identity
element in Γ. See also [BP09]. We set Y = Ñ ×Γ T ; thus Y is the quotient of Ñ × T
by the Γ-action

(y, θ)γ := (yγ, γ−1θ).

Y is foliated by the images under the quotient map of the fibers of the trivial fibra-
tion Ñ×T → T and is referred to as a foliated T -bundle. We use the notation (Y,F)
when we want to stress the foliated structure of Y. Finally, we consider E → Y, a
hermitian complex vector bundle on Y as well as ̂E → Ñ × T, the latter being the
Γ-equivariant vector bundle induced from E lifted to Ñ × T.

2.2 Manifolds with boundary. Let now (M, g) be a Riemannian manifold
with boundary; the metric is assumed to be of product type in a collar neighborhood
U ∼= [0, 2] × ∂M of the boundary. Let M̃ be a Galois Γ-cover of M ; we let g̃ be the
lifted metric. We also consider ∂M̃, the boundary of M̃. Let X0 = M̃ ×Γ T ; this
is a manifold with boundary and the boundary ∂X0 is equal to ∂M̃ ×Γ T. (X0,F0)
denotes the associated foliated bundle. The leaves of (X0,F0) are manifolds with
boundary endowed with a product-type metric. The boundary ∂X0 inherits a folia-
tion F∂ . The cylinder R×∂X0 also inherits a foliation Fcyl, obtained by crossing the
leaves of F∂ with R. Similar considerations apply to the half cylinders (−∞, 0]×∂X0

and [0,+∞)×∂X0. We shall consider a complex hermitian vector bundle on X0 and

2 This announcement is now published, but with a different title. See [MoP11].
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we shall assume the usual product structure near the boundary: we adopt without
further comments the identification explained, for example, in [Mel93] and adopted
also in [MP97a] and [LP05].

2.3 Manifolds with cylindrical ends: Notation. We consider Ṽ := M̃ ∪∂M̃
(

(−∞, 0] × ∂M̃
)

, endowed with the extended metric and the obviously extended
Γ action along the cylindrical end. Notice incidentally that we obtain in this way a
Γ-covering

Γ → Ṽ → V, with V := M ∪∂M ((−∞, 0] × ∂M) . (2.1)

We consider X := Ṽ ×Γ T ; this is a foliated bundle, with leaves manifolds with
cylindrical ends. We denote by (X,F) this foliation. Notice that X = X0 ∪∂X0

((−∞, 0] × ∂X0); moreover the foliation F is obtained by extending F0 on X0 to X
via the product cylindrical foliation Fcyl on (−∞, 0] × ∂X0. We can write more sug-
gestively (X,F) = (X0,F0) ∪(∂X0,F∂) ((−∞, 0] × ∂X0,Fcyl) . For λ > 0 we shall also

consider the finite cylinder Ṽλ = M̃ ∪∂M̃

(

[−λ, 0] × ∂M̃
)

and the resulting foliated

manifold (Xλ,Fλ). Finally, with a small abuse,3 we introduce the notation:

cyl(∂X) := R × ∂X0 , cyl−(∂X) := (−∞, 0] × ∂X0 and
cyl+(∂X) := [0,+∞) × ∂X0. (2.2)

The foliations induced on cyl(∂X), cyl±(∂X) by F∂ will be denoted by Fcyl, F±
cyl; we

obtain in this way foliated bundles cyl(∂X,Fcyl), (cyl−(∂X),F−
cyl) and (cyl+(∂X),

F+
cyl).

2.4 Holonomy groupoid. We consider the groupoid G := (Ṽ × Ṽ ×T )/Γ with
Γ acting diagonally; G(0) := X and the source map and the range map are defined by
s[x, x′, θ] = [x′, θ], r[x, x′, θ] = [x, θ]. Since the action on T is assumed to be locally
faithful, we know that (G, r, s) is isomorphic to the holonomy groupoid of the folia-
tion (X,F). In the sequel, we shall call (G, r, s) the holonomy groupoid. If E → X is
a complex vector bundle on X, with product structure along the cylindrical end as
above, then we can consider the bundle (s∗E)∗⊗r∗E over G; this bundle is sometime
denoted END(E). If F is a second complex vector bundle on X, we can likewise
consider the bundle HOM(E,F ) := (s∗E)∗ ⊗ r∗F. Finally, we consider the maps
r̂, ŝ : Ṽ × Ṽ × T → Ṽ × T, r̂(x, x′, θ) = (x, θ), ŝ(x, x′, θ) = (x′, θ) and, more impor-
tantly, the bundles END( ̂E) := (ŝ∗

̂E)∗ ⊗ (r̂∗
̂E) and HOM( ̂E, ̂F ) := (ŝ∗

̂E)∗ ⊗ (r̂∗
̂F ).

2.5 The Godbillon–Vey differential form. Following [MoN96], we describe
the explicit representative of the Godbillon–Vey class as a differential form in terms
of the modular function of the holonomy groupoid. Let X0 = M̃×ΓT. In this section
X0 can also be a closed manifold, namely, a compact manifold without boundary.
Assume that T is one-dimensional, and take an arbitrary 1-form ω onX0 defining the

3 The abuse of notation is in writing cyl(∂X) for R×∂X0 whereas we should really write cyl(∂X0).
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codimension-one foliation F0.Due to the integrability condition, there exists a 1-form
η such that dω = η∧ω. The Godbillon–Vey class for F0 is, by definition, the de Rham
cohomology class given by η ∧ dη, denoted by GV ; thus GV := [η ∧ dη] ∈ H3

dR(X0).
We shall explain another description of GV in terms of the modular function of the
holonomy groupoid.

Consider the product space M̃ × T, which is a covering of X0. Choose a volume
form dθ on T ; it is in general impossible to choose dθ to be, in addition, Γ-invari-
ant. Then dθ yields a defining 1-form for the foliation (which is in fact a fibration)
obtained by lifting the foliation F0. The de Rham complex on M̃×T is isomorphic to
the graded tensor product Ω∗(M̃) ⊗ Ω∗(T ) and accordingly the exterior differential
on M̃ × T splits as

dM̃×T = d+ (−1)pdT (2.3)

on Ωp(M̃) ⊗ Ωq(T ), with d and dT denoting respectively the exterior differentials
along M̃ and T. Let us take the volume forms ω and Ω respectively on M and X0 and
take the pullbacks ω̃ and Ω̃ to M̃ and M̃ × T. These are Γ-invariant volume forms.
The modular function of the holonomy groupoid is defined as the Radon–Nikodym
derivative of the two volume forms on M̃ × T :

ψ =
ω̃ × dθ

Ω̃
. (2.4)

Notice that ψ has values in R
+ since Γ acts by orientation preserving diffeomor-

phisms. Set

φ = logψ. (2.5)

Proposition 2.6 ([MoN96], p. 504). The 3-form ωGV = dφ ∧ ddTφ = −dφ ∧ dTdφ
is Γ-invariant and closed on M̃ × T. The Godbillon–Vey class of F0 is represented
by ωGV in H3

dR(X0).

3 Operators

3.1 Equivariant families of integral operators. Let Cc(X,F) denote the
space of compactly supported continuous functions on the holonomy groupoid G;
thus Cc(X,F) := Cc(G). More generally we set

Cc(X,F ;E) := Cc(G, (s∗E)∗ ⊗ r∗E) ≡ Cc(G,END(E)) (3.1)

equipped with the ∗-algebra structure induced from the convolution product. Given
an additional vector bundle F, we also set

Cc(X,F ;E,F ) := Cc(G, (s∗E)∗ ⊗ r∗F ) ≡ Cc(G,HOM(E,F )), (3.2)

which is a left module over Cc(X,F ;E) and a right module over Cc(X,F ;F ).
Restricting ourselves to the space of compactly supported smooth sections on G,
we similarly define C∞

c (X,F) := C∞
c (G), C∞

c (X,F ;E) and C∞
c (X,F ;E,F ).
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The ∗-algebra Cc(X,F) can be defined also as the space of continuous functions
on Ṽ × Ṽ ×T that are Γ-invariant and admit Γ-compact support, i.e. admit support
which is compact in (Ṽ × Ṽ × T )/Γ. A similar description holds for Cc(X,F ;E).
Notice, in particular, that given an element k in Cc(X,F ;E) there exists a constant
λ(k) ≡ λ > 0 such that k is identically zero outside Ṽλ × Ṽλ × T ⊂ Ṽ × Ṽ × T. Thus
an element k ∈ Cc(X,F) give rise to an equivariant family of integral operators
(k(θ))θ∈T in a natural way.

3.2 Dirac operators. We begin with a closed foliated bundle (Y,F), with Y =
Ñ ×Γ T. We are also given a Γ-equivariant complex vector bundle ̂E on Ñ × T, or,
equivalently, a complex vector bundle on Y. We assume that ̂E has a Γ-equivariant
Clifford structure along Ñ . We obtain in this way a Γ-equivariant family of Dirac
operators (Dθ)θ∈T that will be simply denoted by D. 4

If (X0,F0), X0 = M̃ ×Γ T, is a foliated bundle with boundary, as in the previous
section, then we shall assume the relevant geometric structures to be of product-
type near the boundary. If (X,F) is the associated foliated bundle with cylindrical
ends, then we shall extend all the structure in a constant way along the cylindrical
ends. We shall eventually assume M̃ to be of even dimension, the bundle ̂E to be
Z2-graded and the Dirac operator to be odd and formally self-adjoint. We denote by
D∂ ≡ (D∂

θ )θ∈T the boundary family defined by D+. This is a Γ-equivariant family of
formally self-adjoint first order elliptic differential operators on a complete manifold.
We denote by Dcyl the operator induced by D∂ ≡ (D∂

θ )θ∈T on the cylindrical foliated
manifold (cyl(∂X),Fcyl); Dcyl is R × Γ-equivariant. We refer to [MoN96,LP05] and
also [BP09] for precise definitions.

3.3 Pseudodifferential operators. Let (Y,F), Y = Ñ ×Γ T, be a closed foli-
ated bundle. Given vector bundles E and F on Y with lifts ̂E, ̂F on Ñ × T, we
can define the space of Γ-compactly supported pseudodifferential operators of order
m, denoted here, with a small abuse of notation, Ψm

c (G;E,F ).5 An element P ∈
Ψm

c (G;E,F ) should be thought of as a smooth Γ-equivariant family of pseudodif-
ferential operators, (P (θ))θ∈T with Schwartz kernel KP , a distribution on G, of
compact support. See [MoN96] and [BP09] for more details; we remark that in these
two references the more general case in which T is only a topological Γ-space, (so
that (Y,F) is a foliated space) is allowed.

The space Ψ∞
c (G;E,E) :=

⋃

m∈Z
Ψm

c (G;E,E) is a filtered algebra and will be
simply denoted by Ψ∞

c (G;E). Moreover, assuming E and F to be hermitian and

4 Observe that this family is denoted D̃ both in [MoN96] and [BP09], the symbol D being employed
for the longitudinal operator induced on the quotient Y = Ñ ×Γ T. However, in this paper we shall
work exclusively with the Γ-equivariant picture, which is why we don’t use the tilde notation.

5 The abuse consists in omitting the hats in the notations; in other words this space should be
really denoted by Ψm

c (G; ̂E, ̂F ). It should be added here that the notation for this space of opera-

tors is not unique. In [MoN96] Ψm
c (G; E, F ) is simply denoted as Ψm

Γ ( ̂E, ̂F ) whereas it is denoted

Ψm
�,c(Ñ × T ; ̂E, ̂F ) in [LP05] with � denoting equivariance and c denoting again of Γ-compact

support.
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assigning to P its formal adjoint P ∗ = (P ∗
θ )θ∈T gives Ψ∞

c (G;E) the structure of an
involutive algebra; the formal adjoint of an element P ∈ Ψm

c (G;E,F ) is in general
an element in Ψm

c (G;F,E). We call Ψ−∞
c (G;E) :=

⋂

m∈Z
Ψm

c (G;E) the algebra of
Γ-equivariant smoothing operators with Γ-compact support.

4 Wiener–Hopf extensions

4.1 Foliation C∗-algebras. The foliation C∗-algebra C∗(X,F) is defined as
the completion of Cc(X,F) with respect to ‖k‖C∗ := supθ∈T ‖k(θ)‖, the norm on
the right hand side being equal to the L2-operator norm on L2(Ṽ × {θ}). A sim-
ilar definition holds for Cc(X,F ;E). For more on this foundational material see,
for example, [MoN96] and [BP09]. It is proved in [MoN96] that C∗(X,F ;E) is iso-
morphic to the C∗-algebra of compact operators of a C(T ) � Γ-Hilbert module E .
The Hilbert module E is obtained by completing C∞

c (Ṽ × T, ̂E), endowed with its
C(T )�alg Γ-module structure and C(T )�alg Γ-valued inner product, with respect to
the C(T ) � Γ-norm. Once again, see [MoN96] and [BP09] for details: summarizing

C∗(X,F ;E) ∼= K(E) ⊂ L(E). (4.1)

4.2 Foliation von Neumann algebras. Consider the family of Hilbert spaces
H := (Hθ)θ∈T , with Hθ := L2(Ṽ × {θ}, Eθ). Then Cc(Ṽ × T ) is a continuous field
inside H, that is, a linear subspace in the space of measurable sections of H satisfying
a certain number of properties (see [Con82], p. 576 for the details). Let End(H) the
space of measurable families of bounded operators T = (Tθ)θ∈T , where the norms
Tθ are measurable function and essentially bounded. Then End(H) is a C∗-algebra,
in fact a von Neumann algebra, equipped with the norm

‖T‖ := ess. sup{‖Tθ‖ ; θ ∈ T}
with ‖Tθ‖ the operator norm. We also denote by EndΓ(H) the subalgebra of End(H)
consisting of Γ-equivariant measurable families of operators. This is a von Neumann
algebra which is, by definition, the foliation von Neumann algebra associated to
(X,F); it is often denoted W ∗(X,F). We set C∗

Γ(H) the closure of Γ-equivariant
families T = (Tθ)θ∈T ∈ EndΓ(H) preserving the continuous field Cc(Ṽ × T ). In
[MoN96], Section 2, it is proved that the foliation C∗-algebra C∗(X,F) is isomor-
phic to a C∗-subalgebra of C∗

Γ(H) ⊂ EndΓ(H).6 Notice, in particular, that an element
in C∗(X,F) can be considered as a Γ-equivariant family of operators.

4.3 Translation invariant operators. Recall cyl(∂X) := R × ∂X0 ≡ (R ×
∂M̃) ×Γ T with Γ acting trivially in the R-direction of R × ∂M̃. We consider the
foliated cylinder (cyl(∂X),Fcyl) and its holonomy groupoid Gcyl := ((R × ∂M̃) ×
(R × ∂M̃) × T )/Γ (source and range maps are clear). Let R act trivially on T ; then

6 The C∗-algebra C∗
Γ(H) was denoted B in [MoN96].
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(R×∂M̃)× (R×∂M̃)×T has a R×Γ-action, with R acting by translation on itself.
We define a *-algebra Bc(cyl(∂X),Fcyl) ≡ Bc to be

Bc := {k ∈ C((R × ∂M̃) × (R × ∂M̃) × T ); k is R × Γ-invariant, k has R

×Γ-compact support}. (4.2)

The product is by convolution. An element � in Bc defines a Γ-equivariant family
(�(θ))θ∈T of translation-invariant operators. The completion of Bc with respect to
the C∗-norm (the sup over θ of the operator norm of �(θ)) gives us a C∗-algebra
that will be denoted by B∗(cyl(∂X),Fcyl) or more briefly by B∗. Notice that we can
in fact define B∗(cyl(Y ),Fcyl) for any foliated flat bundle (Y,F), with Y = Ñ ×Γ T.

Proposition 4.3. Let (Y,F), with Y = Ñ ×Γ T, a foliated flat bundle without
boundary. Let us denote by RΔ the group R acting diagonally by translation on
R × R. Consider the quotient group (R × R)/RΔ which is isomorphic to R. Consider
the quotient groupoid Gcyl/RΔ. Then B∗(cyl(Y ),Fcyl) = C∗(Gcyl/RΔ) and we have
the following C∗-isomorphisms:

C∗(Gcyl/RΔ) ∼= C∗((R × R)/RΔ) ⊗ C∗(Y,F) ∼= C∗(R) ⊗ C∗(Y,F) (4.4)

Proof. The holonomy groupoid for (cyl(Y ),Fcyl) is Gcyl = (R × Ñ × R × Ñ × T )/Γ;
directly from the definition we see that B∗ is the C∗-algebra for the quotient grou-
poid Gcyl/RΔ which is clearly isomorphic to (R × R)/RΔ × (Ñ × Ñ × T )/Γ ≡
(R×R)/RΔ ×G(Y,F). From these isomorphisms we can immediately end the proof.

��
Remark 4.5. We can interpret B∗(cyl(Y ),Fcyl) as the compact operators of a suit-
able Hilbert C∗-module. Consider R× Ñ ×T with its natural Γ×R-action; consider
C∞

c (R×Ñ×T ); we can complete it to a Hilbert C∗-module Ecyl over (C(T )�Γ)⊗C∗
R.

Proceeding as in [MoN96] one can prove that there is a C∗-algebra isomorphism
B∗(cyl(Y ),Fcyl) � K(Ecyl). In particular, we see that B∗(cyl(Y ),Fcyl) can be seen
as an ideal in the C∗-algebra L(Ecyl).

4.4 Wiener–Hopf extensions. Recall the Hilbert C(T )�Γ-module E and the
C∗-algebras K(E) and L(E); see [Bla98]). Since the C(T )�Γ-compact operators K(E)
are an ideal in L(E) we have the classical short exact sequence of C∗-algebras

0 → K(E) ↪→ L(E) π−→ Q(E) → 0

with Q(E) = L(E)/K(E) the Calkin algebra. Let χ0
R

: R → R be the characteristic
function of (−∞, 0]; let χ

R
: R → R be a smooth function with values in [0, 1] such

that:

χ
R
(t) =

{

1 for t ≤ −ε
0 for t ≥ 0.

(4.6)
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for given ε > 0. Let χ be the smooth function induced by χ
R

on X; when we want to
exhibit the dependence on ε clearly, we shall denote it by χε. Similarly, we consider
χcyl, the smooth function induced by χ

R
on cyl(∂X). Finally, let χ0 and χ0

cyl be the
functions induced by the characteristic function χ0

R
on X and cyl(∂X) respectively.

For λ > 0, we shall also make use of the real functions χλ and χλ
cyl, induced on X

and cyl(∂X) by χR

(−∞,−λ], the characteristic function of (−∞,−λ] in R; thus χλ is
equal to 0 on the interior of Xλ and equal to 1 on its complement in X. Similarly:
χλ

cyl is equal to zero on (λ,+∞) × ∂X0 and equal to one on (−∞, λ] × ∂X0.

Lemma 4.7. There exists a bounded linear map

s : B∗ = B∗(cyl(∂X),Fcyl) → L(E) (4.8)

extending sc : Bc → L(E), sc(�) := χ0�χ0 Here χ0 stands for the multiplication
operator and sc(�) is defined as the composite of those operators.7 Moreover, the
composition ρ = πs induces an injective C∗-homomorphism

ρ : B∗ → Q(E). (4.9)

See Section 10.1 for a detailed proof of Lemma 4.7; there we also explain why
sc is well defined. A key tool in the proof of the Lemma is the following Sublemma,
stated here for later use but proved in Section 10.1:

Sublemma 4.10. Let � ∈ Bc. Then χλ�(1 − χλ), (1 − χλ)�χλ and [χλ, �] are all of
Γ-compact support on cyl(∂X).

In the sequel we shall use repeatedly this simple but crucial result.
We now consider Im ρ as a C∗-subalgebra in Q(E) and identify it with B∗ ≡

B∗(cyl(∂X),Fcyl) via ρ. Set

A∗(X; F) := π−1(Im ρ) with π the projection L(E) → Q(E).

Recalling the identification C∗(X,F) = K(E), we thus obtain a short exact sequence
of C∗-algebras: 0 → C∗(X,F) → A∗(X; F) π−→ B∗(cyl(∂X),Fcyl) → 0 where the
quotient map is still denoted by π.

Definition 4.11. The short exact sequence of C∗-algebras

0 → C∗(X,F) → A∗(X; F) π−→ B∗(cyl(∂X),Fcyl) → 0 (4.12)

is by definition the Wiener–Hopf extension of B∗(cyl(∂X),Fcyl).

Notice that (4.12) splits as a short exact sequence of Banach spaces, since we can
choose s : B∗(cyl(∂X),Fcyl) → A∗(X; F), the map in the statement of Lemma 4.7,
as a section. So A∗(X; F) ∼= C∗(X,F) ⊕ s(B∗(cyl(∂X),Fcyl)) as Banach spaces.

There is also a linear map t : A∗(X,F) → C∗(X,F) which is obtained as follows:
if k ∈ A∗(X; F), then k is uniquely expressed as k = a + s(�) with a ∈ C∗(X,F)

7 For the precise meaning of this composition, see Section 10.1.
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and π(k) = � ∈ B∗(cyl(∂X),Fcyl). Thus, π(k) = [χ0�χ0] ∈ Q(E) for one (and only
one) � ∈ B∗(cyl(∂X),Fcyl) since ρ is injective. We set

t(k) := k − sπ(k) = k − χ0�χ0 (4.13)

Then t(k) ∈ C∗(X,F).

Remark 4.14. A standard Wiener–Hopf extension of C∗
R is obtained as follows.

Let C∗
R act on the Hilbert space H = L2(R) by convolutions. Recall that χ0

R
is the

characteristic function of (−∞, 0] and denote by Ho the subspace L2(−∞, 0] ⊂ H.
Then the same proof of Lemma 4.7 can be applied to prove that there exists an
injective homomorphism ρR : C∗

R → Q(Ho) with ρR(�) = πo(χ0
R
�χ0

R
), where Q(Ho)

denotes the Calkin algebra and πo the projection from the bounded operators on
Ho onto Q(Ho). Set Eo = π−1

o (Im ρR). Exactly in the same manner as before, one
has a short exact sequence 0 → Ko → Eo

πo−→ C∗
R → 0, where Ko denotes the

compact operators on Ho. It is called a Wiener–Hopf extension of C∗
R. What we

are going to construct is a slightly larger algebra than this. Observe that Q(Ho)
is naturally embedded in the Calkin algebra Q(H). Thus one has another injective
homomorphism ρ̂R : C∗

R → Q(H). Set E = π−1(Im ρ̂R) with π the projection onto
Q(H). It then induces an extension of C∗-algebras: 0 → K → E π−→ C∗

R → 0 where
K is the compact operators on H. Obviously it contains the above extension. Now
recall the definition of the Extension group Ext(C∗

R) and its additive structure;
see Douglas [Dou80] for instance. It is easily verified that the second extension is
exactly the one corresponding to the sum of Eo and the trivial extension; hence the
resulting extension class is the same as that of Eo. Therefore, the second extension
also deserves to be called a Wiener–Hopf extension.

Let us consider the simplest case, namely a foliation consists of a single leaf
X, which is a complete manifold with cylindrical end. It turns out that our exten-
sion (4.12) is isomorphic to the second extension tensored with the algebra of com-
pact operators. This can be proved by observing the property B∗(cyl(∂X),Fcyl) ∼=
C∗

R ⊗ K in (4.4). Thus we call the short exact sequence (4.12) the Wiener–Hopf
extension of B∗(cyl(∂X),Fcyl).

5 Relative Pairings and Eta Cocycles: The Algebraic Theory

5.1 Introductory remarks. On a closed foliated bundle (Y,F) with holonomy
groupoid G, the Godbillon–Vey cyclic cocycle is initially defined on the “small” alge-
bra Ψ−∞

c (G,E) ⊂ C∗(Y,F ;E) of Γ-equivariant smoothing operators of Γ-compact
support, which can be described as Ψ−∞

c (G,E) = C∞
c (G, (s∗E)∗ ⊗ r∗E).

Since the index class defined using a pseudodifferential parametrix is already well
defined in the K-group K∗(Ψ−∞

c (G,E)), the pairing between the the Godbillon–Vey
cyclic cocycle and the index class is well-defined.

In a second stage, the cocycle is continuously extended to a dense holomorphi-
cally closed subalgebra A ⊂ C∗(Y,F); there are at least two reasons for doing this.
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First, as already remarked in the Introduction, it is only by going to the C∗-algebraic
index that the well known properties for the signature and the spin Dirac operator of
a metric of positive scalar curvature hold. The second reason for this extension rests
on the structure of the index class which is employed in the proof of the higher index
formula, i.e. either the graph projection or the Wassermann projection; in both cases
Ψ−∞

c (G,E) is too small to contain these particular representatives of the index class
and one is therefore forced to find an intermediate subalgebra A,

Ψ−∞
c (G,E) ⊂ A ⊂ C∗(Y,F ;E) ; (5.1)

A is big enough for the two particular representatives of the index class to belong
to it but small enough for the Godbillon–Vey cyclic cocycle to extend; moreover,
being dense and holomorphically closed it has the crucial property of having the
same K-theory as C∗(Y,F ;E).

Let now (X,F) be a foliated bundle with cylindrical ends. For notational simplic-
ity, unless confusion should arise, let us not write the bundle E in our algebras. In this
section we shall select “small” subalgebras Jc ⊂ C∗(X,F), Ac ⊂ A∗(X,F), Bc ⊂
B∗(cyl(∂X),Fcyl), with Jc an ideal in Ac, so that there is a short exact sequence
0 → Jc ↪→ Ac

πc−→ Bc → 0 which is a subsequence of 0 → C∗(X,F) ↪→ A∗(X; F) π−→
B∗(cyl(∂X),Fcyl) → 0.

We shall then proceed to define the two relevant Godbillon–Vey cyclic cocycles
and study, algebraically, their main properties. As in the closed case, we shall even-
tually need to find an intermediate short exact sequence, sitting between the two,
call it 0 → J ↪→ A → B → 0, with constituents big enough for the index classes to
belong to them but small enough for the two cyclic cocycles to extend; this is quite
a delicate point and it will be explained in Section 6. We anticipate that, in contrast
with the closed case, the ideal Jc in the small subsequence will be too small even
for the index class defined by a pseudodifferential parametrix. This has to do with
the non-locality of the parametrix on manifolds with boundary; it is a phenomenon
that was explained in detail in [LP05]; we shall come back to it in Section 7.

5.2 Small dense subalgebras. Set Jc := C∞
c (X,F); see Section 3.1. Redefine

Bc := {k ∈ C∞((R × ∂M̃) × (R × ∂M̃) × T ); k is R × Γ-invariant, k has R

×Γ-compact support}
see Section 4.3 (we pass from continuous to smooth functions). We now define Ac;
consider the functions χλ, χλ

cyl induced on X and cyl(∂X) by the real function
χ(−∞,−λ] (the characteristic function of the interval (−∞,−λ]). We shall say that k
is in Ac if it is a smooth function on Ṽ × Ṽ × T which is Γ-invariant and for which
there exists λ ≡ λ(k) > 0, such that

• k − χλkχλ is of Γ-compact support
• there exists � ∈ Bc such that χλkχλ = χλ

cyl�χ
λ
cyl on ((−∞,−λ] × ∂M̃) ×

((−∞,−λ] × ∂M̃) × T
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Lemma 5.2. Ac is a ∗-subalgebra of A∗(X,F).

Proof. Let k, k′ ∈ Ac. Write, with a small abuse of notation, k = a+χλ � χλ with a of
Γ-compact support and � ∈ Bc and similarly for k′. Observe first of all that if μ > λ,
so that −μ < −λ, then (χλ � χλ −χμ � χμ) is also of Γ-compact support (since � is of
R×Γ-compact support). Thus we can assume that k = a+χμ � χμ, k′ = a′+χμ �′ χμ.
We compute: kk′ = aa′ + aχμ�′χμ + χμ�χμa′ + χμ�χμχμ�′χμ. The first summand on
the right hand side is again of Γ-compact support; the second and the third summand
are also of Γ-compact support since � and �′ are of R × Γ-compact support; the last
term can be written as χμ��′χμ +(χμ�(χμ −1))((χμ −1)�′χμ). Thus kk′ −χμ��′χμ =
aa′ + (χμ�(χμ − 1))((χμ − 1)�′χμ); now, by Sublemma 4.10 both (χμ�(χμ − 1)) and
((χμ−1)�′χμ) are of Γ-compact support. Thus kk′−χμ��′χμ is of Γ-compact support
as required. Finally, consider ν ∈ R, ν > μ and let F (p, p′, θ) := χν(p)(1 − χμ)(p′),
a function on W × W × T which is θ-independent. Since � and �′ are of R × Γ-
compact support, we can choose ν > μ so that that supp � ∩ suppF = ∅. Thus
χν(χμ�(χμ − 1)) = χν�(χμ − 1) is equal to zero. We conclude that for such a ν we
do get χνkk′χν = χμ��′χμ and the proof is complete. ��

We thus have:

Proposition 5.3. Let πc := π|Ac
. Then there is a short exact sequence of *-alge-

bras

0 → Jc ↪→ Ac
πc−→ Bc → 0. (5.4)

Remark 5.5. Notice that the image of Ac through t|Ac
is not contained in Jc since

χ0 is not even continuous. Similarly, the image of Bc through s|Bc
is not contained

in Ac.

Remark 5.6. Using the foliated b-calculus developed in [LP05] and Melrose’ indi-
cial operator in the foliated context, it is possible to define a slightly bigger dense
subsequence. We shall briefly comment on this in Section 5.7.

5.3 Relative cyclic cocycles. Let A be a k-algebra over k = C. The cyclic
cohomology group HC∗(A) [Con85] (see also [Tsy83]) is the cohomology groups of
cochain complex (Cn

λ , b), where Cn
λ is the space of (n+1)−linear functionals ϕ on A

satisfying the condition ϕ(a1, a2, . . . , an, a0) = (−1)nϕ(a0, . . . , an+1), ∀ai ∈ A and
with b the Hochschild coboundary map defined by

(bϕ)(a0, . . . , an+1)=
n
∑

j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , an+1)+(−1)n+1ϕ(an+1a0, . . . , an).

Given a second algebra B together with a surjective homomorphism π : A → B, one
can define a relative cochain complex

Cn
λ (A,B) := {(τ, σ) : τ ∈ Cn

λ (A), σ ∈ Cn+1
λ (B)}
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with coboundary map given by

(τ, σ) −→ (bτ − π∗σ, bσ).

A relative cochain (τ, σ) is thus a cocycle if bτ = π∗σ and bσ = 0. One obtains in
this way a relative cyclic cohomology group HC∗(A,B). If A and B are Fréchet
algebra, then we can also define a topological (relative) cyclic cohomology group.
More detailed information are given, for example, in [LMP09b].

5.4 Roe’s 1-cocycle. In this subsection, and in the next two, we study a par-
ticular but important example. We assume that T is a point and that Γ = {1},
so that we are really considering a compact manifold X0 with boundary ∂X0 and
associated manifold with cylindrical end X; we keep denoting the cylinder R × ∂X0

by cyl(∂X) (thus, as before, we omit the subscript 0). The algebras appearing in the
short exact sequence (5.4) are now given by Jc = C∞

c (X ×X) and

Bc ={k∈C∞((R × ∂X0) × (R × ∂X0)); k is R-invariant, k has compact R-support}.

Finally, a smooth function k on X ×X is in Ac if there exists a λ ≡ λ(k) > 0 such
that

(i) k − χλkχλ is of compact support on X ×X;
(ii) ∃ � ∈ Bc such that χλkχλ = χλ

cyl�χ
λ
cyl on ((−∞,−λ]×∂X0)×((−∞,−λ]×∂X0).

For such a k ∈ Ac we set πc := π|Ac
. Since k − χ0�χ0 admits compact support,

it belongs to C∗(G) (in this case this is just equal to the compact operators on
L2(X)). Hence it follows that π(k) = � and thus πc(k) = �; so we have the short
exact sequence of ∗-algebras 0 → Jc ↪→ Ac

πc−→ Bc → 0 (The Wiener–Hopf short
exact sequence (4.12) now reads as 0 → K(L2(X)) → A∗(X) π−→ B∗(cyl(∂X)) → 0).
All of this has an obvious generalization if instead of functions we consider sections
of the bundle ENDE := E � E∗ → X ×X, with E a complex vector bundle on X.

We shall define below a relative cyclic 0-cocycle associated to the homomorphism
πc : Ac → Bc. To this end we start by defining a cyclic 1-cocycle σ1 for the alge-
bra Bc; this is directly inspired from work of John Roe (indeed, a similarly defined
1-cocycle plays a fundamental role in his index theorem on partitioned manifolds
[Roe88]). It should be noticed that σ1 is in fact defined on Bc(cyl(Y )), with Y any
closed compact manifold.

Consider the characteristic function χλ
cyl, λ > 0, induced on the cylinder cyl(Y )

by the real function χR

(−∞,−λ]. For notational convenience, unless absolutely neces-
sary, we shall use the simpler notation χλ.

We define σλ
1 : Bc ×Bc → C as

σλ
1 (�0, �1) := Tr(�0[χλ, �1]). (5.7)

We need to show that the definition is well posed.
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Proposition 5.8. The operators [χλ, �0] and �0[χλ, �1] are trace class ∀�0, �1 ∈ Bc

(and Tr[χλ, �0] = 0). In particular σλ
1 (�0, �1) is well defined.

Proof. We already know, see Sublemma 4.10, that the operator [χλ, �1] is expressed
by a kernel on the cylinder which is of compact support. Indeed, in the proof of
Sublemma 4.10, which is given in Section 10, we have explicitly written down the
kernel k corresponding to [χλ , �] as

k(y, s, y′, s′) =

⎧

⎪

⎨

⎪

⎩

�(y, y′, s− s′) if s ≤ −λ, s′ ≥ −λ
−�(y, y′, s− s′) if s′ ≤ −λ, s ≥ −λ
0 otherwise

(5.9)

where y, y′ ∈ Y, s, s′ ∈ R and where we have used the R-invariance of � in order
to write �(s, y, s′, y′) ≡ �(y, y′, s − s′). Choose now a smooth compactly supported
function ϕ on cyl(Y )× cyl(Y ), equal to 1 on the support of k. Let k0 be the smooth
compactly supported kernel obtained by multiplying k by ϕ; k0 is clearly trace class.
Now, multiplication by χλ is a bounded operator so the operators given by χλk0 and
k0χ

λ are also trace class. Since [χλ, k0] = [χλ, �], we conclude that [χλ, �] is trace
class; since �0 defines a bounded operator, we also see immediately that the trace of
�0[χλ, �1] is well defined. Finally, it remains to justify that Tr[χλ, �] = 0; this is now
clear, since Tr[χλ, �] = Tr[χλ, k0] = 0. The proposition is proved. ��
Proposition 5.10. The value Tr(�0[χλ, �1]) is independent of λ and will simply be
denoted by σ1(�0, �1). The functional σ1 : Bc ×Bc → C is a 1-cyclic cocycle.

Proof. In order to prove the independence on λ we make crucial use of the R-invari-
ance of �j . We write �j(y, y′, s, s′) ≡ �j(y, y′, s− s′). We compute:

σλ
1 (�0, �1) = Tr(�0χλ�1 − �0�1χ

λ)

=
∫

Y ×Y
dy dy′

∫

R×R

ds ds′
[

�0(y, y′, s− s′)χλ(s′)�1(y′, y, s′ − s)

− �0(y, y′, s− s′)�1(y′, y, s′ − s)χλ(s)
]

=
∫

Y ×Y
dy dy′

(

∫

R

ds

∫ −λ

−∞
ds′ −

∫ −λ

−∞
ds

∫

R

ds′
)

�0(y, y′, s− s′)�1(y′, y, s′ − s)

=
∫

Y ×Y
dy dy′

(

∫ +∞

−λ
ds

∫ −λ

−∞
ds′ −

∫ −λ

−∞
ds

∫ +∞

−λ
ds′
)

�0(y, y′, s−s′)�1(y′, y, s′−s)

=
∫

Y ×Y
dy dy′

(∫ +∞

0
dt

∫ 0

−∞
dt′ −

∫ 0

−∞
dt

∫ +∞

0
dt′
)

�0(y, y′, t− t′)�1(y′, y, t′ − t).

Thus Tr(�0[χλ, �1]) is independent of λ since we have proved that ∀λ it is equal to
Tr(�0[χ0, �1]). In particular we record that

σλ
1 (�0, �1) = Tr(�0[χ0, �1]). (5.11)
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We shall denote σλ
1 as σ1. In order to show that σ1 is a cyclic cocycle we begin

by recalling that Tr[χλ, �] = 0∀� ∈ Bc. Thus we have σ1(�0, �1) + σ1(�1, �0) =
Tr(�0[χ0, �1]) + Tr([χ0, �0]�1) = Tr([χ0, �0�1]) = 0 proving that σ1 is a cyclic cochain.
Next we compute

b σ1(�0, �1, �2) = Tr
(

�0�1[χ0, �2]) + �0[χ0, �1�2] + �2�0[χ0, �1]
)

= Tr
(−�0[χ0, �1]�2 + �2�0[χ0, �1]

)

= Tr
(

[�2, �0[χ0, �1]]
)

= 0. ��

Remark 5.12. We point out that following expression for σ1:

σ1(�0, �1) =
1
2

Tr
(

χ0[χ0, �0][χ0, �1]
)

. (5.13)

The proof of (5.13) is elementary (just apply repeatedly the fact that 1 = χ0 + (1 −
χ0)) and for the sake of brevity we omit it. The advantage of this new expression
for σ1 is that it makes the extension to certain dense subalgebras easier to deal
with. (Notice, for example, that σ1 is now defined under the weaker assumption
that [χ0, �j ] is Hilbert–Schmidt.) The right hand side of (5.13) is in fact the original
definition by Roe.

5.5 Melrose’ regularized integral. Recall that our immediate goal is to
define a 0-relative cyclic cocycle for the homomorphism πc : Ac → Bc appearing
in the short exact sequence of the previous section. Having defined a 1-cocycle σ1 on
Bc we now need to define a 0-cochain on Ac. Our definition will be a simple adapta-
tion of the definition of the b-trace in Melrose’ b-calculus (but since our algebra Ac

is very small, we can give a somewhat simplified treatment). Recall that for λ > 0
we are denoting by Xλ the compact manifold obtained attaching [−λ, 0] × ∂X0 to
our manifold with boundary X0.

So, let k ∈ Ac with πc(k) = � ∈ Bc. Since � is R-invariant on the cylinder R×∂X0

we can write �(y, y′, s) with y, y′ ∈ ∂X0, s ∈ R. Set

τ r
0 (k) := lim

λ→+∞

( ∫

Xλ

k(x, x)dvolg − λ

∫

∂X0

�(y, y, 0)dvolg∂

)

(5.14)

where the superscript r stands for regularized. (The b-superscript would be of course
more appropriate; unfortunately it gets confused with the b operator in cyclic coho-
mology.) It is elementary to see that the limit exists; in fact, because of the very
particular definition of Ac the function

ϕ(λ) :=
∫

Xλ

k(x, x)dvolg − λ

∫

∂X0

�(y, y, 0)dvolg∂

becomes constant for large values of λ. The proof is elementary and thus omitted.
τ r
0 defines a 0-cochain on Ac.
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Remark 5.15. Notice that (5.14) is nothing but Melrose’s regularized integral, in
the cylindrical language, for the restriction of k to the diagonal of X ×X.

We shall also need the following

Lemma 5.16. If k ∈ Ac then t(k), which is a priori a compact operator, is in fact
trace class. Moreover

τ r
0 (k) = Tr(t(k)). (5.17)

We remark once again that t(k) is not an element in Jc.

Proof. We first need the following: ��
Sublemma 5.18. Let χ is the characteristic function of a measurable set K in X.
If a ∈ Jc, then k = χaχ is of trace class and the trace is obtained as Tr(k) =
∫

K a(x, x)dx.

Proof. Since a gives rise to a smoothing operator with compact support, it is of trace
class. Recall that the algebra of trace class operators forms an ideal in the algebra
of bounded operators. Thus k is of trace class and we can assume that k = bc with
b and c operators of Hilbert–Schmidt class. Then

Tr(k) = 〈b, c∗〉2 =
∫

X×X
b(x, y)c(y, x)dxdy =

∫

K
a(x, x)dx,

with 〈 , 〉2 denoting the inner product for operators of Hilbert–Schmidt class. ��
Write k = a+χλ � χλ with a ∈ Jc and � ∈ Bc as in Section 5.2. There exists a com-

pactly supported smooth function σ onX, depending on �, such that χλ�χλ−χ0�χ0 =
χλσ�σχλ−χ0σ�σχ0 since the support of χλ−χ0 is compact. Note that we can choose
the same � in 4.13 and Section 5.2. Thus t(k) = k−χ0�χ0 = a+χλ σ�σ χλ−χ0σ�σχ0

is of trace class due to the sublemma above. Therefore, we have

Tr(t(k)) =
∫

X
a(x, x)dx−

∫

Xλ\X0

�(y, y, 0)dydt = τ r
0 (k)

for a sufficiently large λ. This completes the proof. ��
5.6 Melrose’ regularized integral and Roe’s 1-cocycle define a relative
0-cocycle. We finally consider the relative 0-cochain (τ r

0 , σ1) for the pair Ac
πc−→

Bc.

Proposition 5.19. The relative 0-cochain (τ r
0 , σ1) is a relative 0-cocycle. It thus

defines an element [(τ r
0 , σ1)] in the relative group HC0(Ac, Bc).

Proof. We need to show that bσ1 = 0 and that bτ r
0 = (πc)∗σ1. The first has already

been proved, so we concentrate on the second. We compute: bτ(k, k′) = τ r
0 (kk′−k′k).
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Write k = a + χμ�χμ, k′ = a′ + χμ�′χμ as we did in the proof of Lemma 5.2. Then
we need to show that

τ r
0 (kk′ − k′k) = σ1(πck, πck

′) = σ1(�, �′). (5.20)

There are several proofs of this fundamental relation. One proof of (5.20) employs
Melrose’ formula for the b-trace of a commutator; we shall give the details in the next
Subsection. Here we propose a different proof that has the advantage of extending
to more general situations. Following the proof of Lemma 5.2, we can write

kk′ = (aa′ + aχμ�′χμ + χμ�χμa′ − χμ�(1 − χμ)�′χμ) + χμ��′χμ.

Notice that the first summand is trace class; this is obvious for the first term aa′ and
clear for the next two terms; the fourth term, viz. −χμ�(1 − χμ)�′χμ is trace class
because χμ�(1 −χμ) is trace class and �′χμ is bounded (see the proof of Proposition
5.8). A similar expression can be written for k′k. Using first Lemma 5.16 and then
the definition of t, we obtain easily

τ r
0 (kk′ − k′k) = Tr(t(kk′ − k′k))

= Tr
(

[a, a′] + [χμ�χμ, a′] + [a, χμ�′χμ] − χμ�(1 − χμ)�′χμ

+ χμ�′(1 − χμ)�χμ
)

= Tr(−χμ�(1 − χμ)�′χμ + χμ�′(1 − χμ)�χμ) = σμ
1 (�, �′) = σ1(�, �′)

The Proposition is proved. ��
5.7 Melrose’ 1-cocycle and the relative cocycle condition via the b-trace
formula. The results in this Subsection will not be used in the sequel.

As we have anticipated in the previous subsection, the equation bτ r
0 = π∗

cσ1 is
nothing but a compact way of rewriting Melrose’ formula for the b-trace of a com-
mutator. We wish to explain this point here.

First of all, since it will cost us nothing, we consider a slightly larger subsequence
of dense subalgebras. We hinted to this subsequence in Remark 5.6; we explain it
here for T = point and Γ = {1} even though it exists in the general foliated case.
Thus, following the notations of the b-calculus, we set

Ab
c := Ψ−∞

b,c (X,E), Bb
c := Ψ−∞

b,I,c(N+∂X,E|∂), Jb
c := ρffΨ−∞

b,c (X,E)

and consider

0 −→ Jb
c −→ Ab

c
πb

c−→ Bb
c −→ 0, (5.21)

with πb
c equal to Melrose’ indicial operator I(·). This sequence is certainly larger

than the one we have defined, viz. 0 → Jc ↪→ Ac
πc−→ Bc → 0 (indeed the latter

corresponds to the subsequence of (5.21) obtained by restricting (5.21) to the sub-
algebra {k ∈ Ab

c : k − k|ff has support in the interior of ̂X ×b
̂X}, with ff denoting

the front face of the b-stretched product).
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Let τ r
0 be equal to the b-Trace: τ r

0 := b Tr . Observe that σ1 also defines a 1-cocycle
on Bb

c . We can thus consider the relative 0-cochain (τ r
0 , σ1) for the homomorphism

Ab
c

I(·)−−→ Bb
c ; in order to prove that this is a relative 0-cocycle it remains to to show

that bτ r
0 (k, k′) = σ1(I(k), I(k′)), i.e.

b Tr[k, k′] = Tr(I(k)[χ0, I(k′)]). (5.22)

Recall here that Melrose’ formula for the b-trace of a commutator is

b Tr[k, k′] =
i

2π

∫

R

Tr∂X

(

∂μI(k, μ) ◦ I(k′, μ)
)

dμ (5.23)

with C � z → I(k, z) denoting the indicial family of the operator k, i.e. the Fourier
transform of the indicial operator I(k).

Inspired by the right hand side of (5.23) we consider an arbitrary compact man-
ifold Y, the algebra Bb

c(cyl(Y )) and the functional

s1(�, �′) :=
i

2π

∫

R

TrY

(

∂μ�̂(μ) ◦ �̂′(μ)
)

dμ. (5.24)

That this is a cyclic 1-cocycle follows by elementary arguments (it also follows from
the Proposition below). Formula (5.24) defines what should be called Melrose’ 1-co-
cycle

Proposition 5.25. Roe’s 1-cocycle σ1 and Melrose 1-cocycle s1 coincide:

σ1(�, �′) := Tr(�[χ0, �′]) =
i

2π

∫

R

TrY

(

∂μ�̂(μ) ◦ �̂′(μ)
)

dμ =: s1(�, �′). (5.26)

Proof. In order to prove (5.26) we shall employ the Hilbert transformation H :
L2(R) → L2(R):

H(f) := lim
ε↓0

i

π

∫

|x−y|>ε

f(y)
x− y

dy.

The crucial observation is that if we denote by F : L2(R) → L2(R) the Fourier
transformation, then

F ◦ H ◦ F−1 = −F−1 ◦ H ◦ F = 1 − 2χ0
R

(5.27)

where the right hand side denotes, as usual, the multiplication operator. Using this,
we see that Tr(�[χ0, �′]) = 1

2

∫

R
TrY (�̂(μ)[H, �̂′](μ)) dμ. Using the definition of the

Hilbert transform H one checks that [H, �̂] is the integral operator with kernel func-
tion equal to −i/π ω(u, v), with ω(u, v) = (�̂(u) − �̂(v))/(u − v). This implies that
1
2

∫

R
TrY (�̂(μ)[H, �̂′](μ)) dμ is equal to − i

2π

∫

R
TrY

(

�̂(μ) ◦ ∂μ�̂
′(μ)
)

dμ which is equal
to the right hand side of (5.26) once we integrate by parts. ��
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Proposition 5.25 and Melrose’ formula imply at once the relative 0-cocycle con-
dition for (τ r

0 , σ1): indeed using first Proposition 5.25 and then Melrose’ formula we
get:

σ1(I(k), I(k′)) := Tr(I(k)[χ0, I(k′)]) =
i

2π

∫

R

Tr∂X

(

∂μI(k, μ) ◦ I(k′, μ)
)

dμ

= b Tr[k, k′] = bτ r
0 (k, k′).

Thus I∗(σ1) = bτ r
0 as required.

Conclusions. We have established the following:

• the right hand side of Melrose’ formula defines a 1-cocycle s1 on Bc(cyl(Y )), Y
any closed compact manifold;

• Melrose 1-cocycle s1 equals Roe’s 1-cocycle σ1;
• Melrose’ formula itself can be interpreted as a relative 0-cocycle condition for the

0-cochain (τ r
0 , s1) ≡ (τ r

0 , σ1).

5.8 Philosophical remarks. We wish to recollect the information obtained in
the Sections 5.4, 5.5, 5.6 and start to explain our approach to Atiyah–Patodi–Singer
higher index theory.

On a closed compact orientable Riemannian smooth manifold Y let us consider
the algebra of smoothing operators Jc(Y ) := C∞(Y × Y ). Then the functional
Jc(Y ) � k → ∫

Y k|Δdvol defines a 0-cocycle τ0 on Jc(Y ); indeed by Lidski’s theorem
the functional is nothing but the functional analytic trace of the integral opera-
tor corresponding to k and we know that the trace vanishes on commutators; in
formulae, bτ0 = 0. The 0-cocycle τ0 plays a fundamental role in the proof of the
Atiyah–Singer index theorem, but we leave this aside for the time being.

Let now X be a smooth orientable manifold with cylindrical ends, obtained from
a manifold with boundaryX0; let cyl(∂X) = R×∂X0. We have then defined algebras
Ac(X), Bc(cyl(∂X)) and Jc(X) fitting into a short exact sequence 0 → Jc(X) →
Ac(X) πc−→ Bc(cyl(∂X)) → 0.

Corresponding to the 0-cocycle τ0 in the closed case we can define two important
0-cocycles on a manifold with cylindrical ends X:

• We can consider τ0 on Jc(X) = C∞
c (X ×X); this is well defined and does define

a 0-cocycle.
• Starting with the 0-cocycle τ0 on Jc(X) we define a relative 0-cocycle (τ r

0 , σ1) for
Ac(X) πc−→ Bc(cyl(∂X)). The relative 0-cocycle (τ r

0 , σ1) is obtained through the
following two fundamental steps.

(1) We define a 0-cochain τ r
0 on Ac(X) by replacing the integral with Melrose’ reg-

ularized integral.
(2) We define a 1-cocycle σ1 on Bc(cyl(∂X)) by taking a suspension of τ0 through

the linear map δ(�) := [χ0, �]. In other words, σ1(�0, �1) is obtained from τ0 ≡ Tr
by considering (�0, �1) → τ0(�0[χ0, �1]) ≡ τ0(�0δ(�1)).



GAFA THE GODBILLON–VEY ETA COCYCLE 1735

Definition 5.28. We shall also call Roe’s 1-cocycle σ1 the eta 1-cocycle correspond-
ing to the 0-cocycle τ0.

In order to justify the wording of this definition we need to show that all this
has something to do with the eta invariant and its role in the Atiyah–Patodi–Singer
index formula. This will be explained in Section 9.1.

5.9 Cyclic cocycles on graded algebras endowed with commuting deri-
vations. In this subsection we collect some general facts about cyclic cocycles on
algebras endowed with commuting derivations. These results will be repeatedly used
in the sequel.

The following Lemma is obvious.

Lemma 5.29. Let A0 be an algebra and A1 a bimodule over A0. Consider Ω :=
A0 ⊕A1 as a linear space; define a multiplication on Ω by

αβ = (a0b0, a0b1 + a1b0) for α = (a0, a1), β = (b0, b1) in A0 ⊕A1.

Then Ω is a graded algebra, with the grading on Ω defined by deg ai = i for ai ∈
Ai, i = 0, 1. Observe that Ω is not a �-algebra in general.

Definition 5.30. A linear map δ : Ω → Ω is called a derivation of degree k if it
satisfies:

(1) δ(αβ) = (δα)β + α(δβ) for α, β ∈ Ω;
(2) deg(δα) = degα+ k.

Let δΩ : Ω → Ω be a derivation on Ω. Suppose that δΩ is of degree 0 and denote
by δ : A0 → A0 and δ′ : A1 → A1 the restrictions δΩ|A0 , δΩ|A1 respectively. Then the
derivation property of δΩ is equivalent to the following three properties: (i) δ(a0b0) =
(δa0)b0 +a0(δb0); (ii) δ′(a0b1) = (δa0)b1 +a0(δ′b1); (iii) δ′(a1b0) = (δ′a1)b0 +a1(δb0),
for ai, bi ∈ Ai. We also observe that giving a derivation δΩ of degree 1 is equivalent
to giving a linear map δ : A0 → A1 with δ(a0b0) = (δa0)b0 + a0(δb0) in such a way
that δΩa0 = δa0 and δΩa1 = 0 for ai ∈ Ai.

Finally, let ω : A1 → C be a linear map such that

ω(a0a1) = ω(a1a0) for ai ∈ Ai. (5.31)

We shall call such a linear map a bimodule trace map on A1. The following Lemma
is obvious

Lemma 5.32. A bimodule trace map ω on A1 extends to a trace map � : Ω → C

such as �|A0 = 0 and �|A1 = ω.

Let δi, i = 1, . . . , k, be derivations on Ω := A0 ⊕A1 and let � be a trace map on
Ω. We consider the following (k + 1)-multilinear map on Ω:

τ(a0, . . . , ak) :=
1
k!

∑

α∈Sk

sign(α)�(a0 δα(1)a1 . . . δα(k)ak) for ai ∈Ω. (5.33)
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In order to get a nontrivial map, we may assume that one of δi is of degree 1 and the
others are of degree 0. Here Sk denotes the symmetric group of order k and sign(α)
is the signature of permutation α ∈ Sk.

Proposition 5.34. Assume that

(1) the derivations δi are pairwise commuting, i.e. δiδj = δjδi for 1 ≤ i, j ≤ k;
(2) �(δia) = 0 for a ∈ Ω and 1 ≤ i ≤ k.

Then τ defined as in (5.33) gives rise to a cyclic k-cocycle on Ω.

Proof. First we verify the cyclic condition. The second assumption and the deriva-
tion property imply that

τ(ak, a0, . . . , ak−1) =
1

k!

∑

α∈Sk

sign(α) �(ak δα(1)a0 . . . δα(k)ak−1)

=
1

k!

∑

α∈Sk

sign(α)
{

�(ak δα(1)a0 . . . δα(k)ak−1)

−�
(

δα(1)(aka0 δα(2)a1 . . . δα(k)ak−1)
)

}

= − 1

k!

∑

α∈Sk

sign(α) �((δα(1)ak)a0 δα(2)a1 . . . δα(k)ak−1)

− 1

k!

∑

α∈Sk

sign(α)

k−1
∑

i=1

�(aka0δα(2)a1 . . . δα(1)δα(i+1)ai . . . δα(k)ak−1).

The second summand in the last term vanishes. In fact the signatures are opposite
to each other for α and α ◦ (1, i+ 1); thus the values cancel out due to assumption
(1). Observing that the signature of the cyclic permutation (1, 2, . . . , k) is equal to
(−1)k−1, the trace property implies that

τ(ak, a0, . . . , ak−1) =
(−1)k

k!

∑

α∈Sk

�(a0 δα(1)a1 . . . δα(k)ak) = (−1)kτ(a0, a1, . . . , ak).

Second we prove the cocycle condition. Due to the derivation and trace properties
again we obtain

bτ(a0, . . . , ak+1)=
k
∑

i=0

(−1)iτ(a0, . . . , aiai+1, . . . , ak+1)+(−1)k+1τ(ak+1a0, a1, . . . , ak)

=
(−1)k

k!

∑

α∈Sk

sign(α)
{

�(a0 δα(1)a1 . . .
(

δα(k)ak

)

ak+1)

−�(ak+1a0 δα(1)a1 . . . δα(k)ak)
}

and the last term is zero. This completes the proof. ��
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5.10 The Godbillon–Vey cyclic 2-cocycle τGV . Let (Y,F), Y = Ñ×ΓT, be
a compact foliated bundle without boundary. We take directly T = S1. Let E → Y
a hermitian complex vector bundle on Y. Let G be the holonomy groupoid associ-
ated to Y, namely G = (Ñ × Ñ × T )/Γ. Consider again the convolution algebra
Ψ−∞

c (G,E) := C∞
c (G, (s∗E)∗ ⊗ r∗E) of equivariant smoothing families with Γ-com-

pact support. On Ψ−∞
c (G,E) there exists a remarkable 2-cocycle, denoted by τGV ,

and known as the Godbillon–Vey cyclic cocycle. It was defined by Moriyoshi and
Natsume in [MoN96], following seminal work of Connes. Here we shall simply recall
the very basic facts leading to the definition of τGV .

Recall from Section 2.5, the modular function ψ on Ñ×T defined by ω̃∧dθ = ψΩ̃,
where ω̃ and Ω̃ denote Γ-invariant volume forms on Ñ and Ñ × T respectively.

There is a well defined derivation δ2 on the algebra Ψ−∞
c (G,E):

δ2(P ) = [φ, P ] with φ = logψ. (5.35)

We observe here that φ is neither Γ-invariant nor compactly supported in general.
It is even possible that φ is unbounded. Recall next the bundle ̂E′ on Ñ × T intro-
duced in [MoN96]: this is the same vector bundle as ̂E but equipped with a new
Γ-equivariant structure. See [MoN96]. There is a natural bijective correspondence
between Ψ−∞

c (G,E) and Ψ−∞
c (G,E′). Take Ψ−∞

c (G;E,E′) as in Section 3.3. Using
the above identification we consider Ψ−∞

c (G;E,E′) as a bimodule over Ψ−∞
c (G,E).

Let φ̇ denote the partial derivative of φ in the direction of S1. There is a well-defined
bimodule derivation δ1 : Ψ−∞

c (G,E) → Ψ−∞
c (G;E,E′):

δ1(P ) = [φ̇, P ] with φ = logψ. (5.36)

There is also a linear map δ′
2 : Ψ−∞

c (G;E,E′) → Ψ−∞
c (G;E,E′) defined in a similar

way to (5.35). Then one can verify that

δ1(δ2(P )) = δ′
2(δ1(P )). (5.37)

Recall, finally, that there is a weight ωΓ defined on the algebra Ψ−∞
c (G;E):

ωΓ(k) =
∫

Y (Γ)
Tr(y,θ)k(y, y, θ)dy dθ. (5.38)

In this formula, Y (Γ) is a fundamental domain in Ñ ×T for the diagonal free action
of Γ on Ñ × T ; the kernel k is restricted to ΔÑ × T ⊂ Ñ × Ñ × T where ΔÑ is the
diagonal set in Ñ × Ñ and ΔÑ × T ∼= Ñ × T ; and Tr(y,θ) denotes the trace map on
End( ̂E(y,θ)) (If the measure on T is Γ-invariant, then this weight is a trace; however,
we do not make this assumption here).

We shall be interested in the linear functional8 defined on the bimodule
Ψ−∞

c (G;E,E′) by the analogue of (5.38). Following what has been explained in

8 This will not be a weight, given that on a bimodule there is no notion of positive element.
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the previous subsection, we call this linear functional on Ψ−∞
c (G;E,E′) a bimodule

trace; this is justified by the next fundamental equation, which is proved in [MoN96]:

k ∈ Ψ−∞
c (G;E,E′), k′ ∈ Ψ−∞

c (G;E) ≡ Ψ−∞
c (G;E′) ⇒ ωΓ(kk′) = ωΓ(k′k).

(5.39)

It is also important to recall that the bimodule trace ωΓ on Ψ−∞
c (G;E,E′) satisfies

the following Stokes formula:

k ∈ Ψ−∞
c (G;E) ⇒ ωΓ(δ1(k)) = 0 and k ∈ Ψ−∞

c (G;E,E′) ⇒ ωΓ(δ′
2(k)) = 0.

(5.40)

Definition 5.41. When dimT = 1, the Godbillon–Vey cyclic 2-cocycle on Ψ−∞
c

(G;E) ≡ C∞
c (G, (s∗E)∗ ⊗ r∗E) is defined to be

τGV (a0, a1, a2) = 1
2!

∑

α∈S2
sign(α)ωΓ(a0 δα(1)a1 δα(2)a2)

= 1
2

{

ωΓ(a0 δ1a1 δ2a2) − ωΓ(a0 δ2a1 δ1a2)
}

. (5.42)

We remark that the Godbillon–Vey cocycle in [MoN96] is equal to twice the
above cocycle.

Proposition 5.43. The 3-functional τGV does satisfy

bτGV = 0, τ(a0, a1, a2) = τ(a1, a2, a0),∀aj ∈ Ψ−∞
c (G;E). (5.44)

Proof. This is certainly proved in [MoN96]. We give a proof here by using general
results of the previous subsection; this will serve as a guide for the more compli-
cated situation we will consider later. Recall the definition of τGV : τGV (a0, a1, a2) :=
1
2

{

ωΓ(a0 δ1a1 δ2a2) − ωΓ(a0 δ2a1 δ1a2)
}

where δ1a = [φ̇, a] and δ2a = [φ, a]. Let

A0 be the algebra Ψ−∞
c (G;E) and A1 the A0-bimodule Ψ−∞

c (G;E,E′) introduced
above. Proceeding as in Section 5.9, we construct a graded algebra Ω out of A0 and
A1 as in Lemma 5.29. We denote this algebra by Ω(G); thus Ω(G) := Ψ−∞

c (G;E) ⊕
Ψ−∞

c (G;E,E′). Then, according to the explanations given in Section 5.9, there exist
extensions of our derivations to

δj : Ω(G) → Ω(G), j = 1, 2 with δ1a = [φ̇, a], δ2a = [φ, a] (5.45)

with δ1 a derivation of degree 1 and δ2 of degree 0. Here we employed the same
notation for these extensions. On the other hand, we know that the functional ωΓ :
Ψ−∞

c (G;E,E′) → C defined by (5.38) induces a bimodule trace map on A1 due to
(5.39). Thus Lemma 5.32 implies that there exists a trace map τΓ : Ω(G) → C with
τΓ(a) = ωΓ(a) for a ∈ A1 and τΓ(a) = 0 for a ∈ A0. Now the relation (5.37) shows
that the derivations δ1, δ2 in (5.45) commute with each other, whereas (5.40) implies
that τΓ(δja) = 0 for a ∈ Ω(G) and j = 1, 2. Thus, directly from Proposition 5.34,
we obtain a cyclic 2-cocycle

τ2(a0, a1, a2) =
1
2

{

τΓ(a0 δ1a1 δ2a2) − τΓ(a0 δ2a1 δ1a2)
}

.
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Thus τGV is also a cyclic cocycle on A0 ≡ Ψ−∞
c (G;E) since it is nothing but the

restriction of τ2 to the subalgebra A0 ⊂ Ω(G). Thus the proof is completed. ��
We now go back to a foliated bundle (X,F) with cylindrical ends, where X =

Ṽ ×ΓT as in Section 2. We consider the small subalgebras introduced in Section 5.2.
Note that the weight ωΓ is well defined on Jc(X,F); thus the 2-cocycle τGV can be
defined on Jc(X,F), which we call the Godbillon–Vey cyclic cocycle for (X,F).

5.11 The eta 3-cocycle σGV corresponding to τGV . Now we apply the
general philosophy explained at the end of the previous Section. Let χ0 be the usual
characteristic function of (−∞, 0] × ∂X0 in cyl(∂X) = R × ∂X0. Write cyl(∂X) =
(R × ∂M̃)×Γ T with Γ acting trivially on the R factor. Let cyl(Γ) be a fundamental
domain for the action of Γ on (R × ∂M̃) × T ; finally, let ω cyl

Γ be the corresponding
trace map on the bimodule defined similarly to (5.38). Recall δ(�) := [χ0, �]; recall
that we passed from the 0-cocycle τ0 ≡ Tr to the 1-eta cocycle on the cylindrical
algebra Bc by considering (�0, �1) → τ0(�0δ(�1)). We referred to this operation as a
suspension.

We are thus led to suspend Definition 5.41, thus defining the following 4-linear
functional on the algebra Bc.

Definition 5.46. The eta functional σGV associated to the Godbillon–Vey 2-cocy-
cle τGV is given by the 4-linear functional on Bc

σGV (�0, �1, �2, �3) :=
1
3!

∑

α∈S3

sign(α)ω cyl
Γ (�0 δα(1)�1 δα(2)�2 δα(3)�3) (5.47)

with

δ3� := [χ0, �], δ2� := [φ∂ , �] and δ1� := [φ̇∂ , �] (5.48)

and φ∂ equal to the restriction of the modular function to the boundary, extended in
a constant way along the cylinder. We shall prove that this is a cyclic 3-cocycle for
the algebra Bc(cyl(∂X),Fcyl). More generally, formula (5.47) defines the Godbillon–
Vey eta 3-cocycle on Bc(cyl(Y ),Fcyl) with Y = Ñ×ΓT any closed foliated T -bundle,
not necessarily arising as a boundary. Here, as usual, we don’t write the bundle E
in the notation. In this case δ2� := [φY , �] and δ1� := [φ̇Y , �] with φY the logarithm
of a modular function on Y extended in a constant way along the cylinder.

We must justify the well-posedness of this definition. To this end, remark that
each sum will contain an element of type δ3(�j) := [χ0, �j ]. This is a kernel of Γ-
compact support (we have already justified this claim in Sublemma 4.10) which
is, of course, not translation invariant. Since the other three operators appearing
in the composition (�0 δα(1)(�1) δα(2)(�2) δα(3)(�3)) are (R × Γ)-equivariant and of
(R × Γ)-compact support, we can conclude easily that each term appearing in the
definition of σGV , (�0 δα(1)(�1) δα(2)(�2) δα(3)(�3)), is in fact of Γ-compact support.
Indeed, recall that a kernel that is Γ-equivariant and of Γ-compact support, such
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as δ3(�j) = [χ0, �j ] above, can be considered as a compactly supported function on
the holonomy groupoid Gcyl for (cyl(∂X),Fcyl). On the other hand, a kernel that
is (R × Γ)-equivariant and of (R × Γ)-compact support corresponds to a compactly
supported function on Gcyl/RΔ, which admits a R-compact support once lifted to
Gcyl; see Proposition 4.3. We then take the convolution product of these kernels.
A simple argument on support implies that the resulting kernel corresponds to a
compactly supported function on Gcyl and hence the kernel itself is of Γ-compact
support on (R × ∂M̃) × (R × ∂M̃) × T.

Summarizing, ω cyl
Γ (�0 δα(1)(�1) δα(2)(�2) δα(3)(�3)) is finite and the definition of

σGV is well posed. In fact, we can define, as we did for σ1, the 3-cochain σλ
GV by

employing the characteristic function χλ. However, one checks as in Proposition 5.10
that the value of σλ

GV does not depend on λ.

Proposition 5.49. Let Y = Ñ ×Γ T be an arbitrary foliated T -bundle without
boundary. The eta functional σGV on Bc(cyl(Y ),Fcyl) is cyclic and is a cocycle:
b σGV = 0; it thus defines a cyclic 3-cocycle on the algebra Bc(cyl(Y ),Fcyl).

Proof. We wish to apply Proposition 5.34 as we did in the proof of the 2-cyclic-co-
cycle property for τGV , see Proposition 5.43. However, we need to deal with a small
complication, having to do with the fact that χ0 is not smooth and that [χ0, �] is
no longer translation invariant. Recall the groupoid Gcyl := cyl(Ñ) × cyl(Ñ) × T/Γ
which is nothing but GY × R × R with GY the holonomy groupoid for Y = Ñ ×Γ T.
Define

L∞
c (Gcyl)={k : Gcyl →C | k is measurable, essentially bounded and of Γ-compact support}.

More generally, let E be a vector bundle on Y with lift ̂E on Ñ × T ; we pull back
E to cyl(Y ) through the obvious projection obtaining a vector bundle Ecyl. We can
then consider in a natural way L∞

c (Gcyl;Ecyl) and L∞
c (Gcyl);Ecyl, E

′
cyl). We omit

the obvious details. Recall also

Bc(Gcyl) ≡ Bc :={� : Gcyl → C | � is smooth, R × Γ − invariant and of R × Γ − support}.

We also have Bc(Gcyl;E) (this is the algebra on which σGV is defined) and
Bc(Gcyl;E,E′). We set now

A0 := Bc(Gcyl;E) ⊕ L∞
c (Gcyl;Ecyl)

A1 := Bc(Gcyl;E,E′) ⊕ L∞
c (Gcyl;Ecyl, E

′
cyl).

First, observe here that A0 and A1 are naturally considered as subspaces in End(H)
and Hom(H,H′) respectively, where we recall that H = (Hθ)θ∈T , Hθ = L2(cyl(Ñ)×
{θ}, Ecyl,θ) and similarly for H′; indeed, each summand of A0, for example, is in
End(H) and the direct sum holds because of the support conditions. Next we observe
that A0 is in fact as a subalgebra of End(H), since the product of k ∈ Bc(Gcyl;E)
and k′ ∈ L∞

c (Gcyl;Ecyl) is an element in L∞
c (Gcyl;Ecyl). Moreover, for the same
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reason, A1 has a bimodule structure over A0, inherited from the one of Hom(H,H′)
over End(H). The direct sum Ω := A0 ⊕ A1, with the product defined in Lemma
5.29, is the graded algebra to which we want to apply Proposition 5.34.

We can define three derivations δ1, δ2 and δ3 as in (5.48). We consider δ1 as a
derivation of degree 1, mapping A0 to A1 and vanishing on A1; we consider δ2 and
δ3 as derivations of degree 0, preserving A0 and A1 respectively. Notice that since
φ∂ and φ̇∂ are translation invariant on the cylinder, δ1 and δ2 are diagonal with
respect to the direct sum decomposition of A0 and A1. As far as δ3 is concerned, we
remark that using (5.9) we see that δ3 maps Bc ⊕ L∞

c into L∞
c both on A0 and A1.

It is clear that these three derivations are pairwise commuting. Finally, we define
a bimodule trace map on A1 by employing the bimodule trace ωcyl

Γ appearing in
Definition 5.46; this is well defined on L∞

c (Gcyl;E,E′) since elements in this space
have Γ-compact support. We can then define ω : A1 → C by ω(α) = ωcyl

Γ (k) if
α = (�, k) ∈ A1 ≡ Bc(Gcyl;E,E′) ⊕ L∞

c (Gcyl;Ecyl, E
′
cyl). We know that ω(δjα) = 0

if j = 1, 2. On the other hand, always for α = (�, k) = �+ k ∈ A1, we have

ω(δ3α) = ω([χ0, �+ k]) = ωcyl
Γ ([χ0, �+ k])

=
∫

cyl(Γ)
Tr(y,s,θ)

(

χ0(s)(�(y, y, 0, θ) + k(y, y, s, s, θ))

−(�(y, y, 0, θ) + k(y, y, s, s, θ))χ0(s)
)

dy dθ

and the last term is zero. Thus, we also have Stokes formula for the derivation δ3.
Now we define τ0 from ω as in Lemma (5.32) so that all the conditions in the hypoth-
esis of Proposition 5.34 are satisfied. Finally, we point out that Bc is a subalgebra
of A0: proceeding exactly as in the proof of Proposition 5.34 we can now check that
σGV is indeed a cyclic 3-cocycle on Bc. ��
5.12 The relative Godbillon–Vey cyclic cocycle (τ r

GV , σGV ). We now
apply our strategy as in Section 5.8. Thus starting with the cyclic cocycle τGV on
Jc(X,F) we first consider the 3-linear functional on Ac(X,F) given by

ψr
GV (k0, k1, k2) :=

1
2!

∑

α∈S2

sign(α)ωr
Γ(a0 δα(1)a1 δα(2)a2)

with ωr
Γ the regularized weight corresponding to ωΓ. The regularized weight ωr

Γ is
defined as follows. Let us consider X = Ṽ ×Γ T, the quotient of Ṽ × T with free
Γ-action, and denote X(Γ) a fundamental domain for this Γ-covering. We can take
X(Γ) as F × T, with F a fundamental domain for the Galois covering Γ → Ṽ →
V, Ṽ = M̃∪∂M̃

(

(−∞, 0] × ∂M̃
)

and V := M∪∂M ((−∞, 0] × ∂M) . See Section 2.3.
Thus F has a cylindrical end, with cross section F∂ Then, using the usual notations,
we set

ωr
Γ(k) := lim

λ→+∞

( ∫

Fλ×T
k(x, x, θ) dx dθ − λ

∫

F∂×T
�(y, y, 0, θ)dydθ

)

(5.50)
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with πc(k) = �. Here we have used the translation invariance of � in order to write
� as a function of (y, y′, s, θ) with s ∈ R.

Notice that, as in Section 5.5 the function ϕ(λ) :=
∫

Fλ×T k(x, x, θ) dx dθ −
λ
∫

F∂×T �(y, y, 0, θ)dydθ becomes constant for λ >> 0.
Next we consider the cyclic cochain associated to ψr

GV :

τ r
GV (k0, k1, k2) :=

1
3

(ψr
GV (k0, k1, k2) + ψr

GV (k1, k2, k0) + ψr
GV (k2, k0, k1)) . (5.51)

The next Proposition is crucial:

Proposition 5.52. The pair of cyclic cochains (τ r
GV , σGV ) ∈ C2

λ(Ac, Bc) is a relative
cocycle: thus

bσGV = 0 and bτ r
GV = (πc)∗σGV . (5.53)

We have proved the first equation in the general (non-bounding) case in Propo-
sition 5.49. Notice that in the present context, with Y = ∂X, we can prove the first
equation using the second; indeed πc is surjective and thus the induced cochain map
π∗

c is injective; thus bτ r
GV = (πc)∗σGV implies that b(πc)∗σGV = 0 so that bσGV = 0.

We shall present a proof of the second equation of Proposition 5.52 in Section 10.
For later use we also state and prove the analogue of formula (5.17):

Proposition 5.54. Let t : A∗(X,F) → C∗(X,F) be the section introduced in
Section 4.4. If k ∈ Ac ⊂ A∗(X,F) then t(k) has finite weight. Moreover, for the
regularized weight ωr

Γ : Ac → C we have

ωr
Γ = ωΓ ◦ t. (5.55)

Proof. The proof is virtually identical to the one establishing (5.17). Write k =
a+χλ � χλ with a ∈ Jc and � ∈ Bc. Remark that the support of χλ −χ0 is compact.
Thus t(k) = k − χ0�χ0 = a+ χλ�χλ − χ0�χ0 has certainly finite weight, given that
it is of Γ-compact support. Thus,

ωΓ(t(k)) =
∫

F×T
a(x, x, θ) dx dθ −

∫

Fλ×T\F0×T
�(y, y, 0, θ)dy dt dθ = ωr

Γ(k)

for a sufficiently large λ. This completes the proof. ��
5.13 Eta (n + 1)-cocycles. The goal of this subsection is to generalize the
results stated above for the Godbillon–Vey cyclic 2-cocycle τGV to the more gen-
eral cyclic n-cocycles τ(a0, . . . , an) := 1

n!

∑

α∈Sn
sign(α)�(a0 δα(1)a1 . . . δα(n)an)

considered in Proposition 5.34. We hope to use these results in a future project, in
collaboration with Sacha Gorokhovsky, where our aim will be to extend the results
of this paper to all Gelfand-Fuchs classes, employing the very interesting results
in [CM90]. Here we shall explain how to construct, starting with such a τ, an eta
(n+ 1)-cyclic cocycle σ on Bc and a relative cocycle (τ r, σ) on (Ac, Bc); proofs will
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be given in Section 10.2. For the sake of clarity we shall make our notation slightly
more precise.

Let Jc, Bc and Ac be the algebras defined in Section 5.2, fitting into the exact
sequence 0 → Jc → Ac

πc−→ Bc → 0. Starting with a foliated bundle (X,F) with
cylindrical ends, we consider the following situation:

• There exist (graded) algebras ΩJ ,ΩA and ΩB, which contain Jc, Ac and Bc as
subalgebras, respectively and which fit into a short exact sequence:

0 → ΩJ → ΩA
πΩ−→ ΩB → 0.

Here ΩJ is the analogue of the algebra Ω(G) constructed in (5.45) for closed
foliated bundles.

• One has a trace map τ cyl
Γ : ΩB → C and a linear functional τ r

Γ : ΩA → C. The
second map is not a trace map; however, it satisfies

τ r
Γ(κκ′ − κ′κ) = τ cyl

Γ (λ[χ0, λ′])

for κ, κ′ ∈ ΩA with πΩ(κ) = λ and πΩ(κ′) = λ′ in ΩB. Observe that the above
identity implies that τ r

Γ is a trace map once restricted to ΩJ since πΩ(κ) = 0 for
κ ∈ ΩJ . We then require that the restriction coincides with the trace map τΓ on
ΩJ , which is defined in the proof of Proposition 5.44. We call τ r

Γ a regularized
trace associated to τΓ on ΩJ and to τ cyl

Γ on ΩB.
• There exist derivations δA

i on ΩA with 1 ≤ i ≤ n, which preserve ΩJ and
satisfy δA

i δ
A
j = δA

j δ
A
i for 1 ≤ i, j ≤ n. There also exist derivations δB

i on ΩB

with 1 ≤ i ≤ n, which are compatible with δA
i in the sense that πΩδ

A
i = δB

i πΩ

(thus δB
i are pairwise commuting since δA

i are). In the sequel we often suppress
the suffix and simply denote them by the same letter δi.

• Stokes’ formulas hold: one has τ r
Γ(δA

i κ) = 0 and τ cyl
Γ (δB

i λ) = 0 for κ ∈ ΩA and
λ ∈ ΩB with 1 ≤ i ≤ n.

We shall now produce eta cocycles and relative cocycles in this setting. Note
that for eta cocycles we shall proceed more generally, precisely as we did for Godb-
illon–Vey, thus considering Bc(cyl(Y ),Fcyl) for Y = ˜N ×Γ T a foliated T -bundle
without boundary; in this more general situation we shall assume that the deriva-
tions δB

j , j = 1, . . . , n, are pairwise commuting.
First we take a cyclic n-cochain on Jc of the following form:

τn(a0, . . . , an) = 1
n!

∑

α∈Sn

sign(α)τΓ
(

a0δα(1)a1 . . . δα(n)an

)

(5.56)

for ai ∈ Jc. Due to Proposition 5.34 it is a cyclic cocycle. Now simply replacing τΓ
by the regularized trace τ r

Γ, we extend τn to Ac by the same formula:

ψ(k0, . . . , kn) =
1
n!

∑

α∈Sn

sign(α)τ r
Γ

(

k0δα(1)k1 . . . δα(n)kn

)



1744 H. MORIYOSHI AND P. PIAZZA GAFA

for ki ∈ Ac.However, the resulting multilinear map ψ is not a cyclic cochain anymore.
Thus, in order to get a cyclic one we set ψ(i)(k0, . . . , kn) = ψ(ki, . . . , kn, k0, . . . , ki−1)
with i = 0, 1. . . . , n and define a cyclic n-cochain on Ac to be

τ r
n(k0, . . . , kn) =

1
n+ 1

n
∑

i=0

(−1)n(i+1)ψ(i)(k0, . . . , kn). (5.57)

Now we have the following two Propositions:

Proposition 5.58. Let Y = ˜N ×Γ T be a foliated T -bundle without boundary.
Introduce a new derivation δn+1(�) := [χ0, �] for � ∈ Bc(cyl(Y ),Fcyl) and define a
(n+ 1)-linear functional σn+1 by

σn+1(�0, . . . , �n+1) =
1

(n+ 1)!

∑

β∈Sn+1

sign(β)τ cyl
Γ (�0δβ(1)�1 . . . δβ(n+1)�n+1).

Then σn+1 is a cyclic (n+ 1)-cocycle on Bc(cyl(Y ),Fcyl).

Proof. The proof follows directly from Proposition 5.34, once we take into account
the modifications that were made in order to prove that σGV is a cyclic
3-cocycle. ��
Proposition 5.59. Let (X,F) be a foliated T -bundle with cylindrical ends. Let τ r

n

be the cyclic n-cochain on Ac defined in (5.57). Consider the eta (n+1)-cocycle σn+1

defined in the above Proposition. Then the relative cocycle condition is satisfied: one
has bσn+1 = 0, which we already know, and bτ r

n = (πc)∗σn+1.

Notice once again that in this bounding situation the equation bσn+1 = 0 on
Bc(cyl(∂X),Fcyl) is in fact a consequence of bτ r

n = (πc)∗σn+1 (using that π∗
c is

injective).
Summarizing: starting with τn of the form (5.56) we have obtained an eta co-

cycle σn+1 and a relative cocycle (τ r
n, σn+1). For example, given a codimension q

foliated bundle (Y,F), there exist derivations δi with 1 ≤ i ≤ q + 1 obtained from
[dTφ, a] and [φ, a] where dT is the exterior differentiation along transversal and φ
the logarithm of the modular function. Then a Godbillon–Vey cyclic (q+ 1)-cocycle
can be constructed on Jc = C∞

c (Y,F) by a similar formula to (5.41). Thanks to the
above results it is then possible to obtain an eta (q+2)-cocycle and a relative cyclic
(q+1)-cocycle associated to such a generalized Godbillon–Vey cyclic (q+1)-cocycle.

6 Smooth Subalgebras

6.1 Summary of this section. The goal of this whole Section is to define the
subsequence

0 → J ↪→ A → B → 0
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of 0 → C∗(X,F) → A∗(X,F) → B∗(cyl(∂X),Fcyl) → 0 we have alluded to in the
Introduction and in Section 5.1. Since the definitions are somewhat involved, we
have decided to give here a brief account of the main definitions and of the main
results of the whole Section; this summary will be enough for understanding the
main ideas in the proof of our main theorem.

Step 1. We begin by defining Schatten-type ideals Im(X,F) ⊂ C∗(X,F); these are
for each m ≥ 1 dense and holomorphically closed subalgebras of C∗(X,F). (We shall
eventually fix m greater than dimension of the leaves.) By imposing that the kernels
in Im(X,F) define bounded operators when multiplied by a function that goes like
(1+s2) on the cylindrical end, we obtain the Banach algebras Jm(X,F) ⊂ C∗(X,F);
these are still dense and holomorphically closed.

Step 2. Next we define dense holomorphically closed subalgebras Bm(cyl(∂X),
Fcyl) ⊂ B∗(cyl(∂X),Fcyl) (often simply denoted Bm).

To this end we first define OP−1(cyl(∂X),Fcyl), the closure of Ψ−1
R,c(Gcyl) ⊂

B∗(cyl(∂X),Fcyl) with respect to the norm |||P ||| := max(‖P‖−n,−n−1, ‖P‖n+1,n),
where on the right hand side we have the norm for operators between Sobolev
spaces and where n is a fixed integer greater or equal to the dimension of the
leaves. Next we define Dm as those elements in OP−1(cyl(∂X),Fcyl) for which (a
certain closure of) the derivation [χ0, ·] has values in Jm. We then define Dm,α

as Dm ∩ Dom(∂α) with ∂α the closed derivation associated to the R-action αt

defined by αt(�) := eits�e−its.Bm is obtained as a subalgebra of Dm,α: Bm = {� ∈
Dm,α | [f, �] and [f, [f, �]] are bounded, with f(y, s) =

√
1 + s2}. We endow

Bm with a Banach norm and we prove that it is a dense holomorphically closed
subalgebra of B∗ for each m ≥ 1.

Step 3. We define Am(X,F) := {k ∈ A∗(X,F);π(k) ∈ Bm(cyl(∂X),Fcyl), t(k) ∈
Jm(X,F)} with t : A∗(X,F) → C∗(X,F) defined in (4.13). We endow Am with a
norm that makes it a Banach subalgebra of A∗

Step 4. We prove that Jm is an ideal in Am and that there is for each m ≥ 1
a short exact sequence of Banach algebras 0 → Jm(X,F) → Am(X,F) →
Bm(cyl(∂X),Fcyl) → 0.

Step 5. Recall the function φ, equal to the logarithm of the modular function.
Recall the (algebraic) derivations δ1 := [φ̇, ] and δ2 := [φ, ]. We define suitable clo-
sures δ1, δ2 of these two derivations and we define Jm as Jm ∩ Dom(δ1) ∩ Dom(δ2).
We endow Jm with a Banach norm and we remark that it is a dense holomorphi-
cally closed subalgebra of C∗(X,F). Similarly, we define suitable closures of the
derivations δ1 := [φ̇∂ , ] and δ2 := [φ∂ , ] on the cylinder and we define Bm as
Bm ∩ Dom(δ1) ∩ Dom(δ2). We endow Bm with a Banach norm and we show that it
is a dense holomorphically closed subalgebra of B∗. Finally, we define in a similar
way the Banach algebra Am; this is a subalgebra of A∗.
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Step 6. We prove that Jm is an ideal in Am and that there is a short exact sequence
of Banach algebras 0 → Jm ↪→ Am → Bm → 0.

The subsequence we are interested in is obtained by taking m = 2n + 1 in the
above sequence, with 2n equal to the dimension of the leaves in (X,F).

6.2 Schatten ideals. Let χΓ be a characteristic function for a fundamental
domain of Γ → Ṽ → V. Consider C∞

c (G) =: Jc(X,F) ≡ Jc.

Definition 6.1. Let k ∈ Jc be positive and self-adjoint. The Schatten norm ||k||m
of k is defined as

(||k||m)m := sup
θ∈T

||χΓ (k(θ))mχΓ||1 (6.2)

with the || ||1 denoting the usual trace-norm on the Hilbert space Hθ. Equivalently

(||k||m)m = sup
θ∈T

||χΓ (k(θ))m/2||2HS (6.3)

with || ||HS denoting the usual Hilbert–Schmidt norm. In general, we set ||k||m :=
|| (kk∗)1/2 ||m. The Schatten norm of k ∈ Jc is easily seen to be finite for any m ≥ 1.

Proposition 6.4. The following properties hold:

(1) if 1/r = 1/p + 1/q then ||kk′||r ≤ ||k||p ||k′||q;
(2) if r ≥ 1 then ||kk′||r ≤ ||k||C∗ ||k′||r;
(3) if p < q then ||k||p ≥ ||k||q;
(4) if p ≥ 1 then ||k||p ≥ ||k||C∗ .

The proof of the Proposition is easily given using standard properties of the Schatten
norms on a Hilbert space.

Consider now χΓ, the characteristic function of a fundamental domain for Ṽ .
Define a map

φm : C∗(X,F) → End(H) (6.5)

to be given by φm(k) := (χΓ|Tθ|mχΓ)θ∈T with m ∈ N. It is a continuous map
(although, obviously, not a linear operator), given as the composition of (Tθ)θ∈T →
(|Tθ|m)θ∈T and left and right multiplication by χΓ. Let L1(H) be the subalgebra of
End(H) (see Section 4.2) consisting of measurable families T = (Tθ)θ∈T such that Tθ

is an operator of trace class for almost every θ. It is a Banach subalgebra of End(H)
with the norm

‖T‖1 := ess. sup{‖Tθ‖1 ; θ ∈ T} (6.6)

where ‖Tθ‖1 denotes the trace norm. For m ∈ N, m ≥ 1 we set

Im(X,F) := {T ∈ C∗(X,F) | φm(T ) ∈ L1(H)} (6.7)
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and denote by ψm the restriction of φm to Im(X,F), so that ψm : Im(X,F) →
L1(H). We anticipate that we shall need to take a slightly smaller algebra; this
smaller algebra will be denoted Jm(X,F).

It is clear that Im(X,F) is closed under composition. We can prove that the graph
of ψm is a closed subset of C∗(X,F) × L1(H): indeed the graph of φm is a closed
subset of C∗(X,F) × End(H) due to continuity, the inclusion of C∗(X,F) × L1(H)
into C∗(X,F)×End(H) is continuous and the graph of ψm is the intersection of the
graph of φm with C∗(X,F) × L1(H).

Proposition 6.8. Im(X,F) is a Banach algebra, an ideal inside C∗(X,F) and is
isomorphic to the completion of Jc(X,F) with respect to the m-Schatten norm. In
particular Im(X,F) is a holomorphically closed dense subalgebra of C∗(X,F).

Proof. We define a norm on Im(X,F) by considering the graph norm associated to
ψm, viz:

‖T‖m := ‖T‖C∗ + ‖ψm(T )‖1.

Since the graph of ψm is closed this is a complete Banach space. Moreover, by the
analogue of Proposition 6.4 (stated for elements in EndΓ(H)) we see that this graph
norm satisfies ‖ST‖m ≤ ‖S‖m‖T‖m so that Im(X,F) is a Banach algebra. Next
observe that, obviously, Jc(X,F) ⊂ Im(X,F); moreover, from the fourth inequality
in Proposition 6.4 we see that on Jc(X,F) the graph-norm and the Schatten norm
introduced in Definition (6.1) are equivalent (thus the small abuse of notation);
since Im(X,F) contains Jc(X,F) as a dense set and it is complete by the norm
‖ ‖m, we conclude that the completion of Jc(X,F) by the norm of Definition (6.1)
is naturally isomorphic, as a Banach algebra, to Im(X,F). The fact that Im is an
ideal in C∗(X,F) follows easily from the inequality ||kk′||m ≤ ||k|| ||k′||m. From the
ideal property one can easily prove that Im is closed under holomorphic functional
calculus; indeed if a ∈ Im and f is a holomorphic function in a neighbourhood of
spec(a) such that f(0) = 0 then we can write f(z) = zg(z) for some holomorphic
function g and thus f(a) = ag(a) which therefore belongs to Im, given that Im is
an ideal. ��
Remark 6.9. For the elements in the ideals Ip(X,F) the inequalities of Proposi-
tion 6.4 continue to hold. In particular, if we have Tj ∈ Ip(X,F) for j = 1, . . . , p,
then their composition T1 · · ·Tp ∈ I1(X,F) and the product map Ip(X,F) × · · · ×
Ip(X,F) → I1(X,F) is continuous.

Recall now the weight ωΓ defined on Jc := C∞
c (G, (s∗E)∗ ⊗ r∗E):

ωΓ(k) :=
∫

X(Γ)
Tr(x,θ)k(x, x, θ)dx dθ, (6.10)

where Tr(x,θ) denotes the trace map on End(E(x,θ)) identifying End( ̂E(x,θ)) with
End(E(x,θ)). Recall also that

ωΓ(k) =
∫

S1

Tr(σθk(θ)σθ)dθ (6.11)
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with σ a compactly supported smooth function on Ñ × S1 such that
∑

γ∈Γ γ(σ)2 =
1, σθ := σ|Ṽ ×{θ} and Tr denoting the usual trace functional on the Hilbert space
Hθ.

Proposition 6.12. The weight ωΓ in (6.10) extends continuously from Jc to I1. In
particular, if k0, k1, . . . , kp ∈ Ip+1 then ωΓ(k0k1 · · · kp) is finite.

Proof. We need to prove that for an element k ∈ Jc(X,F) we have |ωΓ(k)| ≤ C‖k‖1.
However, this follows at once from the following two inequalities

∣

∣

∣

∫

FD
Trx k(x, x, θ)dx

∣

∣

∣ ≤ ‖χΓkθχΓ‖1,

∫

T
|f(θ)|dθ ≤ vol(T ) sup

θ
|f(θ)|.

Thus |ωΓ(k)| ≤ vol(T )‖k‖1 as stated. ��
We shall now introduce the subalgebra of C∗(X,F) that will be used in the proof

of our index theorem. Consider on the cylinder R × Y (with cylindrical variable s)
the functions

fcyl(s, y) :=
√

1 + s2 gcyl(s, y) = 1 + s2. (6.13)

We denote by f and g smooth functions on X equal to fcyl and gcyl on the open
subset (−∞, 0)×Y ; f and g are well defined up to a compactly supported function.
We set

Jm(X,F) := {k ∈ Im | gk and kg are bounded} (6.14)

We shall often simply write Jm.

Proposition 6.15. Jm is a subalgebra of Im and a Banach algebra with the norm

‖k‖Jm
:= ‖k‖m + ‖gk‖C∗ + ‖kg‖C∗ . (6.16)

Moreover Jm is holomorphically closed in Im (and, therefore, in C∗(X,F)).

Proof. The subalgebra property is obvious, so we pass directly to the fact that Jm

is a Banach algebra. It suffices to show that multiplication by g on the left and
on the right induces closed operators; namely if kj → k, kjg → �1, gkj → �2 for
kj ∈ Ψ−1

c (G), then �1 = kg and �2 = gk. In fact, given ξ ∈ C∞
c (Ṽ × {θ}), one has

�1(ξ) = (lim kjg)(ξ) = (lim kj)(gξ) = kg(ξ)

noting that gξ ∈ C∞
c (Ṽ ×{θ}), which proves that �1 = kg. Similarly one has �2 = gk.

This proves that (Jm, ‖ ‖Jm
) is a Banach space. The Banach-algebra property of

this norm follows easily from the Banach-algebra property of ‖ ‖m on Im and
‖ ‖C∗ on C∗(X,F). Finally we show that Jm is holomorphically closed in Im. To
this end we need to show that if 1 + k ∈ J +

m := Jm + C · 1 is invertible in I+
m,

with (1 + k)−1 = 1 + k′ and k′ ∈ Im then one has k′ ∈ Jm. First we observe
that 1 = (1 + k)(1 + k′) = 1 + k + k′ + kk′. Thus k′ = −k − kk′. Similarly one
has k′ = −k − k′k (using 1 = (1 + k′)(1 + k)). Thus gk′ = −gk − (gk)k′ and
k′g = −kg − k′(kg). Since the right hand sides are bounded so are gk′ and k′g. The
Proposition is proved. ��
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Remark 6.17. As usual, we have not included the vector bundle E into the nota-
tion; however, strictly speaking, the notation for the Schatten ideals we have
defined above should be Im(X,F ;E). With obvious changes we can also define
Im(X,F ;E,F ), with F a hermitian vector bundle on X; in particular, given E on
X = Ṽ ×Γ T, and thus ̂E on Ṽ × T, we can define ̂E′, which is ̂E but with a
new Γ-equivariant structure. We then have Im(X,F ;E,E′). Notice that, by con-
tinuity, we have an isomorphism of Banach algebras Im(X,F ;E) ∼= Im(X,F ;E′)
as well as continuous maps Ip(X,F ;E,E′) × Iq(X,F ;E) → Ir(X,F ;E,E′) and
Ip(X,F ;E) × Iq(X,F ;E,E′) → Ir(X,F ;E,E′) if 1/r = 1/p + 1/q. Moreover, the
analogue of Proposition 6.12 holds for the bimodule trace ωΓ : Jc(X,F ;E,E′) → C.

6.3 Closed derivations. In this Subsection we give some general results on
derivations; this material plays an important role in the sequel. Let in general T :
B0 → B1 be a linear operator between Banach spaces with a domain Dom(T ) which
is assumed to be dense. Denote by GT the graph of T, namely the subspace GT :=
{(u, Tu) ∈ B0 ⊕ B1 |u ∈ Dom(T )} and consider the closure GT . Also, denote by p
the projection p : B0 ⊕B1 → B0 onto the first component. The following Lemma and
Definition are well known:

Lemma 6.18. The following are equivalent:

(1) GT is the graph of a linear operator T , with p(GT ) equal to the domain of T ,
which is an extension of T ;

(2) set pT := p|GT
; then Ker pT = 0;

(3) for ui ∈ Dom(T ) with ui → 0 and Tui → v one has v = 0.

Definition 6.19. A linear operator T : B0 → B1 with dense domain Dom(T ) is a
closable operator if one of the properties of the Lemma above is satisfied. Then T is
called the closure of T.

It is obvious that Dom(T )(= Im pT ) becomes a Banach space if we equip it with
the graph norm

‖u‖T := ‖u‖0 + ‖Tu‖1, (6.20)

with ‖ ‖i denoting the Banach norms on Bi. It is also obvious that the closure T
induces a bounded operator T : (Dom(T ), ‖ ‖T ) → (B1, ‖ ‖1).

Let now A0 be a Banach algebra with norm ‖ ‖0 and A1 a A0-bimodule with
norm ‖ ‖1. Let δ : A0 → A1 be a closable derivation into the bimodule A1, that is:
δ is a closable operator that has the derivation property

δ(ab) = (δa)b+ a(δb), for a, b ∈ Dom(δ). (6.21)

Denote by δ : Dom(δ) → A1 the closure of δ.

Proposition 6.22. Set A := Dom(δ).

(1) A is a Banach algebra with respect to the graph norm;
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(2) δ induces a derivation A → A1, δ(ab) = (δa)b+ a(δb), a, b ∈ A.

Proof. Let a, b ∈ Dom(δ). Then there exist sequences {ai}, {bi} in Dom(δ) such
that ai → a, δai → δa, bi → b and δbi → δb in A0 and A1 respectively. Since
A0 is a Banach algebra and A1 is a bimodule over A0, we have aibi → ab and
δ(aibi) = (δai)bi + ai(δbi) → (δa)b + a(δb), which implies (ab, (δa)b + a(δb)) ∈ Gδ

and δ(ab) = (δa)b + a(δb) since Gδ is the graph of δ by the previous Lemma. This
proves that ab ∈ A and hence A is an algebra. Moreover δ satisfies the derivation
property. Finally, we note that

‖ab‖δ = ‖ab‖0 + ‖δ(ab)‖1 ≤ ‖a‖0 ‖b‖0 + ‖δa‖1 ‖b‖0 + ‖a‖0 ‖δb‖1

≤ (‖a‖0 + ‖δa‖1)(‖b‖0 + ‖δb‖1) = ‖a‖δ ‖b‖δ.

which proves that A is a Banach algebra with respect to the graph norm of δ. ��
We shall also need the following simple but important Lemma. First we intro-

duce the relevant objects. Let B0 be a subalgebra of A0 endowed with a Banach
algebra norm, ‖ ‖B0 , satisfying ‖b0‖B0 ≥ ‖b0‖A0 . Let B1 ⊂ A1 be a B0-bimodule
with ‖b1‖B1 ≥ ‖b1‖A1 . Observe that A1 is then also a B0-bimodule since

‖b0a1‖A1 ≤ ‖b0‖A0‖a1‖A1 ≤ ‖b0‖B0‖a1‖A1

and similarly ‖a1b0‖A1 ≤ ‖a1‖A1‖b0‖B0 for b0 ∈ B0, a1 ∈ A1. Then B1 is a B0-
submodule of A1 endowed with the above B0-bimodule structure and moreover the
inclusion is clearly bounded.

Lemma 6.23. Let δ be a closed derivation from Dom(δ) ⊂ A0 to A1. Set

DomB := δ −1(B1) ∩B0 ≡ {a ∈ Dom(δ) ∩B0 | δa ∈ B1}.
Define δB : DomB → B1 as δB(b) := δ(b). Then δB is a closed derivation.

Proof. By hypothesis we know that the graph of δ is a closed subspace of A0 ⊕A1.
Then, because of our assumptions, its intersection with B0 ⊕ B1 is a closed subset
of B0 ⊕B1 (indeed, it is the inverse image of the graph for the inclusion map, which
is continuous). On the other hand, this intersection is easily seen to be the graph of
δB. The Lemma is proved. ��
6.4 Schatten extensions. Let (Y,F), Y := Ñ ×Γ T, be a foliated T -bundle
without boundary; for example Y = ∂X0. Consider (cyl(Y ),Fcyl) the associated foli-
ated cylinder. Recall the function χ0

cyl (often just χ0), the function on the cylinder
induced by the characteristic function of (−∞, 0] in R. Notice that the definition
of Schatten norm also apply to (cyl(Y ),Fcyl), viewed as a foliated T -bundle with
cylindrical ends. Let Ψ−p

R,c(Gcyl) ≡ Ψ−p
c (Gcyl/RΔ), see Proposition 4.3, be the space

of R × Γ-equivariant families of pseudodifferential operators of order −p on the
fibration (R × Ñ) × T → T with R × Γ-compact support. Consider an element
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� ∈ Ψ−p
c (Gcyl/RΔ); then we know that � defines a bounded operator from the Sobo-

lev field Ek to the Sobolev field Ek+p. See [MoN96], Section 3. Let us denote, as in
[MoN96], the operator norm of a bounded operator L from Ek to Ej as ‖L‖j,k; notice
the reverse order. For a R × Γ-invariant, R × Γ-compactly supported pseudodiffer-
ential operator of order (−p), P, we consider the norm

|||P |||p := max(‖P‖−n,−n−p, ‖P‖n+p,n) (6.24)

with n a fixed integer strictly greater than dimN. We denote the closure of ||| · |||p
by OP−p(cyl(Y ),Fcyl). We shall often write OP−p .

Proposition 6.25. OP−p(cyl(Y ),Fcyl) is a Banach algebra and a subalgebra of
B∗(cyl(Y ),Fcyl)

Proof. It is proved in [MoN96], section 3, that the norm ||| · |||p satisfies the Banach
algebra inequality |||PQ|||p ≤ |||P |||p |||Q|||p. Thus OP−p is indeed a Banach algebra.
In order to prove that OP−p is a subalgebra of B∗ we need the following

Lemma 6.26. B∗ coincides with the C∗-closure of Ψ−p
c (Gcyl/RΔ).

Proof. Let D be the Dirac operator on (cylY,Fcyl). Applying the same arguments
as in [MoN96] we can prove that (D + s)−1 belongs to B∗ (see the proof of Propo-
sition 7.18 in Section 10.5 for the details). Given � ∈ Ψ−p

c (Gcyl/RΔ), p ≥ 1, we can
write � = �(D + s)p(D + s)−p where we know that �(D + s)p ∈ Ψ0

c(Gcyl/RΔ) and
(D + s)−p ∈ B∗. Now recall from Remark 4.5 that B∗ is an ideal in L(Ecyl); thus
the above equality proves that � ∈ B∗. On the other hand, obviously, Ψ−p

c (Gcyl/RΔ)
contains Bc ≡ C∞

c (Gcyl/RΔ). Thus B∗ ≡ C∗(Gcyl/RΔ), which is by definition the
C∗-closure of Bc, is contained in the C∗-closure of Ψ−p

c (Gcyl/RΔ). Thus one has:

B∗ ≡ C∗(Gcyl/RΔ) ⊂ C∗-closure of Ψ−p
c (Gcyl/RΔ) ⊂ B∗

proving the Proposition. ��
Since the C∗-norm is dominated by the ||| · |||p-norm, we can immediately

conclude the proof of the Proposition. ��

Notation. From now until the end of this subsection we fix p = 1 and, following
[MoN96], we denote the corresponding norm simply as ||| · |||.

Consider now the bounded linear map ∂max
3 : B∗ → EndΓ H given by ∂max

3 � :=
[χ0, �]. Consider in B∗ the Banach subalgebra OP−1 endowed with the Banach norm
||| · ||| and consider in EndΓ H the subalgebra Jm(cyl(Y ),Fcyl). Let ∂3 be the restric-
tion of ∂max

3 to OP−1 . Since ‖ · ‖ ≤ ||| · ||| we see that ∂3 is also bounded. Let
Dm := {� ∈ OP−1 | ∂3(�) ∈ Jm(cyl(Y ),Fcyl)}. From the restriction Lemma of the
previous subsection, Lemma 6.23, we know that ∂3 |Dm

induces a closed derivation
δ3 with domain Dm. This is clearly a closed extension of the derivation δ3 considered
in Section 5.11.
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Definition 6.27. If m ≥ 1 we define Dm(cyl(Y ),Fcyl) as Dom δ3 endowed with
norm

‖�‖Dm
:= |||�||| + ‖[χ0

cyl, �]‖Jm
. (6.28)

We shall often simply write Dm instead of Dm(cyl(Y ),Fcyl).

Proposition 6.29. Let m ≥ 1, then Dm is a Banach algebra with respect to (6.28)
and, obviously, a subalgebra of B∗ ≡ B∗(cyl(Y ),Fcyl). Moreover, Dm is holomorphi-
cally closed in B∗.

Proof. From the results of the previous subsection, we know that Dom(δ3), endowed
with the graph norm, is a Banach algebra; since Dom(δ3) is by definition Dm, we
have proved the first part of the Proposition. Finally, that Dm ≡ Dom(δ3) is holo-
morphically closed in OP−1 is a classic consequence of the fact that it is equal to
the domain of a closed derivation. See [Roe88], p. 197 or [Con94], Lemma 2, p. 247.
Since OP−1 is in turn holomorphically closed in B∗, see [MoN96] Theorem 3.3, we
see that Dm is holomorphically closed in B∗ as required. The Proposition is proved.

��

The Banach algebra we have defined is still too large for the purpose of extend-
ing the eta cocycle. We shall first intersect it with another holomorphically closed
Banach subalgebra of B∗.

Observe that there exists an action of R on Ψ−1
c (Gcyl/RΔ) ⊂ OP−1(cyl(Y ),

Fcyl) ⊂ B∗ defined by

αt(�) := eits�e−its, (6.30)

with t ∈ R, s the variable along the cylinder and � ∈ Ψ−1
c (Gcyl/RΔ). Note that

αt(�) is again (R × Γ)-equivariant; indeed eits is Γ-equivariant and moreover Tλ ◦
αt(�) ◦ T−1

λ = αt(�), Tλ denoting the action induced by a translation on cyl(Y ) by
λ ∈ R. It is clear that |||αt(�)||| = |||�|||; thus, by continuity, {αt}t∈R yields a well-
defined action, still denoted {αt}t∈R, of R on the Banach algebra OP−1(cyl(Y ),Fcyl).
Note that this action is only strongly continuous. Let ∂α : OP−1 → OP−1 be the
unbounded derivation associated to {αt}t∈R

∂α(�) := lim
t→0

(αt(�) − �)
t

. (6.31)

By definition

Dom(∂α) = {� ∈ OP−1 | ∂α(�) exists in OP−1}.

Proposition 6.32. The derivation ∂α is closed.
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Proof. Observe preliminary that if A and A′ are two closed operator on a Banach
space B then their sum A+A′ is also closed (with domain equal to the intersection
of the two domains). The proof is elementary.

Next we claim that if A is a densely defined operator and A−1 : B → Dom(A)
exists and is bounded, then A is closed. Indeed: suppose that xj → x and Axj → y;
we want to prove that x ∈ Dom(A) and Ax = y. By hypothesis we know that
xj → A−1y. Thus x = limj xj = A−1y. Since A−1 is bijective, one has x ∈ Dom(A)
and Ax = y, as required.

Finally for each � ∈ OP−1 we consider the following Laplace transform R(�) :=
∫ +∞
0 dte−tαt(�). Since |||αt(�)||| = |||�|||, we see that the integral converges. Now, an

elementary computation shows that (I − ∂α)R = I. Thus the previous statement,
applied to (I − ∂α), implies that (I − ∂α) is a closed operator. Thus, by our first
observation we get that ∂α is closed. The Proposition is proved. ��

We endow Dom(∂α) with the graph norm

|||�||| + |||∂α(�)|||. (6.33)

Proposition 6.34. Dom(∂α) is a Banach algebra with respect to (6.33) and, obvi-
ously, a subalgebra of B∗ ≡ B∗(cyl(Y ),Fcyl); moreover it is holomorphically closed
in B∗.

Proof. From the results of the previous subsection, we know that Dom(∂α), endowed
with the graph norm, is a Banach algebra. The first part of the Proposition is thus
proved. That Dom(∂α) is holomorphically closed in OP−1 is as before a consequence
of the fact that it is equal to the domain of a closed derivation. Since, as before,
OP−1 is in turn holomorphically closed in B∗, see [MoN96] Theorem 3.3, we see that
Dom(∂α) is holomorphically closed in B∗ as required. The Proposition is proved.

��
Let now p ≥ 1 and consider OP−p(cyl(Y ),Fcyl). Then αt on OP−1(cyl(Y ),Fcyl)

preserves the subspaces OP−p(cyl(Y ),Fcyl) and we therefore get a well-defined
strongly continuous one-parameter group of automorphisms on each Banach algebra
OP−p(cyl(Y ),Fcyl). Let ∂α,p be the associated derivation. Proceeding as in the proof
of Proposition 6.32 we can check that this is a closed derivation with domain

Dom(∂α,p)={� ∈ OP−p(cyl(Y ),Fcyl) | lim
t→0

(αt(�)−�)/t exists in OP−p(cyl(Y ),Fcyl)}.

Similarly, proceeding as above, we can check that Dom(∂α,p) is a Banach algebra
with respect to the norm |||�|||p + |||∂α,p(�)|||p.

Before going ahead we make a useful remark.

Remark 6.35. Multiplication in B∗ induces a bounded bilinear map

Dom(∂α,p) × Dom(∂α,q) −→ Dom(∂α,p+q). (6.36)

The proof is an easy consequence of the derivation property and of the inequality
|||��′|||p+q ≤ |||�|||p|||�′|||q for � ∈ OP−p(cyl(Y ),Fcyl) and �′ ∈ OP−q(cyl(Y ),Fcyl).
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We can now take the intersection of the Banach subalgebras Dm(cyl(Y ),Fcyl)
and Dom(∂α):

Dm,α(cyl(Y ),Fcyl) := Dm(cyl(Y ),Fcyl) ∩ Dom(∂α)

and we endow it with the norm

‖�‖m,α := |||�||| + ‖[χ0
cyl, �]‖Jm

+ |||∂α�|||. (6.37)

Being the intersection of two holomorphically closed dense subalgebras, also
Dm,α(cyl(Y ),Fcyl) enjoys this property.

We are finally ready to define the subalgebra we are interested in. Recall the
function fcyl(s, y) =

√
1 + s2.

Definition 6.38. If m ≥ 1 we define

Bm(cyl(Y ),Fcyl) := {� ∈ Dm,α(cyl(Y ),Fcyl) | [f, �] and [f, [f, �]] are bounded}.
(6.39)

This will be endowed with norm

‖�‖Bm
:= ‖�‖m,α + 2‖[f, �]‖B∗ + ‖[f, [f, �]]‖B∗

= |||�||| + ‖[χ0
cyl, �]‖Jm

+ |||∂α�||| + 2‖[f, �]‖B∗ + ‖[f, [f, �]]‖B∗ .

The appearance of the factor 2 will be clear from the proof of Lemma 6.43. Pro-
ceeding as in the proof of Proposition 6.15 one can prove that Bm(cyl(Y ),Fcyl) is
a holomorphically closed dense subalgebra of B∗. We shall often simply write Bm

instead of Bm(cyl(Y ),Fcyl).

Let us go back to the foliated bundle with cylindrical end (X,F). We now define

Am(X,F) := {k ∈ A∗(X,F);π(k) ∈ Bm(cyl(∂X),Fcyl), t(k) ∈ Jm(X,F)}(6.40)

Now we observe that, as vector spaces,

Am
∼= Jm ⊕ s(Bm). (6.41)

In order to prove (6.41) we recall the C∗-sequence 0 → C∗(X,F) → A∗(X,F) π−→
B∗(cyl(∂X),Fcyl) → 0 and the sections s : B∗(cyl(∂X),Fcyl) → A∗(X,F) and
t : A∗(X,F) → C∗(X,F) defined in (4.8) and (4.13) respectively. Note that
Ker t = Im s since t(k) = k − s ◦ π(k) and π ◦ s(�) = � for k ∈ A∗(X,F) and
� ∈ B∗(cyl(∂X),Fcyl). Moreover, we obviously have π(a) = 0 and t(a) = a for
a ∈ C∗(X,F).
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Proof of (6.41) Define ϕ : Am → Jm ⊕ s(Bm) by ϕ(k) = (t(k), s ◦ π(k)). Define
ψ : Jm ⊕ s(Bm) → Am by ψ(a, s(�)) = a + s(�). Note that Imψ ⊂ Am since
t(a + s(�)) = a ∈ Jm and π(a + s(�)) = � ∈ Bm. The maps ϕ and ψ are obviously
linear. Then we have

ψ ◦ ϕ(a, s(�)) = (t(a+ s(�)), s ◦ π(a+ s(�))) = (a, s(�)),
ϕ ◦ ψ(k) = (k − s ◦ π(k)) + s ◦ π(k) = k

and we are done.
We endow Am with the direct-sum norm:

‖k‖Am
:= ‖t(k)‖Jm

+ ‖π(k)‖Bm
. (6.42)

Obviously s induces a bounded linear map Bm → Am of Banach spaces and similarly
for π. Moreover, note that the restriction of the norm ‖ ‖Am

to the subalgebra Jm

is precisely the norm ‖ ‖Jm
.

We shall prove momentarily that these algebras fits into a short exact sequence;
before doing this we prove a useful Lemma. Remark that for a foliation (Y,FY )
without boundary, (cyl(Y ),Fcyl) is a foliation with cylindrical ends; for the latter
Jm(cyl(Y ),Fcyl) makes perfect sense.

Lemma 6.43. Recall the function χ0 on X and χ0
cyl on the cylinder cyl(∂X). One

has:

(1) χ0Jm ⊂ Jm and Jmχ
0 ⊂ Jm;

(2) χ0Jm(cyl(∂X),Fcyl)χ0 ⊂ Jm(X,F);
(3) on cyl(Y ), for example on cyl(∂X), we have JmBm ⊂ Jm and BmJm ⊂ Jm;
(4) (χ0Bmχ

0)Jm(X,F) ⊂ Jm(X,F) and Jm(X,F)(χ0Bmχ
0) ⊂ Jm(X,F);

(5) (χ0Bmχ
0)(χ0Bmχ

0) ⊂ χ0Bmχ
0 + Jm.

Proof. (1) The operators gχ0k = χ0gk and χ0kg are bounded if k ∈ Jm. Thus
one has χ0Jm ⊂ Jm. Similarly we proceed for the other inclusion.

(2) The proof is similar to 1).
(3) Take k ∈ Jm and � ∈ Bm. Obviously one has k� and �k ∈ Im, given that

Jm ⊂ Im and that Im is an ideal. Moreover, gcylk� is bounded and so is

k�gcyl = k�f2
cyl = k[�, fcyl]fcyl + kfcyl�fcyl

= k[[�, fcyl], fcyl] + 2kfcyl[�, fcyl] + kgcyl�

given that [[�, fcyl], fcyl], kfcyl, [�, fcyl] and kgcyl are all bounded. Thus
k� ∈ Jm. Similarly one proves that �k ∈ Jm.

(4) The proof is analogous to the one of 3), let us see the details for the second
inclusion:

kχ0�χ0g = kχ0�gcylχ
0 = kχ0�f2

cylχ
0 = kχ0[�, fcyl]fcylχ

0 + kχ0fcyl�fcylχ
0

= kχ0[[�, fcyl], fcyl]χ0 + 2kfχ0[�, fcyl]χ0 + kgχ0�χ0
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which is easily seen to be bounded using the definitions of Jm and Bm. The
rest of the proof is similar but easier.

(5) Note that, on the cylinder, [χ0
cyl, �] ∈ Jm if � ∈ Bm. Thus for �, �′ ∈ Bm we

have that χ0�(1 − χ0
cyl)�

′χ0 = χ0[χ0
cyl, �](1 − χ0

cyl)[�
′, χ0

cyl]χ
0 belongs to Jm,

due to 1). This implies that

χ0�χ0�′χ0 = χ0��′χ0 − χ0�(1 − χ0)�′χ0 ∈ χ0Bmχ
0 + Jm. ��

Proposition 6.44. (Am, ‖ ‖Am
) is a Banach subalgebra of A∗. Moreover, Jm is an

ideal in Am and there is a short exact sequence of Banach algebras:

0 → Jm(X,F) → Am(X,F) π−→ Bm(cyl(∂X),Fcyl) → 0. (6.45)

Finally, t : A∗(X,F) → C∗(X,F) restricts to a bounded section t : Am(X,F) →
Jm(X,F)

Proof. Write k = a+χ0�kχ
0, with π(k) = �k. By definition t(k) = k−χ0�kχ

0 = a ∈
Jm(X,F). Similarly we write k′ = a′ + χ0�k′χ0. We thus have

kk′ = (a+ χ0�kχ
0)(a′ + χ0�k′χ0).

Since ρ is an injective homomorphism we check easily that �kk′ = �k�k′ We compute,
with � ≡ �k and �′ = �k′ ,

kk′ = (a+ χ0�χ0)(a′ + χ0�′χ0)
= aa′ + aχ0�′χ0 + χ0�χ0a′ + χ0�χ0χ0�′χ0

= aa′ + aχ0�′χ0 + χ0�χ0a′ + χ0�(χ0
cyl − 1)�′χ0 + χ0��′χ0

= aa′ + aχ0�′χ0 + χ0�χ0a′ + χ0[χ0
cyl, �][�

′, χ0
cyl, ]χ

0 + χ0��′χ0.

The first three terms belong to Jm(X,F) because Jm(X,F) is an algebra and
because of property 4) in the Lemma ; we also know that, by the very defini-
tion of Bm, [χ0

cyl, �] and [χ0
cyl, �

′] are in Jm(cyl(∂X),Fcyl) so that their product is
in Jm(cyl(∂X),Fcyl). Using this, the second item of the Lemma and the identity
�kk′ = �k�k′ , we finally see that Am is a subalgebra.

Next we prove that Am is a Banach algebra. Recall that if a ∈ Am then ‖a‖Jm
=

‖a‖m + ‖ag‖C∗ + ‖ga‖C∗ ; this clearly satisfies ‖aa′‖Jm
≤ ‖a‖Jm

‖a′‖Jm
. We shall

prove that

‖aχ0�χ0‖Jm
≤ ‖a‖Jm

‖�‖Bm
and ‖χ0�χ0a‖Jm

≤ ‖a‖Jm
‖�‖Bm

.

Indeed one has

‖aχ0�χ0‖Jm
= ‖aχ0�χ0‖m + ‖aχ0�χ0g‖C∗ + ‖gaχ0�χ0‖C∗

= ‖aχ0�χ0‖m + ‖2afχ0[�, f ]χ0 + aχ0[[�, f ], f ]χ0 + agχ0�χ0‖C∗

+‖gaχ0�χ0‖C∗
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≤ ‖a‖m‖�‖B∗ + 2‖af‖m‖[�, f ]‖m + ‖a‖m‖[[�, f ], f ]‖m + ‖ag‖C∗‖�‖B∗

+‖ga‖C∗‖�‖B∗

≤ ‖a‖Jm
‖�‖Bm

.

Similarly one proves the second inequality. Then we have

‖k k′‖Am
= ‖aa′ + aχ0�′χ0 + χ0�χ0a′ + χ0[χ0

cyl, �][χ
0
cyl, �

′]χ0‖Jm
+ ‖��′‖Bm

≤ ‖a‖Jm
‖a′‖Jm

+ ‖a‖Jm
‖�′‖Bm

+ ‖�‖Bm
‖a′‖Jm

+‖[χ0
cyl, �]‖Jm

‖[χ0
cyl, �

′]‖Jm
+ ‖�‖Bm

‖�′‖Bm

≤ ‖k‖Am
‖k′‖Am

.

Thus Am is a Banach algebra. Since it is clear that the inclusion of Am into A∗ is
bounded, we see that Am is a Banach subalgebra of A∗. The fact that we obtain a
short exact sequence of Banach algebras is now clear. Finally, observe that t(k) =
k − s(π(k)); thus the boundedness of s implies that of t. ��
6.5 Smooth subalgebras defined by the modular automorphisms. The
short exact sequence of Banach algebras 0 → Jm → Am → Bm → 0 does not
involve in any way the modular function ψ and the two derivations δ1 and δ2. Thus
we cannot expect the two Godbillon–Vey cyclic 2-cocycles to extend to the cyclic
cohomology groups of these algebras. For this reason we need to further decrease
the size of these subalgebras, taking into account the derivations δ1 and δ2.

6.5.1 Closable derivations defined by commutators. Let k be an element either
in Jc(X,F), Ac(X,F) or Bc(cyl(∂X),Fcyl). We consider k as a Γ-equivariant family
of operators k = (k(θ))θ∈T acting on a family of Hilbert spaces Hθ as in Sections 3
and 4.

We first work on Ac(X,F) which we endow with a Banach norm ‖ ‖0 and denote
it as A0

c . Next, we consider the bimodule A1
c , as in the preceding subsections, i.e.

the bimodule built out of Ac by considering operators acting from sections of E to
sections of the bundle with new equivariant structure, E′. We endow the bimodule
A1

c with a norm ‖ ‖1. We shall assume that both ‖ ‖0 and ‖ ‖1 are stronger than
the C∗-norm:

‖k‖i ≥ ‖k‖C∗ , i = 0, 1. (6.46)

Let f be a smooth function on Ṽ × T and consider the bimodule derivation
δ : (A0

c , ‖ ‖0) → (A1
c , ‖ ‖1) given by δk := [f, k]. We assume that f has been chosen

so that [f, k] is a Γ-equivariant family of operators. Note that, then,

(δk)(θ)ξθ = f(x, θ)k(θ)ξθ − k(θ)(f(x, θ)ξθ)

for ξθ ∈ Hθ. We don’t assume that f is Γ-invariant, nor we assume that f is com-
pactly supported or even bounded (this being a basic difference with the case of χ0

already considered).
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Proposition 6.47. Under the above assumptions we have that δ is a closable der-
ivation.

Proof. Because of the Lemma above it suffices to show that δ satisfies the following
property:

if ‖ki‖0 → 0 and ‖δki − k‖1 → 0, with ki ∈ Ac, then k = 0.

Take ξ, η ∈ C∞
c (Ṽ × T ;E); these induce elements ξθ, ηθ ∈ Hθ once we restrict them

to Ṽ × {θ}. Since, from (6.46) the operator norm ‖[f, ki](θ) − k(θ)‖ is less than or
equal to ‖[f, ki] − k‖1, which in turn goes to zero, one has

〈[f, ki](θ)ξθ, ηθ〉 −→ 〈k(θ)ξθ, ηθ〉
where 〈 〉 denotes the inner product on Hθ. On the other hand

|〈[f, ki](θ)ξθ, ηθ〉| ≤ |〈f(·, θ)ki(θ)ξθ, ηθ〉| + |〈ki(θ)f(·, θ)ξθ, ηθ〉|
= |〈ki(θ)ξθ, f(·, θ)ηθ〉| + |〈f(·, θ)ξθ, ki(θ)∗ηθ〉|
≤ ‖ki(θ)‖‖ξθ‖‖f(·, θ)ηθ‖ + ‖f(·, θ)ξθ‖‖ki(θ)‖‖ηθ‖
≤ C‖ki(θ)‖
≤ C‖ki(θ)‖0

where C is a constant depending on ξ, η and f but independent of ki. Note that
f(·, θ)ηθ and f(·, θ)ξθ are of compact support in Ṽ × {θ} and thus their norms are
finite. Thus we obtain

|〈[f, ki](θ)ξθ, ηθ〉| −→ 0 as i → ∞, since ‖ki‖0 → 0.

This implies that 〈k(θ)ξθ, ηθ〉 = 0 for any ξ, η ∈ C∞
c (Ṽ ×T ;E) and hence the family

(k(θ))θ∈T is the zero operator. Thus we have proved that δ is closable. ��

6.5.2 The smooth subalgebra Jm ⊂ C∗(X,F). We apply the above general
results to the two derivations δ1 and δ2 introduced in Section 5.10, namely δ1 := [φ̇, ]
and δ2 := [φ, ], with φ equal to the logarithm of the modular function.

Recall, see Section 4.2, the C∗-algebra C∗
Γ(H) ⊃ C∗(X,F); it is obtained, by

definition, by closing up the subalgebra CΓ,c(H) ⊂ EndΓ(H) consisting of those
elements that preserve the continuous field Cc(Ṽ × T,E). We set

Dom (δmax
2 ) = {k ∈ CΓ,c(H) | [φ, k] ∈ C∗

Γ(H)}
and

δmax
2 : Dom (δmax

2 ) → C∗
Γ(H), δmax

2 (k) := [φ, k].

The same proof as above establishes that δmax
2 is closable. Similarly, with self-explan-

atory notation, the bimodule derivation

δmax
1 : Dom (δmax

1 ) → C∗
Γ(H,H′), δmax

1 (k) := [φ̇, k],
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with Dom (δmax
1 ) := {k ∈ CΓ,c(H) | [φ̇, k] ∈ C∗

Γ(H,H′)} is closable. Let δmax
j be their

respective closures; thus, for example,

δ
max
2 : Dom δ

max
2 ⊂ C∗

Γ(H) −→ C∗
Γ(H)

and similarly for δmax
1 . Define now

D2 := {a ∈ Dom δ
max
2 ∩ Jm(X,F) | δmax

2 a ∈ Jm(X,F)}
and δ2 : D2 → Jm(X,F) as the restriction of δmax

2 to D2 with values in Jm(X,F).
We know from Lemma 6.23 that δ2 is a closed derivation. Define similarly D1 and
the closed derivation δ1.

We set

Jm := Jm ∩ Dom(δ1) ∩ Dom(δ2) ≡ Jm ∩ D1 ∩ D2. (6.48)

We endow Jm with the norm

‖a‖Jm
:= ‖a‖m + ‖δ2a‖m + ‖δ1a‖m. (6.49)

Proposition 6.50. Jm is holomorphically closed in C∗(X,F).

Proof. We already know that the Banach algebra Jm is holomorphically closed in
the C∗-algebra C∗(X,F). On the other hand, we know [Roe88], p. 197 or [Con94],
Lemma 2, p. 247, that Dom(δ1) and Dom(δ2) are holomorphically closed in Jm (since
they are the domains of closed derivations). Thus Jm is holomorphically closed in
C∗(X,F) as required. ��

6.5.3 The smooth subalgebra Bm ⊂ B∗(cyl(∂X),Fcyl). Consider Bm; we con-
sider the derivations δ1 := [φ̇∂ , ], δ2 := [φ∂ , ] on the cylinder R × ∂X0; we have
already encountered these derivations in Section 5.11, see more precisely Definition
5.46. Consider first δ2. Define a closed derivation ∂2 by taking the closure of the clos-
able derivation Ψ−1

c (Gcyl/RΔ) ∂2−→ B∗, with ∂2(�) := [φ∂ , �] and with Ψ−1
c (Gcyl/RΔ)

endowed with the norm ||| · |||. Then, from Lemma 6.23, we know that ∂2|D2 , with

D2 = {b ∈ Dom(∂2) | ∂2(b) ∈ Bm}
is a closed derivation with values in Bm. We set δ2 := ∂2|D2 ; thus Dom(δ2) = D2

and δ2 := ∂2|D2 . A similarly definition of δ1 and Dom(δ1) can be given.
We set

Bm := Bm ∩ Dom(δ1) ∩ Dom(δ2) ≡ Bm ∩ D1 ∩ D2. (6.51)

We endow Bm with the norm

‖�‖Bm
:= ‖�‖Bm

+ ‖δ1�‖Bm
+ ‖δ2�‖Bm

. (6.52)

Proposition 6.53. Bm is holomorphically closed in B∗(cyl(∂X),Fcyl).
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Proof. We already know that the Banach algebra Bm is holomorphically closed in
the C∗-algebra

B∗(cyl(∂X),Fcyl). On the other hand, we know that Dom(δ1) and Dom(δ2) are
holomorphically closed in Bm. Thus Bm is holomorphically closed in B∗(cyl(∂X),
Fcyl) as required. ��

6.5.4 The subalgebra Am ⊂ A∗(X,F). Next we consider the Banach algebra
Am(X,F) which is certainly contained in C∗

Γ(H), given that Ac(X,F) is contained in
CΓ,c(H). Consider again δmax

j and restrict it to a derivation with values in Am(X,F ):

δ2 : D2 → Am(X,F )

with D2 = {a ∈ Dom δ
max
2 | δmax

2 a ∈ Am(X,F )} and similarly for δ1. We obtain in
this way closed derivations δ1 and δ2 with domains Domδ1 = D1 and Domδ2 = D2.
We set

Am := Am ∩ Dom(δ1) ∩ Dom(δ2) ∩ π−1(Bm). (6.54)

We endow the algebra Am, which is a subalgebra of A∗, with the norm

‖k‖Am
:= ‖k‖Am

+ ‖δ1k‖Am
+ ‖δ2k‖Am

+ ‖π(k)‖Bm
. (6.55)

It is an easy exercise to show that Am is a Banach algebra.

6.5.5 The modular Schatten extension We can finally state one of the basic
results of this whole section:

Proposition 6.56. The map π sends Am into Bm ; Jm is an ideal in Am and we
have a short exact sequence of Banach algebras

0 → Jm → Am
π−→ Bm → 0. (6.56)

The sections s and t restricts to bounded sections s : Bm → Am and t : Am → Jm.

We give a proof of this Proposition in Section 10.3

6.6 Isomorphisms of K-groups. Let 0 → J → A
π−→ B → 0 a short exact

sequence of Banach algebras. Recall that K0(J) := K0(J+, J) ∼= Ker(K0(J+) → Z)
and that K(A+, B+) = K(A,B). For the definition of relative K-groups we refer, for
example, to [Bla98,HR00,LMP09b]. Recall that a relative K0-element for A π−→ B
with unital algebras A,B is represented by a triple (P,Q, pt) with P and Q idem-
potents in Mk×k(A) and pt ∈ Mk×k(B) a path of idempotents connecting π(P ) to
π(Q). The excision isomorphism

αex : K0(J) −→ K0(A,B) (6.58)

is given by αex([(P,Q)]) = [(P,Q, c)] with c denoting the constant path (this is not
necessarily the 0-path, given that we are taking J+). In particular, from the short
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exact sequence given by the Wiener–Hopf extension of B∗ ≡ B∗(cyl(∂X),Fcyl), see
(4.12), we obtain the isomorphism:

αex : K0(C∗(X,F)) 
−→ K0(A∗, B∗) (6.59)

whereas from the short exact sequence of subalgebras (6.56) we obtain the “smooth”
excision isomorphism

αs
ex : K0(Jm) 
−→ K0(Am,Bm). (6.60)

On the other hand, since Jm is a smooth subalgebra of C∗(X,F) (i.e. it is dense
and holomorphically closed), we also have that the inclusion ι : Jm ↪→ C∗(X,F)
induces an isomorphism ι∗ : K0(Jm) 
−→ K0(C∗(X,F)). Consider the homomorphism
ι∗ : K0(Am,Bm) → K0(A∗, B∗) induced by the inclusion. We have a commutative
diagram

K0(Jm)
αs

ex ��

ι∗
��

K0(Am,Bm)

ι∗
��

K0(C∗(X,F))
αex �� K0(A∗, B∗)

(6.61)

and since three of the four arrows are isomorphisms we conclude that ι∗ :
K0(Am,Bm) → K0(A∗, B∗) is also an isomorphism. In particular,

K0(A∗, B∗) ∼= K0(C∗(X,F)) ∼= K0(Jm) ∼= K0(Am,Bm). (6.62)

6.7 Notation. From now on we shall fix the dimension of the leaves, equal to
2n, and set

J := Jm, A := Am and B := Bm (6.63)

with m = 2n+ 1. The short exact sequence in (6.56), for such m, is denoted simply
as

0 → J → A → B → 0. (6.64)

This is the intermediate subsequence, between 0 → Jc → Ac → Bc → 0 and 0 →
C∗(X,F) → A∗(X,F) → B∗(cyl(∂X),Fcyl) → 0, that we have mentioned in the
introductory remarks in Section 5.1.

7 C∗-index Classes: Excision

7.1 Geometric set-up and assumptions. Let (X0,F0), X0 = M̃ ×Γ T, be a
foliated bundle with boundary. Let (X,F) be the associated foliated bundle with
cylindrical ends. We assume that M̃ is of even dimension and consider the Γ-equi-
variant family of Dirac operators D ≡ (Dθ)θ∈T introduced in Section 3.2. Then D
splits into a direct sum D+ ⊕D−. We denote as before by D∂ ≡ (D∂

θ )θ∈T the bound-
ary family obtained from D+, and by Dcyl the operator on the cylindrical foliated
manifold (cyl(∂X),Fcyl) induced by D∂ ; Dcyl is R ×Γ-equivariant. From now on we
shall make the following fundamental
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Assumption: There exists ε > 0 such that ∀θ ∈ T

L2 − spec(D∂
θ ) ∩ (−ε, ε) = ∅. (7.1)

For specific examples where this assumption is satisfied, see [LP05].

7.2 Index classes in the closed case. Let (Y,F), Y = Ñ ×Γ T, be a closed
foliated bundle. We need to recall how in the closed case we can define an index
class Ind(D) ∈ K∗(C∗(Y,F)).

7.2.1 The Connes–Skandalis projection. First recall that given vector bundles
E and F on Y with lifts ̂E, ̂F on Ñ × T, we can define the space of Γ-compactly
supported pseudodifferential operators of order m, denoted here Ψm

c (G;E,F ). An
element P ∈ Ψm

c (G;E,F ) should be thought of as a Γ-equivariant family of pseudo-
differential operators, (P (θ))θ∈T with Schwartz kernel KP , a distribution on G, of
compact support. See [MoN96] and [BP09] for more details.

The space Ψ∞
c (G;E,E) :=

⋃

m∈Z
Ψm

c (G;E,E) is a filtered algebra. Moreover,
assuming E and F to be hermitian and assigning to P its formal adjoint P ∗ =
(P ∗

θ )θ∈T gives Ψ∞
c (G;E,E) the structure of an involutive algebra; the formal adjoint

of an element P ∈ Ψm
c (G;E,F ) is in general an element in Ψm

c (G;F,E).

Consider now a Z2-graded odd Dirac operator D = (Dθ)θ∈T Dθ =
( 0 D−

θ
D+

θ 0
)

,

(D−
θ )∗ = D+

θ acting on a Z2-graded vector bundle E = E+ ⊕ E−. Using
the pseudodifferential calculus, one can prove that D+ admits parametrix Q ∈
Ψ−1

c (G;E−, E+):

QD+ = Id − S+, D+Q = Id − S− (7.2)

with remainders S− and S+ that are in C∞
c (G, (s∗E±)∗ ⊗ r∗E±) ≡ C∞

c (Y,F ;E±).
All of this is carefully explained in [MoN96]; even more details are given in [BP09].
Consider the projection

PQ :=
(

S2
+ S+(I + S+)Q

S−D+ I − S2−

)

. (7.3)

See, for example, [Con94] (II.9.α) and [CM98] (p. 353) for motivation. Set

e0 :=
(

1 0
0 0

)

, e1 :=
(

0 0
0 1

)

. (7.4)

Also denote by C∞
c (Y,F ;E)++ the algebra generated by e0, e1 and C∞

c (Y,F ;E). It
is isomorphic to the direct sum C∞

c (Y,F ;E)⊕Ce0 ⊕Ce1 as a linear space. Note that
there exists a splitting short exact sequence: 0 → C∞

c (Y,F ;E) → C∞
c (Y,F ;E)++ π−→

Ce0 ⊕ Ce1 → 0, which naturally contains a subsequence 0 → C∞
c (Y,F ;E) →

C∞
c (Y,F ;E)+ → C → 0, where C∞

c (Y,F ;E)+ is the algebra with unit 1 = e0 ⊕ e1
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adjoined. Hence, comparing the induced exact sequences of K0-groups, one has the
following isomorphism:

K0(C∞
c (Y,F ;E)) := ker[K(C∞

c (Y,F ;E)+) → K0(C)]
∼= ker[K(C∞

c (Y,F ;E)++) → K0(Ce0 ⊕ Ce1)].

Now it is easy to verify that PQ and e1 are idempotents in C∞
c (Y,F ;E)++. In

fact they belong to C∞
c (Y,F ;E) ⊕ Ce1 ⊂ C∞

c (X,F ;E)++ (but they are not in
C∞

c (Y,F ;E)+); moreover it is clear that π(PQ) = e1 = π(e1). Thus we obtain
a class [PQ] − [e1] ∈ K0(C∞

c (Y,F ;E)). Notice that this class is well defined in
K0(C∞

c (Y,F ;E)), independent of the choice of the Γ-compactly supported parame-
trix. Recall now that there is an inclusion C∞

c (Y,F ;E) ↪→ C∗(Y,F ;E) ≡ K(E); the
Connes–Skandalis index class is the image of [PQ] − [e1] under the induced homo-
morphism K0(C∞

c (Y,F ;E)) → K0(C∗(Y,F ;E)). Unless strictly necessary we don’t
introduce a new notation for the Connes–Skandalis index class in K0(C∗(Y,F ;E)).

7.2.2 The graph projection. If we give up the requirement that the elements in
our projection are of Γ-compact support then we have more representative for the
index class. One which is particularly useful in computations of explicit index for-
mulae is the index class defined by the family eD = (eD,θ)θ∈T of projections onto the
graph (of the closure) of D+

θ . (With common abuse of notation we do not introduce
a new symbol for closures.) The projection eD is explicitly given by

eD =
(

(I +D−D+)−1 (I +D−D+)−1D−

D+(I +D−D+)−1 D+(I +D−D+)−1D−

)

. (7.5)

Let s be the grading operator on E. Define

êD := eD − e1. (7.6)

It is useful to point out, see [MoN96, p. 514], that

êD = (s +D)−1. (7.7)

Notice that (s +D) is invertible, indeed

(s +D)−1 = (s +D)(1 +D2)−1. (7.8)

One proves by finite propagation speed techniques that êD is in C∗(Y,F ;E), see
[MoN96] (Section 7) for details; thus the following class is well defined

[eD] − [e1] ∈ K0(C∗(Y,F ;E)). (7.9)

Proposition 7.10. The Connes–Skandalis index class equals the class defined by
the graph projection:

[PQ] − [e1] = [eD] − [e1] in K0(C∗(Y,F ;E)). (7.11)
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For a proof see [MoN96], where two elements u, v ∈ C∗(Y,F ;E)++ are explicitly
defined such that uv = PQ and vu = eD. Here C∗(Y,F ;E)++ denotes as before the
C∗-algebra generated by e0, e1 and C∗(Y,F ;E).

We define the index class associated to D, denoted Ind(D), as this common value,
thus

Ind(D) := [PQ] − [e1] = [eD] − [e1] ∈ K0(C∗(Y,F ;E).

Remark. One could also introduce the Wassermann projection WD, involving the
heat kernel of the associated Laplacian, see [CM98]. One can prove that [PQ]− [e1] =
[eD] − [e1] = [WD] − [e1] in K0(C∗(Y,F ;E)).

7.3 The index class Ind(D). We now go back to our foliated bundle with
boundary (X0,F0) and associated foliated bundle with cylindrical ends (X,F). It is
proved in [LP05] that given D+ = (D+

θ )θ∈T , a Γ-equivariant family with invertible
boundary family (D∂

θ )θ∈T , there exists a parametrix Q for D+ with remainders S−
and S+ in C∗(X,F):

QD+ = Id − S+, D+Q = Id − S−, S± ∈ K(E) ≡ C∗(X,F). (7.12)

Thus, there is a well defined index class in K0(C∗(X,F)), fixed by the Connes–
Skandalis projection PQ. The construction explained in [LP05] is an extension to
the foliated case of the parametrix construction of Melrose, using heavily b-calcu-
lus techniques; needless to say, all the complications in the foliated context go into
dealing with the non-compactness of the leaves.

In Section 10.4 we sketch an elementary treatment of the parametrix construc-
tion for Dirac operators on manifolds with cylindrical ends, using one idea from the
b-calculus but nothing more than the functional calculus on complete manifolds; in
particular, we do not use any pseudodifferential calculus. In any case, either via the
b-pseudodifferential calculus or using this elementary approach, we have the follow-
ing fundamental result, valid for a Dirac operator on an even dimensional manifold
with cylindrical ends with invertible boundary operator:

Theorem 7.13. SetG=(I+D−D+)−1D− andG′ =−χ((D+
cyl)

−1(I+D+
cylD

−
cyl)

−1)χ,
with χ a smooth approximation of the characteristic function of (−∞, 0]×∂X0. Then
the operator Q = G − G′ is an inverse of D+ modulo m-Schatten class operators,
with m > dimM.

More generally one can prove the following:

Theorem 7.14. Let D ≡ (Dθ)θ∈T be a Γ-equivariant family of odd Dirac opera-
tors on a foliated bundle with cylindrical ends (X,F) ≡ (Ṽ ×Γ T,F). Assume (7.1).
If dimM is even and m > dimM, then there exists Q ∈ L(E), S± ∈ Im(X,F) such
that

I −QD+ = S−, I −D+Q = S+. (7.15)
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We discuss the proof of these two Theorems in Section 10.4.

Definition 7.16. The index class associated to a Dirac operator D = (Dθ)θ∈T

satisfying assumption (7.1) is the Connes–Skandalis index class [PQ] − [e1] associ-
ated to the parametrix Q appearing in (7.15). It is an element in K0(Im(X,F)) ∼=
K0(C∗(X,F)) for sufficiently large m and denoted by Ind(D).

7.4 The relative index class Ind(D, D∂). Let (X,F) be a foliated bundle
with cylindrical ends. Let (cyl(∂X),Fcyl) be the associated foliated cylinder and
recall the Wiener–Hopf extension

0 → C∗(X,F) → A∗(X; F) π−→ B∗(cyl(∂X),Fcyl) → 0

of the C∗-algebra B∗(cyl(∂X),Fcyl) of translation invariant operators. We shall be
concerned with the K-group K∗(C∗(X,F)) and the relative group K∗(A∗(X; F),
B∗(cyl(∂X),Fcyl)), often denoted simply by K∗(A∗, B∗),. Recall that a relative ele-
ment in K0(A∗, B∗) is represented by a triple (P,Q, pt) with P and Q idempotents
in Mn×n(A∗) and pt ∈ Mn×n(B∗) a path of idempotents connecting π(P ) to π(Q).

Denote by Dcyl the Dirac operator induced by D∂ on the cylinder. Consider the
triple

(eD, e1, pt), t ∈ [1,+∞], with pt :=
{

etDcyl if t ∈ [1,+∞)
e1 if t = ∞.

(7.17)

Proposition 7.18. Let (X,F) be a foliated bundle with cylindrical end as above.
Consider the Dirac operator on X, D = (Dθ)θ∈T . Assume (7.1). Then the graph
projection eD defines through (7.17) a relative class in K0(A∗, B∗).

We call the class defined above a relative index class and denote it by

Ind(D,D∂) ∈ K0(A∗, B∗).

Note that we could also employ the Wassermann projection in order to define this
class; since we shall not need it we omit the (easy) details.

We shall give a proof of this Proposition in Section 10.5.

7.5 Excision for C∗-index classes. The main goal of this subsection is to
state the following

Proposition 7.19. Let D = (Dθ)θ∈T be a Γ-equivariant family of Dirac operators
on a foliated manifold with cylindrical ends X = Ṽ ×Γ T. Assume that Ṽ is even
dimensional. Assume (7.1). Let αex : K0(C∗(X,F)) → K0(A∗, B∗) be the excision
isomorphism for the short exact sequence

0 → C∗(X,F) → A∗(X,F) → B∗(cyl(∂X),Fcyl) → 0.

Then

αex ( Ind(D) ) = Ind(D,D∂). (7.20)

We give a proof of this Proposition in Section 10.6.
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8 Smooth Pairings

In the previous Section we have proved the existence of C∗-algebraic index classes.
In this Section we shall prove that we can extend the cocycles τGV and (τ r

GV , σGV )
from Jc and Ac

πc−→ Bc to the smooth subalgebras J and A
π−→ B and that we can

simultaneously smooth-out our index classes and define them directly in 0 → J →
A

π−→ B → 0. Once this will be achieved, we will be able to pair directly [τGV ] with
Ind(D) and [τ r

GV , σGV ] will Ind(D,D∂). This is, as often happens in higher index
theory, a rather crucial point.

8.1 Smooth index classes.

Proposition 8.1. Let D = (Dθ)θ∈T and X = Ṽ ×Γ T as above; then the Connes–
Skandalis projection PQ belongs to Jm ⊕ Ce1 with m > dim Ṽ .

Proposition 8.2. Let eDcyl be the graph projection for the translation invariant Di-
rac familyDcyl = (Dcyl

θ )θ∈T on the cylinder. Then eDcyl ∈ Bm⊕Ce1 withm > dim Ṽ .

More generally, ∀s ≥ 1 we have es(Dcyl) ∈ Bm ⊕ Ce1 with m > dim Ṽ .

Proposition 8.3. Let eD be the graph projection on X. Then eD ∈ Am ⊕Ce1 with
m > dim Ṽ .

We give a detailed proof of these three Propositions in Section 10.7.
As a consequence of these three statements we obtain easily the first two items

of the following

Theorem 8.4. Consider the modular Schatten extension of Section 6.7, 0 → J →
A → B → 0.

(1) The Connes–Skandalis projection defines a smooth index class Inds(D) ∈
K0(J); moreover, if ι∗ : K0(J) → K0(C∗(X,F)) is the isomorphism induced by
the inclusion ι, then ι∗(Inds(D)) = Ind(D).

(2) The graph projections on (X,F) and (cyl(∂X),Fcyl) define a smooth rel-
ative index class Inds(D,D∂) ∈ K0(A,B); moreover, if ι∗ : K0(A,B) →
K0(A∗, B∗) is the isomorphism induced by the inclusion ι, see (6.61), then
ι∗(Inds(D,D∂)) = Ind(D,D∂).

(3) Finally, if αs
ex : K0(J) → K0(A,B) is the smooth excision isomorphism, then

αs
ex(Inds(D)) = Inds(D,D∂) in K0(A,B). (8.5)

Proof. The fact that the Connes–Skandalis projection PQ defines an index class
Inds(D) ∈ K0(J) such that ι∗(Inds(D)) = Ind(D) in K0(C∗(X,F)), is a direct con-
sequence of Proposition 8.1. Similarly, the fact that the graph projections on (X,F)
and (cyl(∂X),Fcyl) define a smooth relative index class Inds(D,D∂) ∈ K0(A,B)
such that ι∗(Inds(D,D∂)) = Ind(D,D∂) in K0(A∗, B∗) is a direct consequence of
Proposition 8.2 and Proposition 8.3. Regarding the third statement, namely that
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αs
ex(Inds(D)) = Inds(D,D∂), we argue as follows. Recall that we have a commuta-

tive diagram where all arrows are isomorphism:

K0(J)
αs

ex ��

ι∗
��

K0(A,B)

ι∗
��

K0(C∗(X,F))
αex �� K0(A∗, B∗)

(8.6)

Assume, by contradiction, that αs
ex(Inds(D)) − Inds(D,D∂) �= 0 in K0(A,B). Then

ι∗(αs
ex(Inds(D))) − ι∗(Inds(D,D∂)) �= 0, given that ι∗ is an isomorphism. By the

commutativity of the diagram we thus have αex(ι∗(Inds(D)))− ι∗(Inds(D,D∂)) �= 0.
Since we know that ι∗(Inds(D)) = Ind(D) and ι∗(Inds(D,D∂)) = Ind(D,D∂) we
conclude that αex(Ind(D)) − Ind(D,D∂)) �= 0 and this contradicts the excision for-
mula (7.20) we have already proved. ��
8.2 Extended cocycles. We begin by recalling the definition of the pairing
between K-groups and cyclic cohomology groups. First we state it in the absolute
case, explaining the pairing between the K0-group and the cyclic cohomology group
of even degree. Here we shall follow the definition in [Con94] p. 224 rather than the
one in [Con85] p.324; notice that the difference in these two definitions is only in
the normalizing constants (and more precisely in powers of 2πi).

Let A be an arbitrary Banach algebra with unit. Given a projection e ∈ Mn×n(A)
and a continuous cyclic cocycle τ : A⊗(2p+1) → C of degree 2p, the pairing 〈, 〉 :
K0(A) ×HC2p(A) → C is defined to be:

〈[e], [τ ]〉 =
1
p!

∑

1≤i0,i1,··· ,i2p≤n

τ(ei0i1 , ei1i2 , · · · , ei2pi0),

where eij denotes the (i, j)-component of the idempotent e. In the sequel we denote
the summation in the right hand side simply by τ(e, . . . , e). This also satisfies

〈[e], [τ ]〉 = 〈[e], [Sτ ]〉 (8.7)

where Sτ is the result of the S-operation in cyclic cohomology, see [Con85] and
[Con94, p. 193] as well.

If A is not unital, we take the algebra A+ with unit adjoined. We then extend τ to
a multilinear map τ+ : (A+)⊗(2p+1) → C in such a way that τ+(a0, a1, . . . , a2p) = 0
if ai ∈ C1 ⊂ A+ for some 0 ≤ i ≤ 2p. It is easily verified that τ+ is again a cyclic
cocycle on A+. We shall often suppress the + in the notation of τ+ and denote it
simply by τ. Given [e1] − [e0] ∈ K0(A) (note that ei (i = 0, 1) is a projection in a
matrix algebra of A+ of a certain size), the pairing between K0(A) and HC2p(A) is
defined by the following formula:

〈[e1] − [e0], [τ ]〉 =
1
p!

(τ(e1, . . . , e1) − τ(e0, . . . , e0)) :=
1
p!

[τ(ei, . . . , ei)]
1
0 .



1768 H. MORIYOSHI AND P. PIAZZA GAFA

Next, recall the definition of relative K0-group: if A and B are unital Banach
algebras and π : A → B denotes a unital bounded homomorphism, then the relative
group K0(A,B) is the abelian group obtained from equivalence classes of triplets
(e1, e0, pt) with e0 and e1 projections in a matrix algebra of A, say e0, e1 ∈ Mn×n(A),
and pt a continuous family of projections in Mn×n(B), t ∈ [0, 1], satisfying π(ei) = pi

for i = 0, 1. Recall also from Section 5.3 that (τ, σ) is a relative cyclic cocycle of
degree 2p if bτ = π∗σ and bσ = 0 with τ ∈ C2p

λ (A) and σ ∈ C2p+1
λ (B). Then the

pairing K0(A,B) ×HC2p(A,B) → C is defined by

〈[(e1, e0, pt)], [(τ, σ)]〉 =
1
p!

(

[τ(ei, . . . , ei)]
1
0 − (2p+ 1)

∫ 1

0
σ([ṗt, pt], pt, . . . , pt)dt

)

.

(8.8)

One can prove, thanks to the transgression formula of Connes–Moscovici [CM98,
p. 354], that this formula is well defined. Notice that we take a piecewise C1-family
pt in the above formula. Here we need to make the following remark: the family
pt in the triplet (e1, e0, pt) is, by definition, just a continuous family of projections;
thus we need to replace it by a piecewise C1-family in order to obtain a well-defined
pairing. In fact, it is always possible to do this without changing the homotopy class
of pt and, thus, the relative class of (e1, e0, pt). This follows from the following result:
given a Banach algebra A and projections pi (i = 0, 1) in A with ‖p1 − p0‖ < 1,
there exists a C1-path pt of projections connecting p0 with p1 and such that the
homotopy class of pt is uniquely determined. See [Bla98, section 4.6]. Taking this as
granted, we divide a given continuous path of projections into the composition of
small subpaths in such a way that the end points of each small subpath are close
enough, namely the distance is less than 1. Then we replace each small subpath by a
C1-path, thanks to the result just stated; the resulting homotopy class is the same as
the one of the original continuous path. In such a way one can replace a continuous
family of projections by a piecewise C1-family without changing the relative class in
K-theory.

Observe now that [τGV ] ∈ HC2(Jc) and [(τ r
GV , σGV )] ∈ HC2(Ac, Bc) can be

paired with elements in K0(Jc) and K0(Ac, Bc) respectively. As in [MoN96], and
with the pairing with the index classes in mind, we set

Sp−1τGV := τ2p and
(

Sp−1τ r
GV ,

3
2p+ 1

Sp−1σGV

)

:= (τ r
2p, σ2p+1) (8.9)

with S denoting the S-operation introduced in [Con85]. Recall the formula bSφ =
q+1
q+3Sbφ for a cyclic cochain of degree q (see [Con85], p. 322). We then have

bτ r
2p = bSp−1τ r

GV =
3

2p+ 1
Sp−1bτ r

GV =
3

2p+ 1
Sp−1π∗σGV = π∗σ2p+1

and obtain in this way cyclic cohomology classes

[τ2p] ∈ HC2p(Jc) and [(τ r
2p, σ2p+1)] ∈ HC2p(Ac, Bc). (8.10)
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Let n,m be integers such as 2n = dimension of Ṽ and m = 2n+1. Thus 2n is equal
to the dimension of leaves in X = Ṽ ×Γ S

1.

Proposition 8.11. Let J := Jm, Then the cocycle τ2n extends to a bounded cyclic
cocycle on J.

Proof. By the definition of the S operation in cyclic cohomology, we know that
τ2n(k0, . . . , k2n) is expressed, up to a multiplicative constant, as the sum of elements
of the following type

ωΓ(k0 · · · ki−1 δ1(ki)ki+1 · · · kj−1 δ2(kj)kj+1 · · · k2n)
−ωΓ(k0 · · · ki−1 δ2(ki)ki+1 · · · kj−1 δ1(kj)kj+1 · · · k2n) ;

We know, see Proposition 6.12, that ωΓ is bounded with respect to the I1-norm;
moreover, the product appearing in the above formula is bounded from Jm

⊗m to I1.
This establishes the Proposition. ��

Proposition 8.12. The eta cocycle σm extends to a bounded cyclic cocycle on Bm.

Proposition 8.13. Assume that 2p = degSp−1τ r
GV > q with q = m(m− 1)2 − 2 =

8n3 + 4n2 − 2. Then the regularized Godbillon–Vey cochain τ r
2p = Sp−1τ r

GV extends
to a bounded cyclic cochain on Am.

We give a detailed proof of these two propositions in Section 10.8.
Fix m = 2n + 1 with 2n equal to dimension of the leaves and set as usual

J := Jm, A := Am, B := Bm. Using the above three Propositions we see that there
are well defined classes

[τ2p] ∈ HC2p(J) for p ≥ n and [(τ r
2p, σ2p+1)] ∈ HC2p(A,B) for 2p > q.

(8.14)

9 Index Theorems

9.1 The higher APS index formula for the Godbillon–Vey cocycle. We
now have all the ingredients to state and prove a APS formula for the Godbillon–Vey
cocycle. Let us summarize our geometric data.

Geometric data 9.1. We have a foliated bundle with boundary (X0,F0), X0 =
M̃ ×Γ T. We assume that the dimension of M̃ is even and that all our geometric
structures (metrics, connections, etc) are of product type near the boundary. We
also consider (X,F), the associated foliation with cylindrical ends. We are given a
Γ-invariant Z2-graded hermitian bundle ̂E on the trivial fibration M̃ × T, endowed
with a Γ-equivariant vertical Clifford structure along M̃. We have a resulting Γ-equi-
variant family of Dirac operators D = (Dθ).
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We assume the boundary family to be invertible. Fix m = 2n+1 with 2n the dimen-
sion of leaves and consider J := Jm, A := Am, B := Bm. We have proved that there
are well defined smooth index classes Inds(D) ∈ K0(J), Inds(D,D∂) ∈ K0(A,B),
where the first is given in terms of a parametrix Q and the second given in term
of the graph projections eD and eDcyl . Let T = S1; consider τ2p := Sp−1τGV and
(τ r

2p, σ2p+1) := (Sp−1τ r
GV ,

3
2p+1S

p−1σGV ). The following is a direct consequence of
Section 8.2.

Proposition 9.2. There are well defined additive maps:

〈 · , [τ2p]〉 : K0(J) → C, p ≥ n (9.3)

〈 · , [(τ r
2p, σ2p+1)]〉 : K0(A,B) → C, 2p > q :=m(m−1)2−2, m = 2n+ 1. (9.4)

Definition 9.5. Let (X0,F0), X0 = M̃ ×Γ S
1, as above and assume (7.1). The

Godbillon–Vey higher index is the number

IndGV (D) := 〈Inds(D), [τ2n]〉. (9.6)

with 2n equal to the dimension of the leaves.

Notice that, in fact, IndGV (D) := 〈Inds(D), [τ2p]〉 for each p ≥ n, see (8.7).
The following theorem is the main result of this paper:

Theorem 9.7. Let (X0,F0), with X0 = M̃×ΓS
1, be a foliated bundle with bound-

ary and let D = (Dθ)θ∈S1 denote a Γ-equivariant family of Dirac type operators as
in the Geometric Data 9.1.. Assume (7.1) on the boundary family and fix an integer
p such that 2p > q. Then the following two equalities hold

IndGV (D) = 〈Inds(D,D∂), [(τ r
2p, σ2p+1]〉 =

∫

X0

AS ∧ ωGV − ηGV (9.8)

with

ηGV :=
(2p+ 1)

p!

∫ ∞

0
σ2p+1([ṗt, pt], pt, . . . , pt)dt, pt := etDcyl , (9.9)

defining the Godbillon–Vey eta invariant of the boundary family, ωGV the Godbillon–
Vey differential 3-form introduced in Section 2.5 and AS denoting the form induced
on X0 by the (Γ-invariant) Atiyah–Singer form for the fibration M̃ × S1 → S1 and
the Clifford bundle ̂E.

Notice that using the Fourier transformation the Godbillon–Vey eta invariant
ηGV does depend only on the boundary family D∂ ≡ (D∂

θ )θ∈S1 .

Proof. For notational convenience we set τ2p ≡ τGV , τ
r
2p ≡ τ r

GV and σ2p+1 ≡ σGV .
We also write αex instead of αs

ex. The left hand side of formula (9.8) is, by defi-
nition, the pairing 〈[PQ, e1], τGV 〉 with PQ the Connes–Skandalis projection. Recall
that αex([PQ, e1]) is by definition [PQ, e1, c], with c the constant path with value e1.
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Since the derivative of the constant path is equal to zero and since τ r
GV |J = τGV ,

using the obvious extension of (5.55), we obtain at once the crucial relation

〈αex([PQ, e1]), [(τ r
GV , σGV )]〉 = 〈[PQ, e1], [τGV ]〉. (9.10)

Now we use the excision formula, asserting that αex([PQ, e1]) is equal, as a relative
class, to [eD, e1, pt] with pt := etDcyl . Thus

〈[eD, e1, pt], [(τ r
GV , σGV )]〉 = 〈[PQ, e1], [τGV ]〉

which is the first equality in (9.8) (in reverse order). Using also the definition of the
relative pairing we can summarize our results so far as follows:

IndGV (D) := 〈Inds(D), [τGV ]〉
≡ 〈[PQ, e1], [τGV ]〉
= 〈αex([PQ, e1]), [(τ r

GV , σGV )]〉
= 〈[eD, e1, pt], [(τ r

GV , σGV )]〉
:=

1
p!
τ r
GV (eD − e1) +

(2p+ 1)
p!

∫ +∞

1
σGV ([ṗt, pt], pt, . . . , pt)dt

≡ 1
p!
τ r
GV (êD) +

(2p+ 1)
p!

∫ +∞

1
σGV ([ṗt, pt], pt, . . . , pt)dt

with êD = (D + s)−1. Notice that the convergence at infinity of
∫ +∞
1 σGV ([ṗt, pt],

pt, . . . , pt)dt follows from the fact that the pairing is well defined. Replace D by
uD, u > 0. We obtain, after a simple change of variable in the integral,

(2p+ 1)
p!

∫ +∞

u
σGV ([ṗt, pt], pt, . . . , pt, pt)dt = −〈Inds(uD), [τGV ]〉 +

1
p!
τ r
GV (êuD).

But the absolute pairing 〈Inds(uD), [τGV ]〉 in independent of u and of course equal
to IndGV (D); thus

(2p+ 1)
p!

∫ +∞

u
σGV ([ṗt, pt], pt, . . . , pt, pt)dt = − IndGV (D) +

1
p!
τ r
GV (êuD).

The second summand of the right hand side can be proved to converge as u ↓ 0 to
∫

X0
AS∧ωGV (this employs Getzler rescaling exactly as in [MoN96]). Thus the limit

(2p+ 1)
p!

lim
u↓0

∫ +∞

u
σGV ([ṗt, pt], pt, . . . , pt, pt)dt

exists9 and is equal to
∫

X0
AS ∧ ωGV − IndGV (D). The theorem is proved ��

9 The situation here is similar to the one for the eta invariant in the seminal paper of Atiyah–
Patodi–Singer; the regularity there is a consequence of their index theorem.
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Remark 9.11. The path pt = etDcyl is a C1-family of projections. In fact, one can
easily obtain

ṗt =
d

dt

(

s + tDcyl
)−1

= −
(

s + tDcyl
)−1

Dcyl
(

s + tDcyl
)−1

(9.12)

where we have used formula (7.7) for Dcyl.

9.2 The classic Atiyah–Patodi–Singer index theorem. The classic Ati-
yah–Patodi–Singer index theorem on manifolds with cylindrical ends is obtained
proceeding as above, but pairing the index class with the 0-cocycle τ0 and the rel-
ative index class with the relative 0-cocycle (τ r

0 , σ1). (If we use the Wassermann
projection we don’t need to use the S operation; if we use the graph projection then
we need to consider τ2n := Snτ0 and σ2n+1 := Snσ1 with 2n equal to the dimension
of the manifold.) Equating the absolute and the relative pairing, as above, we obtain
an index theorem. It can be proved that this is precisely the Atiyah–Patodi–Singer
index theorem on manifolds with cylindrical ends; in other words, the eta-term we
obtain from the relative pairing is precisely the Atiyah–Patodi–Singer eta invariant
for the boundary operator. In this computation the explicit formula for ṗt, given in
(9.12), is employed. As we have pointed out in the Introduction this approach to the
classic APS index theorem was announced by the first author in [Mor98].

Remark. This approach to the classic APS index formula is also a Corollary of
the main result of the December 2009 preprint of Lesch, Moscovici and Pflaum
[LMP09a], that is, the computation of the Connes–Chern character of the relative
homology cycle associated to a Dirac operator on a manifold with boundary in terms
of local data and a higher eta cochain for the commutative algebra of smooth func-
tions on the boundary (see also [Get93] and [Wu92]). Needless to say, the results in
[LMP09a] go well beyond the computation of the index; however, they don’t appear
to have much in common with the non-commutative results presented in this paper.

9.3 Gluing formulae for Godbillon–Vey indices. A direct application of
our formula is a gluing formula for Godbillon–Vey indices: if Y := Ñ ×Γ T is a
closed foliated bundle and Ñ = Ñ1 ∪H Ñ2 with H a Γ-invariant hypersurfaces, then
we obtain

Ñ ×Γ T =: Y = X1 ∪Z X
2 := (Ñ1 ×Γ T ) ∪(H×ΓT ) (Ñ2 ×Γ T ).

Under the invertibility assumption (7.1) and assuming all geometric structures to
be of product type near H, we have, with obvious notation,

IndGV (D) = IndGV (D1) + IndGV (D2).
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9.4 The Godbillon–Vey eta invariant. Let Y = Ñ ×Γ T be a closed foliated
bundle and let D = (Dθ)θ∈T be an equivariant Dirac family satisfying assumption
(7.1). We do not assume that Y is the boundary of a foliated bundle with bound-
ary; in particular, we don’t assume that D arises a boundary family. Then, thanks
to Proposition 8.12, we know that for ε > 0 the following integral is well defined
(2n+1)

n!

∫ 1/ε
ε σ2n+1([ṗt, pt], pt, . . . , pt, pt)dt with 2n − 1 equal to the dimension of the

leaves of Y.
If the integral converges as ε ↓ 0 then its value defines the Godbillon–Vey eta

invariant of the foliated bundle Ñ ×Γ T. This is a C∗-algebraic invariant (precisely
because we are assuming (7.1)).

One might speculate that there is a corresponding von Neumann invariant,
defined in the same way, but without the assumption (7.1). This is indeed the sit-
uation for the von Neumann eta invariant of a measured foliation; it exists without
any invertibility assumption on the operator.

10 Proofs

In this Section we have collected all long proofs. On the one hand this results in
some repetitions leading to one or two additional pages; on the other hand in this
way we were able to present the main ideas of this paper without long and technical
interruptions.

10.1 Proof of Lemma 4.7. Recall that we want to prove that there exists a
bounded linear map s : B∗ → L(E) extending sc : Bc → L(E), sc(�) := χ0�χ0, and
that the composition ρ = πs induces an injective C∗-homomorphism ρ : B∗ → Q(E).
Our first task is to make sense of the operators appearing in the statement of the
Lemma. Thus consider the function χ0 and its lift to the covering X̃ := Ṽ × T,
which will be still denoted by χ0. Consider the family of operators induced by the
multiplication operator by χ0. To be precise this consists of the multiplication oper-
ators on the Hilbert spaces L2(Ṽ × {θ}), for θ ∈ T, obtained by restriction of χ0 to
Ṽ ×{θ}. Call the resulting family of operators simply the multiplication operator by
χ0 and still denote it by χ0. Similarly, we consider χ0

cyl and the induced multiplica-
tion. Given a translation invariant operator � ∈ Bc, we can consider the compressed
element χ0�χ0 as a Γ-equivariant family of operators acting on the Hilbert spaces
L2(Ṽ × {θ}); in order to define this element rigorously we decompose the family of
Hilbert spaces H = {L2(Ṽ × {θ})}θ∈T as follows: write H as the direct sum

H = H0 ⊕ H−
cyl (10.1)

of families of Hilbert spaces associated to the decomposition (X,F) = (X0,
F0) ∪(∂X0,F−

∂ ) ((−∞, 0] × ∂X0,Fcyl); accordingly χ0�χ0 is represented by a matrix
as
(

0 0
0 χ0�χ0

)

. We shall prove below that χ0�χ0 belongs to L(E) and therefore defines
a class in Q(E). Here observe that χ0�χ0 admits a Γ-equivariant kernel function on
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Ṽ × Ṽ × T for � ∈ Bc. Although it is not continuous, it is certainly a measurable
function.

Sublemma 10.2. Let � ∈ Bc. Then the element χ0�χ0 belongs to L(E).

Proof. Let χε be the function introduced in (4.6) and set σε = χ0 − χε. We may
assume that σε(p) converges to zero for almost every p ∈ X as ε → 0. We often
suppress ε when it is clear from the context. Given � ∈ Bc, we have χ0�χ0 − χ�χ =
σ�χ + χ�σ + σ�σ. Note that σ�χ, χ�σ and σ�σ admit kernel functions that have
Γ-compact support (although, again, they are not continuous). For such a function
k the Γ-Hilbert–Schmidt norm ‖ ‖2 will be defined in Definition 6.1 in Section 6.2.
We have

‖σε�χ‖2
2 ≤ sup

θ∈T

(∫

Ṽθ×Ṽθ

|χΓ(x)σε(x)�(x, x′, θ)|2dxdx′
)

, with Ṽθ ≡ Ṽ × {θ},

which implies ‖σε�χ‖2 → 0 as ε → 0 due to Lebesgue’s dominated convergence the-
orem. A similar argument proves that ‖χ�σε‖2 and ‖σε�σε‖2 also converge to zero.
Now, if k ∈ Cc(G) then, see Proposition 6.4, we know that

‖k‖C∗ ≤ ‖k‖2. (10.3)

This implies that ‖χ0�χ0 − χε�χε‖C∗ → 0 as ε → 0. We thus obtain χ0�χ0 ∈ L(E)
for � ∈ Bc since χε�χε ∈ L(E).

This completes the proof of Sublemma 10.2. ��
We go on establishing a result on the elements of Bc; it will be often used in the

sequel.

Sublemma 10.4. Let � ∈ Bc. Then χλ�(1 − χλ), (1 − χλ)�χλ and [χλ, �] are all of
Γ-compact support on cyl(∂X).

Proof. Recall first that by definition of Bc the support of � is compact on (cyl(∂X)×
cyl(∂X))/R × Γ; observe also that χλ�− �χλ = χλ�(1 − χλ) − (1 − χλ)�χλ, ∀� ∈ Bc.
We can explicitly write down the kernels k1, k2 and k corresponding to χλ�(1 −
χλ), (1 − χλ)�χλ and [χλ, �]. The first two are given by:

k1(y, s, y′, s′, θ) =
{

�(y, y′, s− s′, θ) if s ≤ −λ, s′ ≥ −λ
0 otherwise

(10.5)

k2(y, s, y′, s′, θ) =
{

�(y, y′, s− s′, θ) if s′ ≤ −λ, s ≥ −λ
0 otherwise

(10.6)

whereas the third is obviously given by the relation χλ�− �χλ = χλ�(1 − χλ) − (1 −
χλ)�χλ, viz.

k(y, s, y′, s′, θ) =

⎧

⎨

⎩

�(y, y′, s− s′, θ) if s ≤ −λ, s′ ≥ −λ
−�(y, y′, s− s′, θ) if s′ ≤ −λ, s ≥ −λ
0 otherwise

. (10.7)
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In these formulae y, y′ ∈ ∂M̃, s, s′ ∈ R, θ ∈ T and we have used the translation
invariance of � in order to write �(s, y, s′, y′, θ) ≡ �(y, y′, s − s′, θ). These explicit
formulae establish the sublemma; indeed since � is of R × Γ-compact support it is
immediate to check that the kernels appearing in (10.5), (10.6) and (10.7) are all of
Γ-compact support. ��

Consider now the map sc : Bc → L(E), sc(�) = χ0�χ0, appearing in the state-
ment of Lemma 4.7. The fact that the map sc extends to a bounded linear map
s : B∗ → L(E) is clear; indeed we have

‖sc(�)‖C∗ = ‖χ0�χ0‖C∗ ≤ ‖�‖C∗ .

It remains to show that ρ := πs is a injective and a C∗-algebra homomorphism. For
the latter property observe that ρc := πsc does satisfy ρc(��′) = ρc(�)ρc(�′): indeed,
if �, �′ ∈ Bc then

ρc(��′) = π(χ0��′χ0) = π((χ0�χ0�′χ0) + (χ0�(1 − χ0)�′χ0))
= π((χ0�χ0�′χ0)) + π((χ0�(1 − χ0)�′χ0)) = π(χ0�χ0χ0�′χ0)
= π(χ0�χ0)π(χ0�′χ0) = ρc(�)ρc(�′)

since π((χ0�(1 − χ0)�′χ0)) = 0 given that χ0�(1 − χ0) is of Γ-compact support (we
have used Sublemma 4.10 here). By continuity it follows that ρ(��′) = ρ(�)ρ(�′) for
�, �′ ∈ B∗. The fact that it is a ∗-homomorphism is clear.

Injectiveness is implied at once by the following:

s(B∗(cyl(∂X),Fcyl)) ∩ C∗(X,F ;E) = 0. (10.8)

Let us prove (10.8). First observe that, because of the translation invariance of
the elements in Bc we immediately have that sc(Bc) ∩ Cc(X,F ;E) = 0. Next we
show that sc(Bc) ∩ C∗(X,F ;E) = 0. Suppose the contrary and let a ∈ sc(Bc) ∩
C∗(X,F ;E), a �= 0. Then a = χ0�χ0 for � ∈ Bc and ∃ aj ∈ Cc(X,F ;E) such that
‖aj − a‖C∗ → 0 as j → ∞. The first information tells us that there exists a c ∈ R

+

and y, y′ ∈ ∂M̃ such that a(y, t, y′, t+ c) �= 0 for each t > 0. Take a bump-function
δ(t) at (y, t, y′, t+c) with ‖δ(t)‖L2 = 1. Then, keeping the notation a for the operator
defined by a, we have that for some ε > 0 we have ‖a(δ(t))‖L2 > ε > 0 ∀t > 0. On the
other hand, for each fixed j we also have that ‖aj(δ(t))‖L2 → 0 as t → +∞, given
that aj is an element of Cc(X,F ;E). Write now ‖a(δ(t))‖L2 ≤ ‖(a− aj)(δ(t))‖L2 +
‖aj(δ(t))‖L2 ≤ ‖(a−aj)‖C∗ +‖aj(δ(t))‖L2 . Then, choosing j big enough we can make
the first summand smaller than ε/2. For such a j we can then choose t big enough so
that ‖aj(δ(t))‖L2 is also smaller than ε/2. Summarizing, ε < ‖a(δ(t))‖L2 < ε, a con-
tradiction. Finally, we show that s(B∗)∩C∗(X,F ;E) = 0. Assume the contrary and
let κ ∈ s(B∗)∩C∗(X,F ;E), κ �= 0. Then ∃� ∈ B∗ such that κ = s(�). Choose �j ∈ Bc

such that �j → �; clearly s(�j) = χ0�jχ
0 → κ. Set κj := s(�j), so that ‖κj−κ‖C∗ → 0.

On the other hand there exists aj ∈ Cc(X,F ;E) such that ‖aj − κ‖C∗ → 0. Pro-
ceeding as above we have that there exists an ε > 0 such that ‖κj(δ(t))‖L2 > ε for
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each t > 0. Observe now that ‖κj(δ(t))‖L2 ≤ ‖κj −κ‖C∗ + ‖aj −κ‖C∗ + ‖aj(δ(t))‖L2

and the right hand side can be made smaller than ε by choosing j and t suitably.
Thus, there exists j and t such that ε < ‖κj(δ(t))‖L2 < ε, a contradiction.

The proof of Lemma 4.7 is complete.

10.2 Proof of Proposition 5.52: (τ r
GV , σGV ) is a relative cyclic 2-cocycle.

We shall in fact directly prove the more general Proposition 5.59 and then show
how this Proposition immediately gives a proof of Proposition 5.52.

We are considering ΩB := Bc(cyl(∂X),Fcyl;Ecyl) ⊕ Bc(cyl(∂X),Fcyl;Ecyl, E
′
cyl)

with the algebra structure given as in Lemma 5.29. Similarly we consider ΩA :=
Ac(X,F ;E) ⊕ Ac(X,F ;E,E′) and ΩJ := Jc(X,F ;E) ⊕ Jc(X,F ;E,E′) with the
algebra structure given as in Lemma 5.29; the homomorphism πc : Ac → Bc induces
an algebra homomorphism πΩ : ΩA → ΩB and a short exact sequence 0 → ΩJ →
ΩA

πΩ−→ ΩB → 0. Recall the bimodule trace ωcyl
Γ on Bc(cyl(∂X),Fcyl;Ecyl, E

′
cyl)

and that it induces a trace τ cyl
Γ on ΩB. We also have a bimodule trace ωΓ on

Jc(X,F ;E,E′) inducing a trace τΓ on ΩJ . Finally, let τ r
Γ be the functional on ΩA

induced by ωr
Γ. In other words, we employ the weight ωr

Γ on the algebra Ac(X,F ;E)
in order to define a map, still denoted ωr

Γ, on the bimodule Ac(X,F ;E,E′); then we
set

τ r
Γ|Ac(X,F ;E) := 0, τ r

Γ|Ac(X,F ;E,E′) := ωr
Γ. (10.9)

We know that τ r
Γ is not a trace map on the algebra ΩA since the bimodule regular-

ized trace ωr
Γ does not satisfy the tracial property. Remark however that by using

Melrose’ formula for the b-trace of a commutator followed by (5.26), one can show
that

ωr
Γ(kk′ − k′k) = ωcyl

Γ (�[χ0, �′]), (10.10)

if k ∈ Ac(X,F ;E), k′ ∈ Ac(X,F ;E,E′), πc(k) = �, πc(k′) = �′. Notice that Melrose’
proof extend to the regularized weight ωr

Γ (even though ωΓ is a weight and not, in gen-
eral, a trace). Alternatively, we can simply adapt the alternative proof of Proposition
5.19, which works here for the linear functional ωr

Γ : Ac(X,F ;E,E′) → C; namely
we write, using Proposition 5.54, and for k ∈ Ac(X,F ;E), k′ ∈ Ac(X,F ;E,E′),

ωr
Γ(kk′ − k′k) = ωΓ(t(kk′ − k′k))

= ωΓ

(

[a, a′] + [χμ�χμ, a′] + [a, χμ�′χμ] − χμ�(1 − χμ)�′χμ

+ χμ�′(1 − χμ)�χμ
)

= ωΓ(−χμ�(1 − χμ)�′χμ + χμ�′(1 − χμ)�χμ) = ωΓ(�[χ0, �′])
≡ −ωΓ([χ0, �]�′)

where we have used the bimodule-trace property for ωΓ in order to justify the
third equality. Note also that, with obvious notation, a ∈ Jc(X,F ;E), k ∈
Ac(X,F ;E,E′) ⇒ ak ∈ Jc(X,F ;E,E′) ; a ∈ Jc(X,F ;E,E′), k ∈ Ac(X,F ;E) ⇒
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ak ∈ Jc(X,F ;E,E′), and similarly for ka. Thus, in any case, by using (10.10) we
obtain immediately that

τ r
Γ(κκ′ − κ′κ) = τ cyl

Γ (λ[χ0, λ′]) (10.11)

for κ, κ′ ∈ ΩA with πΩ(κ) = λ ∈ ΩB and πΩ(κ′) = λ′ ∈ ΩB.
We pause here in order to remark that we have now checked that the algebras

and the (regularized) trace functionals we have been considering for a foliated bun-
dle with cylindrical ends do satisfy all the requirements that we had abstracted in
the discussion in Section 5.13 leading to Proposition 5.59.

Let {e1, . . . , en} be the standard orthonormal basis of R
n and Λ∗

R
n denote the

exterior algebra endowed with the induced basis. We shall use standard multi-index
notation; thus a generic element of the basis in Λ∗

R
n will be denoted by eJ. Then

ΩA⊗Λ∗
R

n becomes a graded algebra with respect to the multiplication (κ⊗eJ)(κ′⊗
eI) = κκ′ ⊗ eJ ∧ eI and the grading in Λ∗

R
n. (Here we forget the grading originally

defined on ΩA. )
Recall that we are assuming the following conditions:

• There exist derivations δA
i on ΩA with i = 1, . . . , n, which are pairwise commuting

and preserve the subalgebra ΩJ ;
• There exist a derivation δB

i on ΩB with i = 1, . . . , n that are compatible with δA
i

on ΩA, namely, they satisfy that πΩδ
A
i = δB

i πΩ;
• the derivations satisfy Stokes’ formulas: τ r

Γ(δA
i κ) = 0 and τ cyl

Γ (δB
i λ) = 0 for κ ∈ ΩA

and λ ∈ ΩB with i = 1, . . . , n.

Note that δB
i are also pairwise commuting since δA

i are. In the sequel, we often sup-
press the suffix and simply denote them by δi.

Notation:

• Given an element a⊗ eJ ∈ ΩA ⊗ Λn
R

n, we set

〈a⊗ eJ〉r := τ r
Γ(a)〈eJ, e1 ∧ · · · ∧ en〉, (10.12)

where 〈 , 〉 denotes the induced inner product on Λ∗
R

n.
• We define D : ΩA ⊗ Λ∗

R
n → ΩA ⊗ Λ∗

R
n to be D(a⊗ eJ) :=

∑n
i=1 δia⊗ ei ∧ eJ

for a⊗ eJ ∈ ΩA ⊗ Λ∗
R

n.

Lemma 10.13.

(1) D is a skew-derivation on ΩA ⊗ Λ∗
R

n and one has D2 = 0;
(2) Stokes formula holds: 〈Dκ〉r = 0 for κ ∈ ΩA ⊗ Λn−1

R
n.

Proof. It is straightforward to see that D is a skew-derivation. Next D2(κ ⊗ eJ) =
D(
∑n

j=1 δjκ ⊗ ej ∧ eJ) =
∑n

i,j=1 δiδjκ ⊗ ei ∧ ej ∧ eJ = 0 since [δi, δj ] = 0 and
ei ∧ ej + ej ∧ ei = 0. The second property is obvious from τ r

Γ(δiκ) = 0. ��



1778 H. MORIYOSHI AND P. PIAZZA GAFA

Recall that our starting point is the cyclic n-cocycle on Jc given by

τn(a0, . . . , an) = 1
n!

∑

α∈Sn
sign(α)τΓ

(

a0δα(1)a1 . . . δα(n)an

)

ai ∈ Jc,

Let us take the multilinear map

ψ(k0, . . . , kn) := 〈k0Dk1 . . . Dkn〉r/n! =
1
n!

∑

α∈Sn

sign(α)〈k0δα(1)k1 . . . δα(n)kn〉r

with ki ∈ Ac and set ψ(i)(k0, . . . , kn) = 〈kiDki+1 . . . DknDk0 . . . Dki−1〉r/n! and
ψ(0) = ψ for i = 1. . . . , n. Due to Lemma 10.13, we have

ψ(i)(k0, . . . , kn) = (−1)n−i
{

〈D(kiDki+1 . . . Dkn)k0(Dk1 . . . Dki−1)〉r

−〈(Dki . . . Dkn)k0(Dk1 . . . Dki−1)〉r

}

/n!

= (−1)n−i+1〈(Dki . . . Dkn)k0(Dk1 . . . Dki−1)〉r/n!.

Thus we obtain

bψ(i)(k0, . . . , kn) = (−1)n−i+1
{

(−1)i−1〈(Dki+1 . . . Dkn+1)k0(Dk1 . . . Dki−1)ki〉r

+(−1)i〈ki(Dki+1 . . . Dkn+1)k0(Dk1 . . . Dki−1)〉r

}

/n!

= (−1)n〈[(Dki+1 . . . Dkn+1)k0(Dk1 . . . Dki−1), ki]〉r/n!

and

bψ(k0, . . . , kn)=(−1)n〈k0(Dk1 . . . Dkn)kn+1〉r/n!+(−1)n+1〈kn+1k0(Dk1 . . . Dkn)〉r/n!
= (−1)n〈[k0(Dk1 . . . Dkn), kn+1]〉r/n!.

Set

τ r
n(k0, . . . , kn) =

1
n+ 1

n
∑

i=0

(−1)n(i+1)ψ(i)(k0, . . . , kn). (10.14)

Obviously it is a cyclic n-cochain. Recall the (n+ 1)-eta cocycle σn+1 associated to
τn. Recall that our goal is to prove the relative cocycle condition bτ r

n = (πc)∗σn+1.
We compute, using the above results,

bτ r
n(k0, . . . , kn+1) =

1
(n+ 1)!

n+1
∑

i=1

(−1)ni〈[(Dki+1 . . . Dkn+1)k0(Dk1 . . . Dki−1), ki]〉r.

(10.15)
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Due to (10.11), formula (10.15) is equal to:

1

(n + 1)!

n+1
∑

i=1

(−1)ni
∑

α∈Sn

τr
Γ([(δα(i+1)ki+1 . . . δα(n+1)kn+1)k0(δα(1)k1 . . . δα(i−1)ki−1, ki])

×〈eα, e1 ∧ · · · ∧ en〉

=
1

(n + 1)!

n+1
∑

i=1

(−1)ni
∑

α∈Sn

τcyl
Γ ((δα(i+1)�i+1 . . . δα(n+1)�n+1)

×�0(δα(1)�1 . . . δα(i−1)�i−1δn+1�i)〈eα, e1 ∧ · · · ∧ en〉, (10.16)

where we write �i := πc(ki), eα := eα(i+1) ∧ · · · ∧ eα(n+1) ∧ eα(1) ∧ · · · ∧ eα(i−1) and
δn+1�i := [χ0, �i]. To be precise here, α in the summation above is considered as
a bijective mapping from {1, . . . , i − 1, i + 1, . . . , n + 1} to {1, . . . , n} rather than
a permutation of {1, . . . , n}. To such an α we shall assign another permutation
β ∈ Sn+1 by setting β(i) = n+ 1 and β(j) = α(j) for j �= i. The signature of these
permutations are related as follows:

〈eα, e1 ∧ · · · ∧ en〉
= (−1)(i−1)(n−i+1)〈eα(1) ∧ · · · ∧ eα(i−1) ∧ eα(i+1) ∧ . . . eα(n+1), e1 ∧ · · · ∧ en〉
= (−1)(i−1)(n−i+1)sign(α)

and

sign(α) = 〈eβ(1) ∧ · · · ∧ eβ(i−1) ∧ eβ(i+1) ∧ · · · ∧ eβ(n+1), e1 ∧ · · · ∧ en〉
= (−1)n−i+1〈eβ(1) ∧ · · · ∧ eβ(n+1), e1 ∧ · · · ∧ en+1〉 = (−1)n−i+1sign(β).

Now observing that τ cyl
Γ is a trace map on Bc and that Sn+1 = ∪n+1

i=1 {β ∈
Sn+1| β(i) = n+ 1}, the formula (10.16) turns out to be:

1
(n+ 1)!

n+1
∑

i=1

(−1)ni
∑

α∈Sn

τ cyl
Γ (�0δβ(1)�1 . . . δβ(n+1)�n+1)〈eα, e1 ∧ · · · ∧ en〉,

=
1

(n+ 1)!

n+1
∑

i=1

∑

β(i)=n+1

(−1)n−i+1sign(α)τ cyl
Γ (�0δβ(1)�1 . . . δβ(n+1)�n+1)

=
1

(n+ 1)!

∑

β∈Sn+1

sign(β)τ cyl
Γ (�0δβ(1)�1 . . . δβ(n+1)�n+1).

This proves the fundamental equation bτ r
n = (πc)∗σn+1. The above arguments prove

Proposition 5.59 in the case considered in this paper. The more general statement
is just an abstraction of this particular case.

We shall apply Proposition 5.59 in order to prove the equation bτ r
GV = (πc)∗σGV .

In order to do this, we simply need to verify the assumption we have made on the
derivations δA

i , δ
B
l . Recall the situation in Sections 5.10 and 5.11. There exist deri-

vations δj : ΩA → ΩA for j = 1, 2 with δ1κ = [φ̇, κ], δ2κ = [φ, κ], which are pairwise



1780 H. MORIYOSHI AND P. PIAZZA GAFA

commuting. These are defined in the same way as in (5.45). There also exist deri-
vations on ΩB defined in the same way as in (5.48): δ3λ := [χ0, λ], δ2λ := [φ∂ , λ]
and δ1λ := [φ̇∂ , λ] for λ ∈ ΩB (here we denote the corresponding derivations by the
same letters). It is straightforward from the definition to verify that δ1 and δ2 are
compatible on ΩA and ΩB. Thus the remaining part is to prove the Stokes formulas.
With respect to τ cyl

Γ the formula is already verified in the proof of Proposition 5.49.
As far as the regularized trace is concerned, we have

Lemma 10.17. One has τ r
Γ(δ1k) = 0 = τ r

Γ(δ2k) ∀k ∈ ΩA. Put it differently,
〈Dα〉r = 0 ∀α ∈ ΩA ⊗ Λ1

R
2.

Proof. Since τ r
Γ is an extension of ωr

Γ, it suffices to show that ωr
Γ(δ1k) = 0 ∀k ∈

Ac(X,F ;E) and ωr
Γ(δ2k) ∀k ∈ Ac(X,F ;E,E′) Recall the definition of ωr

Γ given
in (5.50). Remark that [φ, k], which is by definition δ1(k), is given explicitly at
(x, x′, θ) ∈ Ṽ × Ṽ × T by (φ(x, θ) − φ(x′, θ))k(x, x′, θ). Next, from the definition of
φ (it is the logarithm of the Radon–Nikodym derivative of measures that are con-
stant in the normal direction near the boundary), we see that πc([φ, k]) = [φ∂ , �]
with πc(k) = � and with φ∂ the restriction of φ to ∂X0 (extended to be constant
along the cylinder). Thus the value of [φ∂ , �] at (y, t, y′, t′, θ) is equal to (φ∂(y, θ) −
φ∂(y′, θ))�(y, y′, t − t′, θ). In any case, by applying the definition of ωr

Γ (see again
(5.50)), which involves [φ, k](x, x, θ) and [φ∂ , �](y, t, y, t, θ), we immediately get that
ωr

Γ(δ1k) = 0. Similarly one proves that ωr
Γ(δ2k) = 0. ��

Now all the requirements needed in order to apply Proposition 5.59 are verified
for τ r

GV and σGV . Thus the proof of the equation bτ r
GV = (πc)∗σGV is completed.

10.3 The modular Schatten extension: proof of Proposition 6.56. Recall
that we want to show that there is a short exact sequence of Banach algebras 0 →
Jm → Am

π−→ Bm → 0 Moreover, the sections s and t restricts to bounded sections
s : Bm → Am and t : Am → Jm.

We begin with two Sublemmas.

Sublemma 10.18. Let us set B′
c := Ψ−1

c (Gcyl/RΔ). If �0 is an element in B′
c, then

χ0�0χ
0 belongs to Dom(δmax

j ) for j = 1, 2 and it follows that

δ
max
2 (χ0�0χ

0) = χ0[φ∂ , �0]χ0 and δ
max
1 (χ0�0χ

0) = χ0[φ̇∂ , �0]χ0.

Proof. We shall work on δ2 first. Let χε be a smooth approximation of the function
induced by χ0 on Ṽ × T. It is easily verified that χ0�0χ

0 preserves the continuous
field C∞

c (Ṽ × T ) and that [φ, χε�0χε] = χε[φ∂ , �0]χε belongs to C∗
Γ(H), since [φ∂ , �0]

is again a compactly supported pseudodifferential operator of order −1. Thus one
has χε�0χε ∈ Dom(δmax

2 ) and δmax
2 (χε�0χε) = χε[φ∂ , �0]χε. Next we observe that

‖χεbχε −χ0bχ0‖C∗ −→ 0 as ε → 0 for any b ∈ B′
c. Indeed, according to Lemma 6.26

we can choose an approximating sequence {bi} in Bc such that ‖bi − b‖C∗ → 0; then
one has

‖χεbχε−χ0bχ0‖C∗ ≤ ‖χε(b−bi)χε‖C∗ +‖χεbiχε−χ0biχ
0‖C∗ +‖χ0(bi−b)χ0‖C∗ −→ 0
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since ‖χεbiχε −χ0biχ
0‖C∗ −→ 0 for bi ∈ Bc due to Sublemma 10.2. This implies that

‖χε�0χε − χ0�0χ
0‖C∗ −→ 0 and that

‖δmax
2 (χε�0χε) − χ0[φ∂ , �0]χ0‖ = ‖χε[φ∂ , �0]χε − χ0[φ∂ , �0]χ0‖C∗ → 0

as ε ↓ 0. Since χε�0χε ∈ CΓ,c(H) this proves that χ0�0χ
0 belongs to Dom(δmax

2 )
and that δmax

2 (χ0�0χ
0) = χ0[φ∂ , �0]χ0 as required. We can apply a similar argument

to the second derivation and prove that χ0�0χ
0 belongs to Dom(δmax

1 ) and that
δ
max
1 (χ0�0χ

0) = χ0[φ̇∂ , �0]χ0. ��
Sublemma 10.19. Assume that � ∈ Bm ∩ Dom(δ1) ∩ Dom(δ2). Then s(�) ∈
Dom(δ1) ∩ Dom(δ2) and δj(s(�)) = s(δj�) for j = 1, 2.

Proof. Notice that we employ the same notation for the derivations on the cyl-
inder cyl(∂X) and on X; this should not cause confusion here. Let � be an ele-
ment Dom(δ2). Then, by definition, there exists a sequence {�i} ∈ B′

c such that
|||�i−�||| → 0 and [φ∂ , �i] converges in C∗-norm as i → +∞. Thus, there exists an ele-
ment δ2� ∈ Bm. We then obtain ‖s(�i)−s(�)‖C∗ → 0 and ‖s([φ∂ , �i])−s(δ2�)‖C∗ → 0,
since we certainly have ‖s(�)‖C∗ ≤ ‖�‖C∗ ≤ |||�||| for � ∈ B∗. Using the previous
sublemma we have s([φ∂ , �i]) := χ0[φ∂ , �i]χ0 = δ

max
2 (χ0�iχ

0) = δ
max
2 s(�i). Hence we

obtain

‖δmax
2 (s(�i)) − s(δ2(�))‖C∗ → 0.

Since δmax
2 is a closed derivation, this proves that δmax

2 (s(�)) = s(δ2(�)). Now recall
that that Am

∼= Jm ⊕ s(Bm), see (6.41). Then one has δmax
2 (s(�)) = s(δ2(�)) ∈

s(Bm) ⊂ Am, since δ2(�) ∈ Bm. This implies that s(�) ∈ Dom(δ2) by the defini-
tion of domain for δ2 and thus yields δ2(s(�)) = δ

max
2 (s(�)) = s(δ2(�)). A similar

argument will work for δ1. The proof of this second Sublemma is completed. ��
We now go back to the proof of Proposition 6.56. First we show that Am is iso-

morphic as Banach space to the direct sum Jm⊕s(Bm), in a way compatible with the
identification ψ : Jm ⊕s(Bm) → Am sending (k, s(�)) to k+s(�) explained in (6.41).
Let � be an element in Bm, which is by definition Bm∩Dom(δ1)∩Dom(δ2). Using the
last Sublemma we then see that s(�) ∈ Am∩Dom(δ1)∩Dom(δ2) and hence that s(�) ∈
Am, given that π ◦s(�) = � ∈ Bm. Moreover, if a ∈ Jm := Jm ∩Dom(δ1)∩Dom(δ2),
then we certainly have a ∈ Am since π(a) = 0 ∈ Bm. This proves that Jm ⊕ s(Bm)
is sent into Am by ψ. Conversely, given k ∈ Am we can write k = a + s(�), with
a ∈ Jm and � ∈ Bm. If k ∈ Am, then π(k) = π(a) + π(s(�)) = � ∈ Bm by definition
of Am. This implies in turn that a = k − s(�) ∈ Am because k and s(�) belong
to Am. We have proved above that � ∈ Bm ⇒ s(�) ∈ Am; thus a ∈ Am ∩ Jm

which is nothing but Jm by definition. This proves that k = a + s(�) belongs to
the image of Jm ⊕ s(Bm) through (6.41). Thus we have established that Am is iso-
morphic to the direct sum Jm ⊕ s(Bm). Now it is clear that the sequence (6.56)
0 → Jm → Am

π−→ Bm → 0 is exact, since π ◦ s = Id on Bm. Moreover, one has

δj(k) = δj(a) + δj(s(�)) = δj(a) + s(δj(�)).
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This proves that δj commutes with π : Am → Bm as well as with s : Bm → Am.
This implies that π and s are bounded linear maps. The boundedness of t follows
from that of s. Finally, it is obvious that π is a homomorphism and that Jm = Kerπ
is an ideal in Am.

10.4 The index class: an elementary approach to the parametrix con-
struction. In this Subsection we sketch a proof of Theorem 7.13 and Theorem
7.14. We first recall some elementary results for a Dirac operator D on an even
dimensional manifold X with cylindrical end obtained from a Riemannian manifold
(X0, g) with boundary ∂X0 = Y and with g a product metric near the boundary.
As usual we denote the infinite cylinder R × ∂X0 ≡ R × Y by the simple notation
cyl(Y ). Finally, we denote by s the grading operator on the Z2-graded bundle E
on which D acts; we shall employ the same symbol for the grading on the induced
bundle on the cylinder. The following lemmas are elementary.

Lemma 10.20. Let f ∈ C∞(X). We assume that f and df are bounded.
Then we have the following equality of L2-bounded operators [(D + s)−1, f ] =
−(D + s)−1 cl(df)(s +D)−1.

Lemma 10.21. Let χ be a smooth approximation of the characteristic function of
(−∞, 0]×Y in cyl(Y ). Consider χ as a multiplication operator from C∞

c (cyl(Y ), Ecyl)
to C∞

c (X,E). Similarly consider the operator given by Clifford multiplication cl(dχ).
Then Dχ = χDcyl + cl(dχ) as operators C∞

c (cyl(Y ), Ecyl) → C∞
c (X,E)

Lemma 10.22. Let ϕ1, ϕ2 ∈ C∞
c (X). Then as a bounded operator on L2(X,E) the

operator ϕ1(D + s)−1ϕ2 belongs to Im, the m-Schatten ideal.
Let ϕ ∈ C∞

c (X). Then as bounded operators on L2(X,E) the operators ϕ(D+ s)−1

and (D + s)−1ϕ belongs to Im.

As an application of these Lemmas, with simple algebraic manipulations, one
can prove the following

Proposition 10.23. The difference (s + D)−1 − χ(s + Dcyl)−1χ is a m-Schatten
operator, with m > dimM.

We shall now construct a parametrix for D+; in fact we shall construct an inverse
of D+ modulo m-Schatten class operators, with m > dimX. We introduce the fol-
lowing useful notation: if L and M are two bounded operators on a Hilbert space
and if m ∈ [1,+∞) then

L ∼m K if L−M ∈ Im. (10.24)

Consider the operator

G = (I +D−D+)−1D−. (10.25)

Using elementary properties of the functional calculus for Dirac operators on com-
plete manifolds, we certainly have that I − GD+ = (I + D−D+)−1, I − D+G =
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(I+D+D−)−1. The operator G, as well as the two remainders, do not have Schwartz
kernels that are localized near the diagonal; still they are perfectly defined and they
are all bounded on L2. For notational convenience we set (D±)cyl =: D±

cyl. Recall
that up to standard identifications D±

cyl = ±∂x + D∂ , acting on the restriction of
E+ to the boundary, extended in the obvious way to the cylinder. We consider the
operator

G′ := −χ((D+
cyl)

−1(I +D+
cylD

−
cyl)

−1)χ. (10.26)

Then, a simple computation proves that

G′D+ = −χ(I +D−
cylD

+
cyl)

−1χ+ χ(D+
cyl)

−1(I +D+
cylD

−
cyl)

−1 cl(dχ) (10.27)

D+G′ = −χ(I +D+
cylD

−
cyl)

−1χ− cl(dχ)(D+
cyl)

−1(I +D+
cylD

−
cyl)

−1χ. (10.28)

Inspired by the b-calculus we set Q := G−G′. Q is clearly bounded on L2. For the
benefit of reader we restate the theorem we wish to prove (Theorem 7.13):

Theorem 10.29. The operator Q is an inverse of D+ modulo m-Schatten class
operators, with m > dimM.

Proof. First we observe that (I + D2)−1 = (s + D)−2. Using this we check that
(I +D2)−1 − χ(I +D2

cyl)
−1χ can be expressed as

(s+D)−1((s+D)−1−χ(s+Dcyl)−1χ)+((s+D)−1−χ(s+Dcyl)−1χ)χ(s+Dcyl)−1χ

+χ(s +Dcyl)−1(χ2 − 1)(s +Dcyl)−1χ.

Since this term is m-Schatten, wee see that (I +D2)−1 ∼m χ(I +D2
cyl)

−1χ. Now,
from (10.27), we have

G′D+ ∼m −χ(I +D−
cylD

+
cyl)

−1χ, D+G′ ∼m −χ(I +D+
cylD

−
cyl)

−1χ

so that, if we define S+ := I−QD+, S− := I−D+Q and recall that Q = G−G′,
we obtain

S+ = I − (G−G′)D+ = (I +D−D+)−1 +G′D+ ∼m (I +D−D+)−1

−χ(I +D−
cylD

+
cyl)

−1χ ∼m 0.

Thus the remainder S+ is of m-Schatten class. Similarly we proceed for S−. The
theorem is proved. ��

We have presented the parametrix construction in the case T = point, Γ = {1}.
However, a similar proof applies to the general case of a foliated bundle with cylin-
drical ends (X,F) ≡ (Ṽ ×ΓT,F) with Ṽ of even dimension.10 It will suffice to apply
to the Γ-equivariant family (Dθ)θ∈T the functional calculus along the fibers of the

10 Similar arguments establish the analogues in odd dimension.
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trivial fibration Ṽ × T → T (obtaining, of course, Γ-equivariant families). All our
argument apply verbatim once we observe that given compactly supported smooth
functions ϕ, ψ on X, the family (ϕ(Dθ + s)−1ψ)θ defines an element in K(E), the
compacts of the Hilbert module E . In fact, once we observe that such an element is
in fact in Im(X,F), if m > dim Ṽ , we can finally conclude that Theorem 7.14 holds.

10.5 Proof of the existence of the relative index class. In this subsection
we give a proof of Proposition 7.18. Denote by Dcyl the Dirac operator induced by
D∂ on the cylinder. Consider the triple

(eD, e1, pt), t ∈ [1,+∞], with pt :=

{

e(tDcyl) if t ∈ [1,+∞)
e1 if t = ∞.

(10.30)

First, we need to justify the fact that the relevant elements here are in the right
algebras. Thus we need to show that eD is in A∗(X; F) and that e(tDcyl) is in
B∗(cyl(∂X),Fcyl). We start with the latter. Fix for simplicity t = 1. We need to
show that there exists a sequence of elements kj ∈ Bc(cyl(∂X),Fcyl) such that
‖e(Dcyl) − kj‖ −→ 0 as j → +∞, with the norm denoting the C∗-norm of Sec-
tion 4.3. We use the fact that Dcyl is an R×Γ-equivariant family. (Strictly speaking
we are taking the closure of the operators in this family.) Proceeding precisely as
in [MoN96], Section 7, thus following ideas of Roe, we are reduced to the following
remark: if f is a rapidly decreasing function on R with compactly supported Fourier
transform, then f(Dcyl) is given by (the family of integral operators induced by) an
element in Bc(cyl(∂X),Fcyl). The proof of the last assertion is an easy generalization
of the well known results by Roe, see for example [Roe87] or the detailed discussion
in [Roe88]. Since the functions as f are dense in C0(R) the assertion follows.

Next we show that eD ∈ A∗(X; F). First of all, we need to show that eD ∈ L(E).
This is the same proof as in [MoN96].

Now we need to show that the image of eD in Q(E) is in the image of ρ.
Write eD = (eD − χ0e(Dcyl)χ

0) + χ0e(Dcyl)χ
0. Since we have proved that eDcyl is

in B∗(cyl(∂X),Fcyl), it suffices to show that

eD − χ0e(Dcyl)χ
0 ∈ K(E). (10.31)

In order to prove (10.31) we first show that eD −χe(Dcyl)χ ∈ K(E), with χ a smooth
approximation of χ0. Using (7.7) we reduce ourselves to establishing that (s+D)−1−
χ(s +Dcyl)−1χ, which we already know. As far as (s +D)−1 − χ0(s +Dcyl)−1χ0 is
concerned, we simply choose a sequence of smooth functions χj converging to χ0

in L2 and we use the fact that K(E) is closed in L(E); we have already used this
argument in the proof of Sublemma 10.2. The proof of (10.31) is complete.

Finally, we need to prove that pt is a continuous path in B∗ joining π(eD) to e1
Now, the above argument shows that for t ∈ [1,+∞)π(etD) = et(Dcyl) = pt, so we
only need to show that e(tDcyl) converges to e1 in the C∗-norm of B∗(cyl(∂X),Fcyl)
as t → ∞; however, using assumption (7.1) this follows easily.

The proof of Proposition 7.18 is complete
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10.6 Proof of the excision formula (7.20). Let Q ∈ L(E−, E+) be the para-
metrix for D+ obtained as in Theorem 7.13.

We consider

e(D+, Q) :=
(

I
D+

)

(

S+ Q
)

=
(

S+ Q
D+S+ D+Q

)

. (10.32)

The following Lemma is elementary to check

Lemma 10.33. e(D+, Q) is an idempotent in A∗(X,F) ≡ A∗. Moreover, if PQ

denotes, as usual, the Connes–Skandalis projection associated to Q, then

PQ =
(

I Q
0 I

)−1

e(D+, Q)
(

I Q
0 I

)

. (10.34)

The path obtained substituting sQ, s ∈ [0, 1], to Q in the first and third matrix
appearing on the right hand side of (10.34) is a path of projections in A∗ and con-
nects the projection PQ ∈ C∗(X,F) ⊂ A∗ with the projection e(D+, Q). On the
other hand, another direct computation shows that if G = (I +D−D+)−1D−, then
e(D+, G) = eD, the graph projection. Recall that Q = G − G′, with G′ given by
(10.26); by composing the path of projections

(

I sQ
0 I

)−1

e(D+, Q)
(

I sQ
0 I

)

with the path of projections e(D+, G− τG′), τ ∈ [0, 1], we obtain a path of projec-
tions H(t) in A∗ joining PQ = H(1) to eD = H(0). Consider now

D+
μ := μD+, Gμ := (I +D−

μD
+
μ )−1D−

μ , Q(μ, τ) := Gμ − τG′
μ, (10.35)

with G′
μ as in (10.26) but defined in terms of D+

μ . We have then

D+
μQ(μ, τ) = I − S−(μ, τ), Q(μ, τ)D+

μ = I − S+(μ, τ). (10.36)

In this notation the above path, H(t), first joins PQ(1,1) to e(D+, Q(1, 1)) and then
joins e(D+, Q(1, 1)) to e(D+, Q(1, 0)), which is eD. We write

PQ ≡ PQ(1,1) � e(D+, Q(1, 1)) � e(D+, Q(1, 0)) ≡ eD.

Similarly, we can consider PQ(μ,1) � e(D+, Q(μ, 1)) � e(D+, Q(μ, 0)) ≡ eμD

with the second homotopy provided by e(D+, Q(μ, τ)), τ ∈ [0, 1]. Let H(μ, t) be
this homotopy, connecting PQ(μ,1) to eμD. We set p(μ, t) := π(H(μ, t)), where
μ ∈ [1,+∞), t ∈ [0, 1]. We also set

p(∞, t) :=
(

0 0
0 I

)

, ∀t ∈ [0, 1]. (10.37)
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Assume we could prove that the above defined function p(μ, t) is continuous on
[1,+∞]μ × [0, 1]t. Then from the above discussion we obtain that

(H(t),
(

0 0
0 I

)

, p(μ, τ)) joins (H(1),
(

0 0
0 I

)

, p(μ, 1)) to (H(0),
(

0 0
0 I

)

, p(μ, 0)).

But, as already remarked, H(1) = PQ and H(0) = eD; moreover p(μ, 1) is the
constant path, indeed p(μ, 1) := π(H(μ, 1)) = π(PQ(μ,1)) =

(

0 0
0 I

)

, given that PQ(μ,1)

is a true Connes–Skandalis projection, thus with the property that PQ(μ,1) − ( 0 0
0 I

) ∈
C∗(X,F) ; finally, H(μ, 0) = eμD, so that p(μ, 0) = eμDcyl ; thus, taking into account
(10.37), we see that p(μ, 0) is precisely the path of projections appearing in the
definition of the relative index class. Summarizing, if we could prove that p(μ, t) is
continuous on [1,+∞]μ × [0, 1]t then

[PQ,

(

0 0
0 I

)

, const] = [eD,
(

0 0
0 I

)

, pμ]

which is what we need to prove in order to conclude. Now, p(μ, t) is certainly con-
tinuous in [1,+∞) × [0, 1]; we end the proof by showing that, in the C∗-norm,

lim
μ→+∞ p(μ, t) =

(

0 0
0 I

)

uniformly in t ∈ [0, 1].
We begin with the projection of the first homotopy, that connecting PQ(μ,1) to

e(μD+, Q(μ, 1)). This is

π

(

(

I sQ(μ, 1)
0 I

)−1

e(D+
μ , Q(μ, 1))

(

I sQ(μ, 1)
0 I

)

)

, s ∈ [0, 1], (10.38)

which is easily seen to be equal to
(

0 (1 − s)π(Q(μ, 1))
0 1

)

.

Set D±
cyl := (D±)cyl. Now we write explicitly:

π(Q(μ, 1)) = μD−
cyl(I +D−

cylD
+
cylμ

2)−1 − 1
μ

(D+
cyl)

−1(I +D−
cylD

+
cylμ

2)−1

which does converge to 0 in the C∗-norm as μ → +∞. Thus (10.38) con-

verges to
(

0 0
0 I

)

uniformly in s, as required. Next we look at the second path,

connecting e(μD+, Q(μ, 1)) to e(μD+, Q(μ, 0)). We need to compute explicitly
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π(e(μD+, Q(μ, τ)) and show that it goes to 0 uniformly in τ. An explicit and ele-
mentary computation shows that

π(e(μD+, Q(μ, τ)) =
(

(I + μ2D−
cylD

+
cyl)

−1 (I + μ2D−
cylD

+
cyl)

−1μD−
cyl)

μD+
cyl(I + μ2D−

cylD
+
cyl)

−1 I − (I + μ2D+
cylD

−
cyl)

−1

)

+(I + μ2(Dcyl)2)−1

( −τ τ(μD−
cyl)

−1

−τμD+
cyl τ

)

.

The second summand converges uniformly to 0 in the C∗-norm, whereas the first

summand converges uniformly to
(

0 0
0 I

)

in the C∗-norm. This ends the proof.

10.7 Proof of the existence of smooth index classes.

10.7.1 Proof of Proposition 8.1. Recall the Connes–Skandalis projection

PQ :=
(

S2
+ S+(I + S+)Q
S−D+ I − S2−

)

.

Let

̂PQ :=
(

S2
+ S+(I + S+)Q
S−D+ −S2−

)

.

We want to show that

̂PQ ∈ Jm(X,F) ∩ Domδ1 ∩ Domδ2,

withm > 2n and 2n equal to the dimension of the leaves of (X,F).We fix such anm.
We set, as usual, D±

cyl := (D±)cyl. We begin by showing that the Connes–Skandalis

matrix ̂PQ is in Jm(X,F). First we show that it belongs to Im. Recall our parametrix
Q = G−G′ with G = (I +D−D+)−1D− and G′ := χ((D+

cyl)
−1(I +D+

cylD
−
cyl)

−1)χ.
We know that S+ := I − QD+ and S− := I − D+Q are elements in Im(X,F)
for m > dim Ṽ ; hence, obviously, so they are (S±)2 and (S+(I + S+))Q. Thus we
only need to show that S−D+ belongs to Im(X,F) for m > dim Ṽ . Recall that
S− = (I +D+D−)−1 +D+G′; thus S−D+ = (I +D+D−)−1D+ +D+G′D+. Now,
with elementary algebraic manipulations, we can express the last term as

((I +D+D−)−1D+ − χ(I +D+
cylD

−
cyl)

−1D+
cylχ)

+(χ(I +D+
cylD

−
cyl)

−1 cl(dχ) − cl(dχ)(I +D+
cylD

−
cyl)

−1χ

+ cl(dχ)(D+
cyl)

−1(I +D+
cylD

−
cyl)

−1 cl(dχ))

with d denoting the differential along Ṽ in the product Ṽ × T. See formula (2.3).
Employing the usual reasoning, the first term is easily seen to be in Im(X,F) for
m > dim Ṽ ; we have already proved that the same is true for the second term. Thus
S−D+ is in Im(X,F) for m > dim Ṽ .



1788 H. MORIYOSHI AND P. PIAZZA GAFA

Thus, we have proved that ̂PQ ∈ Im(X,F) for m > dim Ṽ .

Next we show that ̂PQ ∈ Jm. Consider for example

S+ = (I +D−D+)−1 − χ(I +D−
cylD

+
cyl)

−1χ+ χ(D+
cyl)

−1(I +D+
cylD

−
cyl)

−1 cl(dχ).

We want to show that gS+ is bounded. However, from the explicit expression we
have just written this is readily checked by hand using (variants of) the following

Lemma 10.39. The operator g(1 +D2)−1 is bounded.

Proof. Write g(1 + D2)−1 = ff(D + s)−1(D + s)−1 and write the last term as
f [f, (D + s)−1](D + s)−1 + f(D + s)−1f(D + s)−1 which is in turn equal to f(D +
s)−1 cl(df)(D+ s)−1(D+ s)−1 +f(D+ s)−1f(D+ s)−1. Thus it suffices to show that
f(D+ s)−1 and (D+ s)−1f are bounded. This is easily proved using the Sublemma
10.49 below. The Lemma is proved. ��

Next we show that ̂PQ ∈ Domδ1 ∩ Domδ2. First of all, we have the following

Lemma 10.40. Under assumption (7.1) we have that

D−1
cyl ∈ Dom(δmax

cyl,1) ∩ Dom(δmax
cyl,2)

with δcyl,2 := [φ∂ , ] and δcyl,1 := [φ̇∂ , ]

Proof. Consider a smooth function h ∈ C∞(R) such that h(x) = 1/x for |x| > ε,
with ε as in our invertibility assumption (7.1). Clearly h(Dcyl) = D−1

cyl . We can find
a sequence of functions {βλ}λ>0 with the following properties:

(1) ̂βλ is compactly supported;
(2) {βλ}λ>0 is a Cauchy sequence in W 2(R)-norm;
(3) βλ −→ h in sup-norm as λ → +∞.

The function βλ such that ̂βλ = ρλ
̂h, with ρλ as in [MoN96] p. 515, does satisfy these

three properties. We assume this for the time being and we conclude the proof of
the Lemma. First, from the very definition of βλ and from finite propagation tech-
niques we have that βλ(Dcyl) is a (−1)-order pseudodifferential operator of compact
R × Γ-support. Next, from property (3), we see that βλ(Dcyl) −→ h(Dcyl) = D−1

cyl in
C∗-norm when λ → +∞. Finally, from Duhamel formula we have:

δ2(βλ(Dcyl)=[φ∂ , βλ(Dcyl)]=
∫

R

ds

∫ 1

0
dt

√−1ŝβλ(s)e
√−1stDcyl [φ∂ , Dcyl]e

√−1s(1−t)Dcyl .

Moreover, as explained in [MoN96], p. 520, we have

‖[φ∂ , βλ(Dcyl)] − [φ∂ , βμ(Dcyl)]‖ ≤ C

∫

R

|̂βλ(s) − ̂βμ(s)||s|ds.
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Now:
∫

R

|̂βλ(s) − ̂βμ(s)||s|ds =
∫

R

|̂βλ(s) − ̂βμ(s)||s
√

1 + s2| 1√
1 + s2

ds

≤ ‖(̂βλ − ̂βμ)|s√1 + s2|‖L2(R) ‖ 1√
1+s2 ‖L2(R)

≤ C‖Dcyl(1 +D2
cyl)

1
2 (βλ − βμ)‖L2(R) ≤ C ′‖βλ − βμ‖W 2(R).

Thus, from property (2), we infer that [φ∂ , βλ(Dcyl)] is a Cauchy sequence in C∗-
norm. This means that h(Dcyl), which is D−1

cyl , is in the domain of the closure δmax
cyl,2.

Similarly we proceed for δ1.
It remains to prove that with our definition of βλ we can satisfy the three proper-

ties. The first one is obvious from the definition. For the second property we estimate,
with D := 1√−1

d
dx on R:

‖βλ − βμ‖W 2(R) = ‖(1 +D2)(βλ − βμ)‖L2(R)

= ‖(1 + s2)(̂βλ − ̂βμ)‖L2(R) = ‖(1 + s2)(ρλ
̂h− ρμ

̂h)‖L2(R)

= ‖(1 + s2)2̂h (ρλ − ρμ) 1
1+s2 ‖L2(R)

≤ ‖(1 + s2)2̂h‖L2(R) ‖(ρλ − ρμ) 1
1+s2 ‖L∞(R).

In the last term, the first factor can be estimated directly and shown to be finite,
using the equality

‖(1 + s2)2̂h‖L2(R) = ‖(1 +D2)2h‖L2(R)

and the very definition of h (namely, that it is equal to 1/x for |x| > ε); the second
factor, on the other hand, is clearly Cauchy (from the definition of ρλ). Thus we
have established (2). Finally, we tackle (3). Recall that the Fourier transformation
extends to a bounded map from L1(R) to C0(R). Thus

‖βλ − h‖C0(R) ≤ ‖̂βλ − ̂h‖L1(R) = ‖(ρλ − 1)̂h‖L1(R)

= ‖(ρλ − 1) 1
1+s2 (1 + s2)̂h‖L1(R)

≤ ‖(ρλ − 1) 1
1+s2 ‖L2(R) ‖(1 + s2)̂h‖L2(R).

The second factor can be estimated as above and shown to be finite; the first factor
goes to zero using Lebesgue dominated convergence theorem. The Lemma is now
completely proved. ��

We go back to our goal, proving that ̂PQ is in Domδ1 ∩ Domδ2. This means that
for j = 1, 2 and m > dim Ṽ we have:

̂PQ ∈ Domδmax
j ∩ Jm(X,F) and δ

max
j ( ̂PQ) ∈ Jm(X,F).

First, we establish the fact that ̂PQ ∈ Domδmax
j (we already proved that ̂PQ ∈

Jm(X,F)). We concentrate on δ
max
2 ; similar arguments will work for δmax

1 . Recall
that

̂PQ :=
(

S2
+ S+(I + S+)Q
S−D+ −S2−

)

.
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Let us concentrate on each single entry of this matrix. For the sake of brevity, let us
give all the details for the (1, 1)-entry, S2

+. It suffices to show that S+ ∈ Domδmax
2

and that δmax
2 S+ ∈ Jm(X,F).

For notational convenience we set, for this proof only,

δ
max
2 =: Θ, δ

max
cyl,2 =: Θcyl.

We observe preliminarily that proceeding exactly as in [MoN96] we can prove
that (s +D)−1 is in DomΘ; hence so is (s +D)−2 which is equal to (1 +D2)−1. The
same proof establishes the corresponding result on the cylinder, for (s+Dcyl)−1 and
(s + Dcyl)−2 = (1 + D2

cyl)
−1. This, together with the last Lemma, shows also that

D−1
cyl(1 +D2

cyl)
−1 belongs to the domain of Θcyl. Recall now that

S+ = (I +D−D+)−1 − χ(I +D−
cylD

+
cyl)

−1χ+ χ(D+
cyl)

−1(I +D+
cylD

−
cyl)

−1 cl(dχ).

The first summand is in DomΘ, as we have already remarked. The second sum-
mand, −χ(I +D+

cylD
−
cyl)

−1χ, is obtained by grafting through pre-multiplication and
post-multiplication by χ an element which is the domain of Θcyl. Such a grafted
element is easily seen to belong to DomΘ, since we can simply choose as an approx-
imating sequence the one obtained by grafting the approximating sequence for
(I +D+

cylD
−
cyl)

−1. In the (easy) proof we use

φχ = χφ∂ , χφ = χφ∂ , [φ∂ , χ] = 0.

(They all follow from the fact that the modular function is independent of the normal
variable in a neighbourhood of the boundary of X0.) Similarly, the third summand
is in DomΘ, given that, as we have observed above, D−1

cyl(1 +D2
cyl)

−1 belongs to the
domain of Θcyl. Summarizing: S+ is an element in DomΘ. Next we need to show
that Θ(S+) belongs to Jm(X,F). First we prove that it is in Im. We first observe
that S+ is the (1, 1)-entry of the 2 × 2-matrix

(s +D)−2 −
(

χ 0
0 χ

)

(s +Dcyl)−2

(

χ 0
0 χ

)

+
(

χ 0
0 χ

)

(s +Dcyl)−2D−1
cyl

(

0 cl(dχ)
cl(dχ) 0

)

.

We compute Θ of this term, finding

Θ((s +D)−2) −
(

χ 0
0 χ

)

Θcyl((s +Dcyl)−2)
(

χ 0
0 χ

)

+
(

χ 0
0 χ

)

Θcyl((s +Dcyl)−2D−1
cyl)
(

0 cl(dχ)
cl(dχ) 0

)

.

The last summand is certainly in Im(X,F), since dχ is of compact support. It is
clear that this last term is also in Jm, i.e. it is bounded if it is multiplied on the
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right and on the left by the function g. Thus we are left with the task of proving
that

Θ((s +D)−2) − χΘcyl((s +Dcyl)−2)χ

is in Jm(X,F). We first show that this term is in Im. Remark that the above dif-
ference can be computed explicitly, using [MoN96]; we get

(s +D)−1 cl(dφ)(s +D)−2 − χ((s +Dcyl)−1 cl(dφ∂)(s +Dcyl)−2)χ
+(s +D)−2 cl(dφ)(s +D)−1 − χ((s +Dcyl)−2 cl(dφ∂)(s +Dcyl)−1)χ.

Now, proceeding as in the discussion on the parametrix given in Section 7.3, we can
prove that each of these two differences is in Im(X,F) Let us see the details; we
concentrate on the first difference

(s +D)−1 cl(dφ)(s +D)−2 − χ((s +Dcyl)−1 cl(dφ∂)(s +Dcyl)−2)χ ; (10.41)

we shall analyze the second difference, namely

(s +D)−2 cl(dφ)(s +D)−1 − χ((s +Dcyl)−2 cl(dφ∂)(s +Dcyl)−1)χ (10.42)

later.
For notational convenience we set A = (s +D) and B = (s +Dcyl). Recall that

A−1 ∼m χB−1χ, see Proposition 10.23. There we also remarked that fA−1 ∼m

0, A−1f ∼m 0, gB−1 ∼m 0 and B−1g ∼m 0 if f and g are compactly supported.
Rewrite the difference (10.41) as A−1 cl(dφ)A−2−χB−1 cl(dφ∂)B−2χ. Using A−1 ∼m

χB−1χ we see that the difference is ∼m-equivalent to

χB−1χ cl(dφ)χB−1χ2B−1χ− χB−1 cl(dφ∂)B−2χ.

Now add and subtract χB−1χ cl(dφ)χB−2χ to the first summand; obtaining, for this
first summand,

χB−1χ cl(dφ)χB−2χ+ χB−1χ cl(dφ)χB−1(χ2 − 1)B−1

which, by our second remark, is ∼m-equivalent to χB−1χ cl(dφ)χB−2χ. Here we
have used that χ2 − 1 is compactly supported. Thus (10.41) is ∼m-equivalent to
χB−1(χ cl(dφ)χ−cl(dφ∂))B−2χ which is equal to χB−1(χ cl(dφ∂)χ−cl(dφ∂))B−2χ,
given that χ cl(dφ)χ = χ cl(dφ∂)χ. We can rewrite this last term as

χB−1(χ cl(dφ∂)χ− (χ+ (1 − χ)) cl(dφ∂)(χ+ (1 − χ)))B−2χ

which is in turn equal to

−χB−1(1 − χ) cl(dφ∂)(1 − χ)B−2χ− χB−1χ cl(dφ∂)(1 − χ)B−2χ

−χB−1(1 − χ) cl(dφ∂)χB−2χ.
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The last two summands are ∼m-equivalent to 0 because χ(1 − χ) has compact sup-
port. Regarding the term χB−1(1 − χ) cl(dφ∂)(1 − χ)B−2χ; we rewrite it as

χ(1 − χ)B−1 cl(dφ∂)(1 − χ)B−2χ+ χ[B−1, (1 − χ)] cl(dφ∂)(1 − χ)B−2χ

and this is certainly ∼m-equivalent to χ[B−1, (1−χ)] cl(dφ∂)(1−χ)B−2χ. The latter
term is in turn equal, up to a sign, to

χB−1 cl(dχ)B−1 cl(dφ∂)(1 − χ)B−2χ

which is ∼m-equivalent to 0 (dχ is compactly supported). Thus (10.41) is in
Im(X,F); similarly one proves that the second difference (10.42), viz. (s +
D)−2 cl(dφ)(s +D)−1 − χ((s +Dcyl)−2 cl(dφ∂)(s +Dcyl)−1)χ is in Im(X,F). Now,
by direct inspection we also see that both the first difference (10.41) and the sec-
ond difference (10.42) are in Jm, i.e. they are bounded if they are multiplied on
the right and on the left by the function g. Thus, we have proved that S+ is in
Jm(X,F) ∩ Domδ2. Similarly one proves that S+ ∈ Domδ1, proving finally that

S+ ∈ Jm(X,F) ∩ Domδ1 ∩ Domδ2 ≡ Jm, m > dim Ṽ .

The reasoning for the other entries in the Connes–Skandalis projection is analogous
and hence omitted. The proof of Proposition 8.1 is now complete.

10.7.2 Proof of Proposition 8.2. We shall first concentrate on the larger algebra
Bm; thus we begin by establishing Proposition 8.2. in this context, namely, we prove
that e(Dcyl) ∈ Bm ⊕Ce1 with m greater than 2n, which is the dimension of the leaves
of (X,F).

Lemma 10.43. For the translation invariant Dirac family Dcyl = (Dcyl
θ )θ∈T on the

cylinder we have:

[χ0, (Dcyl + s)−1] ∈ Im(cyl(∂X),Fcyl) (10.44)

with χ0 denoting as usual the function induced on the cylinder by χ0
R
, the charac-

teristic function of (−∞, 0], and s the grading operator.

Proof. We shall prove that [χ0, (Dcyl + s)−1] has finite Schatten m-norm. We shall
denote by t the variable along the R-factor in the cylinder; we shall omit the vector
bundles from the notation. First we observe that χ0 is bounded and only depends
on the cylindrical variable. Observe next that [Dcyl, χ0] defines a family of bounded
operators fromW 1((∂M̃×{θ})×R) → W−1((∂M̃×{θ})×R) and the same is true for
[D∂ , χ0]; it is then elementary to check that [D∂ , χ0] = 0, as an operator from W 1 to
W−1. Similarly, the operator [∂t, χ

0] induces bounded maps W 1((∂M̃ ×{θ})×R) →
W−1((∂M̃ × {θ}) × R). We then have the following equality of bounded operators:

[χ0, (Dcyl + s)−1] = (Dcyl + s)−1 [Dcyl, χ0] (Dcyl + s)−1

= (Dcyl + s)−1 [∂t, χ
0] (Dcyl + s)−1.
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Thus we can write

[χ0, (Dcyl + s)−1] = (Dcyl + s) (I + (Dcyl)2)−1 [∂t, χ
0] (I + (Dcyl)2)−1 (Dcyl + s).

This means that it suffices to prove that (I+(Dcyl)2)−1/2 [∂t, χ
0] (I+(Dcyl)2)−1/2 ∈

Jm(cyl(∂X),Fcyl). We conjugate this operator with Fourier transform and obtain
the operator

T := (I + t2 + (D∂)2)−1/2[H, it](I + t2 + (D∂)2)−1/2

with H denoting the Hilbert transform on L2(R).
Note that [H, t]ξ(t) = i/π

∫

R
ξ(s)ds. Thus, T = (Tθ)θ∈T and each Tθ is the

composite ιθ ◦ πθ, with

ιθ : L2(∂M̃ × {θ}) → L2((∂M̃ × {θ}) × R), ιθ(η) = (I + t2 + (D∂
θ )2)−1/2η

πθ : L2((∂M̃ × {θ}) × R) → L2(∂M̃ × {θ}), πθ(ξ)(y)

=
∫

R

(I + t2 + (D∂
θ )2)−1/2ξ(y, t)dt

where, as before, we are omitting the vector bundles from the notation. Thus

Tm
θ = ιθ ◦ (πθ ◦ ιθ)m−1 ◦ πθ.

On the other hand,

πθ ◦ ιθ(η) =
∫

R

dt(I + t2 + (D∂
θ )2)−1/2(I + t2 + (D∂

θ )2)−1/2η

=
∫

R

dt(I + t2 + (D∂
θ )2)−1η = C(I + (D∂

θ )2)−1/2η(y),

with C = π The last step can be justified as follows. Observe that ∀a > 0 and k ≥ 0
∫

R

dt

(t2 + a2)k+1
=

π

22k

(2k)!
(k!)2

a−2k−1.

Using this we can show that, in the strong topology,
∫

R

(I + t2 + (D∂
θ )2)− p+1

2 =
π

2p−1

(p− 1)!
(p−1

2 !)2
(1 + (D∂

θ )2)− p

2 ,

where p = 2k + 1. Thus, for p = 1 we have, in the strong topology,
∫

R

(I + t2 + (D∂
θ )2)−1 = C(I + (D∂

θ )2)− 1
2 , with C = π,

which is what we had to justify. We thus obtain: Tm
θ ξ = Cp(ιθ◦(I+(D∂

θ )2)− m−1
2 ◦πθξ)

and we are left with the task of proving that πθ and ιθ are bounded on L2 (indeed,
it is well known, see [MoN96], that (I + (D∂

θ )2)− 1
2 has finite Schatten (m− 1)-norm

for m− 1 > dim ∂M̃, which is the case here since m > dim M̃).
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Sublemma 10.45. The map ιθ : L2(∂M̃ × {θ}) → L2((∂M̃ × {θ}) × R), ιθ(η) =
(I + t2 + (D∂

θ )2)−1/2η is bounded.

Proof. We set Δθ := (D∂
θ )2 and compute:

‖ιθ(η)‖2
L2

θ
=
∫

(∂M̃×{θ})×R

dydt|(I + t2 + Δθ)− 1
2 η(y)|2

=
∫

R

dt‖(I + t2 + Δθ)− 1
2 η‖2

L2(∂M̃×{θ})

≤ ‖η‖L2(∂M̃×{θ})

∫

R

dt‖(I + t2 + Δθ)− 1
2 ‖2

where ‖(I + t2 + Δθ)− 1
2 ‖2 is the operator norm and it is considered as a function of

t. We are left with the task of proving that ‖(I + t2 + Δθ)− 1
2 ‖ is in L2(Rt), namely

∫

R

‖(I + t2 + Δθ)− 1
2 ‖2 < ∞. (10.46)

In order to establish (10.46) we write

‖(I + t2 + Δθ)− 1
2 ‖ = (1 + t2)− 1

2 ‖(I +
Δθ

1 + t2
)− 1

2 ‖ = (1 + t2)− 1
2 ‖f(D∂

θ )‖

with f(x) := (1+ x2

1+t2 )
− 1

2 . Now, the sup-norm of f(x) is equal to 1: thus ‖f(D∂
θ )‖ ≤ 1

from which (10.46) follows. ��
Sublemma 10.47. The map πθ : L2((∂M̃ × {θ}) × R) → L2(∂M̃ × {θ}), πθ(ξ)(y) =
∫

R
(I + t2 + (D∂

θ )2)−1/2ξ(y, t)dt is bounded.

Proof. We can consider a decomposable element ξ(y, t) = η(y)f(t), with η ∈
L2(∂M̃ × {θ}) and f(t) ∈ L2(Rt). Then

‖π(ξ)‖L2(∂M̃×{θ}) =
∫

∂M̃×{θ}
dy
∣

∣

∣

∫

R

dt(I + t2 + (D∂
θ )2)−1/2η(y)f(t)

∣

∣

∣

2

≤
∫

∂M̃×{θ}
dy

(∫

R

dt|(I + t2 + (D∂
θ )2)−1/2η(y)f(t)|2

)2

≤
∫

∂M̃×{θ}
dy

(∫

R

dt|f(t)|2 ·
∫

R

dt|(1 + t2 + (D∂
θ )2)−1/2η(y)|2

)

= ‖f‖2
L2(R)

∫

(∂M̃×{θ})×R

dy dt|(I + t2 + (D∂
θ )2)−1/2η(y)|2

= ‖f‖2
L2(R)

∫

R

dt‖(I + t2 + (D∂
θ )2)−1/2η(y)‖2

L2(∂M̃×{θ})

≤ ‖f‖2
L2(R)‖η‖2

L2(∂M̃×{θ})

∫

R

dt‖(I + t2 + Δθ)− 1
2 ‖2

≤ ‖ξ‖2
L2((∂M̃×{θ})×R)

∫

R

dt‖(I + t2 + Δθ)− 1
2 ‖2

where in the last term we are taking the operator norm considered as a function of
t. Using (10.46) we finish the proof. ��
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The proof of Lemma 10.43 is now complete. ��
Going back to the proof of Proposition 8.2, we observe that êDcyl ∈ OP−1 by the

results of [MoN96]. Thus, using the Lemma we have just proved, we conclude that

êDcyl ∈ OP−1 and [χ0, êDcyl ] ∈ Im

with m greater than the dimension of the leaves of (X,F). Now we need to prove
that, in fact, [χ0, êDcyl ] is in Jm, that is gcyl[χ0, êDcyl ] and [χ0, êDcyl ]gcyl are bounded;
this will ensure that êDcyl ∈ Dm.

Lemma 10.48. The operators gcyl[χ0, êDcyl ] and [χ0, êDcyl ]gcyl are bounded.

Proof. Consider gcyl[χ0, êDcyl ]; this is equal to

[gcyl, (Dcyl + s)−1][∂t, χ
0](Dcyl + s)−1 + (Dcyl + s)−1gcyl[∂t, χ

0](Dcyl + s)−1

which is in turn equal to

(Dcyl + s)−12fcyl cl(dfcyl)(Dcyl + s)−1[∂t, χ
0](Dcyl + s)−1

+(Dcyl + s)−1gcyl[∂t, χ
0](Dcyl + s)−1.

Sublemma 10.49. The operator (Dcyl + s)−1fcyl and fcyl(Dcyl + s)−1 are bounded.

Assuming the sublemma for a moment we see that in the last displayed formula
the term (Dcyl + s)−12fcyl appearing in the first summand is bounded; thus so is
(Dcyl + s)−12fcyl cl(dfcyl) since cl(dfcyl) is itself bounded (here we use the very defi-
nition of fcyl); the term (Dcyl + s)−1[∂t, χ

0](Dcyl + s)−1 is known to be bounded
(just see the proof of Lemma 10.43); next, we consider the term (Dcyl +
s)−1gcyl[∂t, χ

0](Dcyl + s)−1. We shall prove that with with Λ := (1 + (Dcyl)2)− 1
2

Λgcyl[∂t, χ
0]Λ := Tg = T := Λ[∂t, χ

0]Λ

and since the latter is bounded by Lemma 10.43, we will be able to conclude that
(Dcyl + s)−1gcyl[∂t, χ

0](Dcyl + s)−1 is bounded and that the Lemma holds.
For ξ, η in L2 we have:

〈Tθξ, η〉L2 =
∫

R×Ñ
dtdy

(

Λθgcyl[∂t, χ
0]Λθξ

)

(t, y)η(t, y)

=
∫

Ñ
dy

(∫ 0

−∞
dt(Λθξ)(t, y)∂t(gΛθη)(t, y)−

∫ 0

−∞
dt(∂tΛθξ)(t, y)(gΛθη)(t, y)

)

= −
∫

Ñ

[

(Λθξ)(t, y)g(t)(Λθη)(t, y)
]

t=0

=
∫

Ñ
(Λθξ)(0, y)(Λθη)(0, y) since g(0) = 1

= 〈(1 + (Dcyl
θ )2)− 1

2 [∂t, χ
0](1 + (Dcyl

θ )2)− 1
2 ξ, η〉L2



1796 H. MORIYOSHI AND P. PIAZZA GAFA

where for the last equality we use again the computation done in the preceding four
equalities.

We are left with the task of proving the Sublemma. To this end we observe that,
with ∂t := 1

i
d
dt we have (Dcyl)2 = ∂2

t +D2
∂X ; we also know that ∂2

t andD2
∂X commute.

It is easy to see that the (unique) self-adjoint extensions of (1 + ∂2
t ) and (1 +D2

∂X)
are invertible and that the following two equalities hold:

(1 + ∂2
t )−1 − (1 + (Dcyl)2)−1 = (1 + ∂2

t )−1((1 + (Dcyl)2) − (1 + ∂2
t ))(1 + (Dcyl)2)−1

= (1 + ∂2
t )−1D2

∂X(1 + (Dcyl)2)−1.

Moreover the last operator is non-negative; thus (1 + ∂2
t )−1 ≥ (1 + (Dcyl)2)−1 and

thus (1 + ∂2
t )−1/2 ≥ (1 + (Dcyl)2))−1/2. Then with fcyl =

√
1 + t2 as usual, we

have ‖(1 + (Dcyl)2)−1/2fcylξ‖L2 ≤ ‖(1 + ∂2
t )−1/2fcylξ‖ with ξ ∈ C∞

c . This means
that if (1 + ∂2

t )−1/2fcyl is bounded, then (1 + (Dcyl)2)−1/2fcyl is also bounded. Now
remark that (1 + ∂2

t )−1/2fcyl has Schwartz kernel equal to k(s, t) = e−|s−t|f(s) ≡
e−|s−t|√1 + s2 and that this is an L2-function on R × R. Thus the integral operator
defined on L2(R) by k(s, t) is Hilbert–Schmidt and thus, in particular, bounded. This
implies that our operator, which is really (1 + ∂2

t )−1/2fcyl ⊗ Id∂X is also bounded.
Summarizing, (1+(Dcyl)2)−1/2fcyl is bounded. Thus (Dcyl+s)−1fcyl is also bounded,
since it can be written as (Dcyl + s)−1(1 + (Dcyl)2)1/2(1 + (Dcyl)2)−1/2fcyl. Finally
notice that fcyl(Dcyl +s)−1 = [fcyl, (Dcyl +s)−1]+(Dcyl +s)−1fcyl and we know that
both summands on the right hand sides are bounded. The Sublemma (and thus the
Lemma) is proved. ��

Thus we have proved that êDcyl ∈ Dm. On the other hand, see Definition 6.38,

Bm := {� ∈ Dm ∩ Dom(∂α) | [fcyl, �], [fcyl, [fcyl, �]] is bounded }.
Thus we need to show, first of all, that it is also true that êDcyl ∈ Dom(∂α). We need
to prove that the limit

lim
t→0

1
t
(αt(êDcyl) − êDcyl)

exists in OP−1 . We compute
1
t (αt(êDcyl) − êDcyl)

= 1
t [e

its, (Dcyl + s)−1]e−its = 1
t (D

cyl + s)−1[Dcyl, eits](Dcyl + s)−1e−its

= (Dcyl + s)−1i cl(ds)eits(Dcyl + s)−1e−its

= (Dcyl + s)−1i cl(ds)[eits, (Dcyl + s)−1]e−its + (Dcyl + s)−1i cl(ds)(Dcyl + s)−1

= (Dcyl + s)−1i cl(ds)(Dcyl + s)−1[Dcyl, eits](Dcyl + s)−1e−its

+(Dcyl + s)−1i cl(ds)(Dcyl + s)−1

= (Dcyl + s)−1i cl(ds)(Dcyl + s)−1i cl(ds)iteits(Dcyl + s)−1e−its

+(Dcyl + s)−1i cl(ds)(Dcyl + s)−1

and the last term converges to (Dcyl + s)−1i cl(ds)(Dcyl + s)−1 as t → 0. Thus
êDcyl ∈ Dom(∂α). Thus, we have proved that êDcyl ∈ Dm,α := Dm ∩ Dom(∂α).
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Next we need to show that [fcyl, êDcyl ] and [fcyl, [fcyl, êDcyl ]] are bounded. How-
ever, this is elementary at this point: for example [fcyl, êDcyl ] is nothing but
(Dcyl + s)−1i cl(dfcyl)(Dcyl + s)−1 which is indeed bounded. Similarly we proceed
for [fcyl, [fcyl, êDcyl ]].

Next we prove that êDcyl ≡ (Dcyl+s)−1 ∈ Dom(δj), j = 1, 2. We only do it for δ2,
the arguments for δ1 are similar. It suffices to show that (Dcyl+s)−1 ∈ Dom(∂2) and
∂2((Dcyl + s)−1) ∈ Bm. Using [MoN96] Proposition 7.17, we know that (Dcyl + s)−1

does belong to Dom(∂2) and moreover

∂2(Dcyl + s)−1 = (Dcyl + s)−1[Dcyl, φ∂ ](Dcyl + s)−1.

In order to see that the right hand side of this formula belongs to Bm we show sep-
arately that it belongs to Dm and Dom(∂α) and that, in addition, it is such that its
commutator and its double-commutator with fcyl is bounded. First of all we employ
Lemma 10.43, which shows that (Dcyl + s)−1 ∈ Dm = Dom(δ3). Since, by the same
arguments, [Dcyl, φ∂ ](Dcyl+s)−1, which is the composition of Clifford multiplication
by dφ∂ with (Dcyl + s)−1, also belongs to Dom(δ3) we conclude that their product
is in Dom(δ3) i.e. in Dm. Here we have used the fact that the domain of a closed
derivation is a Banach algebra. Exactly the same argument, together with the above
proof that (Dcyl + s)−1 belongs to Dom(∂α), establishes that

(Dcyl + s)−1[Dcyl, φ∂ ](Dcyl + s)−1 ∈ Dom(∂α).

Finally it is clear that the above term is such that its commutator with fcyl is
bounded; similarly we proceed with its double-commutator. This completes the proof
of the Proposition 8.2.

10.7.3 Proof of Proposition 8.3. We need to show that êD ∈ Am := Am ∩
Dom(δ1)∩Dom(δ2)∩π−1(Bm), for m > dim Ṽ . First of all we prove that êD ∈ Am.
Thus we need to show that t(êD) ∈ Jm and that π(êD) ∈ Bm. However, this is
clear from our previous results. Indeed, π(êD) = êDcyl and we have proved in the
previous proposition that the right hand side is in Bm. Similarly, if χ is a smooth
approximation of χ0, we can write:

t(êD) := êD − χ0êDcylχ
0 = (êD − χêDcylχ) + (χêDcylχ− χ0êDcylχ

0). (10.50)

We have already proved that the first summand êD − χêDcylχ is in Im. We now
proceed to show that it is indeed in Jm. We need to show that ϕ(D + s)−1 and
(D + s)−1ϕ are not only in Im but in fact in Jm provided that ϕ is compactly
supported. However, this is can be proved as follows. First, gϕ(D + s)−1 is clearly
bounded, given that it is in Im (indeed gϕ is compactly supported). As far as
ϕ(D + s)−1g, we rewrite it as ϕ[(D + s)−1, g] + ϕg(D + s)−1. The latter is equal
to −ϕ(D+ s)−12 cl(df)f(D + s)−1 + ϕg(D+ s)−1. This is bounded using the above
reasoning and Sublemma 10.49. Summarizing, we have proved that êD − χêDcylχ ∈
Jm.
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As far as the second term in (10.50) is concerned we simply observe that it can
be rewritten as (χêD(χ − χ0)) + (χ − χ0)êDcylχ

0 and both these terms are m-Sch-
atten class if m > dim Ṽ , given that (χ − χ0) is compactly supported. This trick
can be also used in order to show that if we multiply by g on the left and on the
right we get a bounded operator, according to what we have observed above. Notice
that since π(êD) = êDcyl we also have, directly from the previous Subsubsection,
that êD ∈ π−1(Bm). Next we need to show that êD is in the domain of the two
closed derivations introduced in Section 6.5.4. Consider, for example, δ2. Recall that
δ2 : Domδ2 → Am(X,F ) with

Domδ2 = {a ∈ Dom δ
max
2 | δmax

2 a ∈ Am(X,F )}.
The fact that êD ≡ (s +D)−1 is in Dom δ

max
2 is proved in [MoN96] where it is also

proved that

δ
max
2 ((s +D)−1) = (s +D)−1[D,φ](s +D)−1. (10.51)

Thus we only need to show that the right hand side belongs to Am(X,F ), where
we recall that Am(X,F ) = {a ∈ A∗ such that π(a) ∈ Bm(cyl(∂X), Fcyl) and t(a) ∈
Jm(X,F )}. But the image under π of the right hand side of (10.51) is precisely
(Dcyl + s)−1[Dcyl, φ∂ ](Dcyl + s)−1 which was shown to belong to Bm at the end of
the proof of the previous Proposition. Thus we are left with the task of proving that

t((s +D)−1[D,φ](s +D)−1) ∈ Jm(X,F ).

By definition of t this means that

(s +D)−1[D,φ](s +D)−1 − χ0(Dcyl + s)−1[Dcyl, φ∂ ](Dcyl + s)−1χ0 ∈ Jm(X,F ).

However, this can be proved by first reducing to χ, a smooth approximation of χ0,
using the same reasoning as in (10.50); then, in order to show that

(s +D)−1[D,φ](s +D)−1 − χ(Dcyl + s)−1[Dcyl, φ∂ ](Dcyl + s)−1χ ∈ Jm(X,F )

we employ the same arguments used in order to establish that (10.41) is in Jm(X,F ).
The proof of Proposition 8.3 is now complete.

10.8 Proofs for the extension of the relative GV cyclic cocycle.

10.8.1 Further properties of the modular Schatten extension. This Subsection is
devoted to the statement of some technical properties of the algebras Bm. In the
next Subsection we shall use these properties in order to show that the Godbillon–
Vey eta cocycle extends from Bc to B2n+1 with 2n equal to the dimension of the
leaves.

We begin with the Banach algebra OP−1(cyl(Y ),Fcyl). Here Y = Ñ ×Γ T is a
foliated bundle without boundary.
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We have proved in Proposition 6.25 that OP−1(cyl(Y ),Fcyl) is a subalgebra of
B∗. The latter was proved to be isomorphic to C∗

R ⊗C∗(Y,F), see Proposition 4.3.
Thus, the Fourier transformation applied to B∗ has values in C0(R, C∗(Y,F)). In
particular, the image of OP−1(cyl(Y ),Fcyl) under Fourier transformation is a sub-
algebra of C0(R, C∗(Y,F)). Put it differently, the Fourier transform �̂ of an element
� ∈ OP−1(cyl(Y ),Fcyl) is a continuous function �̂ : R → C∗(Y,F) vanishing at
infinity.

Recall also the Banach algebras OP−p(cyl(Y ),F), see Proposition 6.25. Simi-
larly, we can define OP−p(Y,F) for a closed foliated bundle (Y,F). Thinking to
OP−p(Y,F) as a subalgebra of the von Neumann algebra of the foliation (Y,F),
we see that an element b in OP−p(Y,F) is given by a family of operators (bθ)θ∈T ,
with bθ acting on Sobolev spaces along N × {θ}. Let f : R → OP−p(Y,F) be a
measurable OP−p(Y,F)-valued function. This means that f = (fθ)θ∈T with fθ a
measurable function with values in the bounded operators of order −p on Sobolev
spaces on N × {θ}. We define a norm ‖f‖L2(R,OP−p(Y,F)) by setting

‖f‖L2(R,OP−p(Y,F)) = sup
θ∈T

(∫

R

|||fθ(x)|||2pdx
) 1

2

. (10.52)

Moreover, let g : R×R → OP−p(Y,F) be a measurable OP−p(Y,F)-valued function;
it is also considered as a family (gθ)θ∈T , with gθ a measurable function on R × R

with values in the bounded operators of order −p on Sobolev spaces on N ×{θ}. We
define a norm ‖g‖L2(R×R,OP−p(Y,F)) by the analogue of (10.52). It is easily verified
that L2(R × R,OP−p(Y,F)) is a Banach algebra with the convolution product g ∗ h
given by the family (gθ ∗ hθ)θ∈T , with

gθ ∗ hθ(x, z) =
∫

R

dygθ(x, y)hθ(y, z)

for g = (gθ)θ∈T , h = (hθ)θ∈T ∈ L2(R × R,OP−p(Y,F)). Notice that the prod-
uct in the integrand involves the algebra structure of OP−p(Y,F). Remark that if
p+ q > dimN then there exists a bounded pairing

〈, 〉 : L2(R × R,OP−p(Y,F)) × L2(R × R,OP−q(Y,F)) → C (10.53)

with

〈g, h〉 =
∫

R×R

dxdy ωY
Γ (g(x, y)h(x, y)∗).

Indeed, given g, h ∈ C∞
c (Gcyl), considered as elements in L2(R × R,OP−p(Y,F))

and L2(R × R,OP−q(Y,F)) respectively, we have

〈 g, h〉 ≤
∫

R×R

dxdy|ωY
Γ (g(x, y)h(x, y)∗)|
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≤ C

∫

R×R

dxdy|||g(x, y)h(x, y)∗|||p+q

≤ C

∫

R×R

dxdy|||g(x, y)|||p|||h(x, y)|||q
≤ ‖g‖L2(R×R,OP−p(Y,F))‖h‖L2(R×R,OP−q(Y,F)).

In the second step we have used [MoN96], p. 508, Cor. 6.11. Thus (10.53) is bounded.
Observe now that ωcyl

Γ (gh) = 〈 g, h∗〉; thus the above inequality also implies that

L2(R × R,OP−p(Y,F)) × L2(R × R,OP−q(Y,F)) � (g, h) → ωcyl
Γ (gh) ∈ C

(10.54)

is bounded.
The following Lemma will play a crucial role:

Lemma 10.55. (Key Lemma) (1) If � ∈ OP−p(cyl(Y ),Fcyl) and 0 ≤ q < p − 1/2
then for each x ∈ R

|||�̂(x)|||q ≤ |||�|||p (10.56)

so that, in particular, �̂(x) is an element of OP−q(Y,F) for each x ∈ R and for each
0 ≤ q < p− 1/2. Moreover there is a constant C > 0 such that

‖�̂‖L2(R,OP−q(Y,F)) ≤ C|||�|||p for 0 ≤ q < p− 1/2. (10.57)

(2) If � ∈ OP−p(cyl(Y ),Fcyl) ∩ Dom∂α,p then �̂ is differentiable as a function from
R with values in the Banach algebra OP−q(Y,F), 0 ≤ q < p− 1/2. Moreover there
is a constant C > 0 such that

‖ d�̂
dx

‖L2(R,OP−q(Y,F)) ≤ C|||∂α�|||p for 0 ≤ q < p− 1/2.

(3) Given � ∈ OP−p(cyl(Y ),Fcyl)∩Dom∂α,p, the commutator [χ0, �] admits a kernel
function k : R × R → OP−q(Y,F) and there exists a constant C such that

‖k‖L2(R×R,OP−q(Y,F)) ≤ C (|||�|||p + |||∂α�|||p) for 0 ≤ q < p− 1/2. (10.58)

Proof. For the first item we need to show that given � ∈ OP−p(cyl(Y ),Fcyl), �̂(x) is
in OP−q(Y,F) and there is a constant C > 0 such that

‖�̂‖L2(R,OP−q(Y,F)) ≤ C|||�|||p for 0 ≤ q < p− 1/2.

We consider � ∈ OP−p(cyl(Y )) as a family of operators (�θ)θ∈T with �θ : L2(cyl(Ñ)×
{θ}) → L2(cyl(Ñ) × {θ}). By definition one has

‖�θ‖n+p,n = ‖(1 + Δ)(n+p)/2�θ(1 + Δ)−n/2‖C∗
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with Δ denoting the Laplacian on the cylinder. Applying the Fourier transformation
along the cylindrical variable we obtain:

‖�‖n+p,n = sup
x∈R

‖(1 + x2 + ΔN )(n+p)/2�̂θ(x)(1 + x2 + ΔN )−n/2‖C∗

≥ sup
x∈R

‖(1 + x2)(p−q)/2(1 + ΔN )(n+q)/2�̂θ(x)(1 + x2 + ΔN )−n/2‖C∗

≥ (1 + x2)(p−q)/2‖(1 + ΔN )(n+q)/2�̂θ(x)(1 + x2 + ΔN )−n/2‖C∗

where we have used the fact that

‖(1 + x2 + ΔN )rξ‖ ≥ ‖(1 + x2)rξ‖ and ‖(1 + x2 + ΔN )rξ‖ ≥ ‖(1 + ΔN )rξ‖.

Taking adjoints we also obtain:

‖�θ‖n+p,n ≥ (1 + x2)(p−q)/2‖(1 + x2 + ΔN )−n/2(�̂θ(x))∗(1 + ΔN )(n+q)/2‖C∗

≥ (1 + x2)(p−q)/2‖(1 + ΔN )−n/2(�̂θ(x))∗(1 + ΔN )(n+q)/2‖C∗

= (1 + x2)(p−q)/2‖(1 + ΔN )(n+q)/2�̂θ(x)(1 + ΔN )−n/2‖C∗

= (1 + x2)(p−q)/2‖�̂θ(x)‖n+q,n.

Applying the same argument we prove also that ‖�θ‖−n,−n−p ≥ (1 + x2)(p−q)/2

‖�̂θ(x)‖−n,−n−q. These inequalities imply that

|||�θ|||p ≥ (1 + x2)(p−q)/2|||�̂θ(x)|||q.

Note now that (1+x2)−(p−q)/2 is a L2-function if q < p− 1/2; let C be the L2-norm
of (1 + x2)−(p−q)/2. We thus obtain

C2|||�θ|||2p ≥
∫

R

|||�̂θ(x)|||2q .

which implies that

C|||�|||p ≥ sup
θ∈T

( ∫

R

|||�̂θ(x)|||2q
)1/2

= ‖�̂‖L2(R,OP−q(Y )).

The first part of the Lemma is proved.
Next we tackle the second item. We first show that if, in addition, � ∈ Dom∂α,p,

then �̂ is differentiable as a function R → OP−q. Consider ∂α,p(�), an element in
OP−p by hypothesis. Remark that the automorphism αt appearing in the defini-
tion of ∂α, see (6.31), corresponds to the translation operator by t under Fourier
transformation. Thus we have, using item 1),

‖ �̂(x+ t) − �̂(x)
t

− ∂̂α,p(�)(x)‖OP−q ≤ ‖αt(�) − �

t
− ∂α,p(�)‖OP−p
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and we know by hypothesis that the right hand side converges to 0 as t → 0. Thus
the limit

lim
t→0

�̂(x+ t) − �̂(x)
t

exists in OP−q(Y,F) for each x ∈ R and it is equal to ∂̂α,p(�)(x). This proves the
differentiability of �̂. The estimate in this second item is now a consequence of the
one in the first item.

Finally, we tackle the third item of the Lemma. We must show that given � ∈
OP−p(cyl(Y ),Fcyl) ∩ Dom∂α,p, the commutator [χ0, �] admits a kernel function k :
R × R → OP−q(Y,F) and there exists a constant C such that

‖k‖L2(R×R,OP−q(Y,F)) ≤ C (|||�|||p + |||∂α�|||p) for 0 ≤ q < p− 1/2.

Let � be an element in OP−p(cyl(Y ),Fcyl) ∩ Dom∂α,p. We know that limt→0(�̂(x +
t) − �̂(x))/t exists in OP−q for each x ∈ R. Set

ω(u, v) =
�̂(u) − �̂(v)
u− v

.

The above argument shows that ω is a continuous function from R × R into
OP−q(Y,F). Recall the Hilbert transformation H : L2(R) → L2(R), see the proof
of Proposition 5.25. It can also be defined on L2(R,OP−q(Y,F)). Here we recall
that for � ∈ OP−p(cyl(Y ),Fcyl) we have proved that �̂ ∈ L2(R,OP−q(Y,F)). We
know that the Hilbert transformation corresponds to the multiplication operator by
2χ0 −1 under Fourier transformation F (by this we mean that F (2χ0 −1)F−1 = H).
Thus [χ0, �] corresponds to [H, �̂]/2 under Fourier transform. As already remarked
from the very definition of H we know that [H, �̂] is the integral operator with kernel
function equal to −i/π ω(u, v). This proves the first part of the statement in item
3) but for the operator F ◦ [χ0, �] ◦ F−1. We now establish the estimate claimed in
item 3) but for ω; we thus estimate ‖ω‖L2(R×R,OP−q(Y,F)), with 0 ≤ q < p− 1/2.

Let (u, v) be a point in R × R, with |u− v| ≥ 1. Setting t = u− v we get

|||ω(u, v)|||q ≤
(

|||�̂(u)|||q + |||�̂(v)|||q
)

/|t|
which implies that

∫

|u−v|≥1
dudv|||ω(u, v)|||2q ≤

∫

|t|≥1

∫

R

dtdv
(

|||�̂(v + t)|||q + |||�̂(v)|||q
)2
/t2

=
∫

|t|≥1

dt

t2

∫

R

dv(|||�̂(v + t)|||2q + |||�̂(v)|||2q + 2|||�̂(v)|||q|||�̂(v + t)|||q)

which is bounded by a constant times |||�|||2p given that �̂ ∈ L2(R,OP−q(Y,F)). In
the region |u− v| < 1 we have

�̂(u) − �̂(v) =
∫ v

u
ds
d�̂

ds
(s)
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which gives ω(u, v) = 1
u−v

∫ v
u ds

d�̂
ds(s). It then follows that

∫

|u−v|<1
dudv|||ω(u, v)|||2q ≤

∫

|t|<1
dt

∫

R

dv
1
t2

(

∫ v+t

v
ds
∣

∣

∣

∣

∣

∣

∣

∣

∣

d�̂

ds
(s)
∣

∣

∣

∣

∣

∣

∣

∣

∣

q

)2

≤
∫

|t|<1
dt

∫

R

dv
1
t2

∣

∣

∣

∫ v+t

v
ds
∣

∣

∣

∣

∣

∣

∫ v+t

v
ds
∣

∣

∣

∣

∣

∣

∣

∣

∣

d�̂

ds
(s)
∣

∣

∣

∣

∣

∣

∣

∣

∣

2

q

∣

∣

∣

=
∫

|t|<1

dt

|t|
∫

R

dv
∣

∣

∣

∫ t

0
dr
∣

∣

∣

∣

∣

∣

∣

∣

∣

d�̂

ds
(v + r)

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

q

∣

∣

∣

=
∫

|t|<1

dt

|t|
∣

∣

∣

∫ t

0
dr

∫

R

dv
∣

∣

∣

∣

∣

∣

∣

∣

∣

d�̂

ds
(v + r)

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

q

∣

∣

∣

=
∫

|t|<1
dt

∫

R

dv
∣

∣

∣

∣

∣

∣

∣

∣

∣

d�̂

ds
(v)
∣

∣

∣

∣

∣

∣

∣

∣

∣

2

q

which is bounded by a constant times |||∂α�|||2p (by item 2)). The third item of the
Key Lemma is thus proved for the operator F ◦ [χ0, �] ◦ F−1. Observe now that
conjugation by Fourier transformation F defines an isometry on L2(R × R,OP−q);
thus [χ0, �] admits a kernel function which is in L2(R × R,OP−q). This means that

∫

R×R

dudv|||ω(u, v)|||2q =
∫

R×R

dudv|||k(u, v)|||2q

and this implies the estimate we wanted to prove. ��

10.8.2 Proof of Proposition 8.12 (extension of the eta cocycle). We want to show
that if m = 2n + 1, with 2n equal to the dimension of leaves, then the eta cocycle
σm extends to a bounded cyclic cocycle on Bm.

Proof. We begin by observing that from its very definition σ2n+1 is the sum of
elements of the following type ωΓ(b[χ0, �]b′) where

– b is a product of p elements in OP−1;
– b′ is a product of s elements in OP−1;
– m = 2n+ 1 is equal to p+ s.

Decompose b according to the analogue of the direct sum decomposition explained
around formula (10.1). Then b =

(

b00 b01
b10 b11

)

with b00 = χ0bχ0, b01 = χ0b(1 − χ0),

b10 = (1−χ0)bχ0, b11 = (1−χ0)b(1−χ0). Remark for later use that b01 = χ0[χ0, b](1−
χ0), b10 = (1 − χ0)[b, χ0]χ0. Remark also that [χ0, b] =

(

0 b01
−b10 0

)

. Thus

(b[χ0, �]b′)00 = b00[χ0, �]01b′10 + b01[χ0, �]10b′00

and similarly

(b[χ0, �]b′)11 = b10[χ0, �]01b′11 + b11[χ0, �]10b′01.
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We then have that

ωΓ(b[χ0, �]b′) = ωΓ((b[χ0, �]b′)00) + ωΓ((b[χ0, �]b′)11).

Here we are using the fact that the intersection of the diagonal and the support of
the kernels defined by the off-diagonal terms in the above decomposition have mea-
sure zero. We shall work on the term ωΓ(b00[χ0, �]01b′10) = ωΓ(b00[χ0, �][b′, χ0]χ0)
that appears in ωΓ(b[χ0, �]b′) (it is the first term in the first summand on the right
hand side). Due to the key Lemma 10.55 one has [χ0, �] ∈ L2(R × R,OP−u(Y,F))
and [χ0, b′] ∈ L2(R × R,OP−t(Y,F)) with u < 1/2 and t < s − 1/2. Given b ∈
OP−p(cyl(Y ),Fcyl) and k ∈ L2(R×R,OP−u(Y,F)), we observe that the product bk
induces a bounded linear map

OP−p(cyl(Y ),Fcyl) × L2(R × R,OP−u(Y,F)) −→ L2(R × R,OP−r(Y,F))

with r < p. This is proved as follows. Let F denote the Fourier transformation with
respect to R on the family of Hilbert spaces (L2(R × N × {θ}))θ∈T and consider
F ◦k ◦F−1. It is obvious that F ◦k ◦F−1 ∈ L2(R×R,OP−u(Y,F)). It is easy to see
that b̂ = F ◦b◦F−1 with b̂ equal to the Fourier transform of b already defined before
the key Lemma; thus one has F ◦ (bk) ◦ F−1 = b̂ ◦ F ◦ k ◦ F−1. Now we apply the
key Lemma and see that b̂ belongs to L2(R,OP−q(Y,F)) with q < p−1/2; moreover
b̂ ◦ F ◦ k ◦ F−1 ∈ L2(R × R,B−(q+u)(Y,F)) since |||b̂(x)|||q < +∞. Thus, thanks to
the above formulas, F ◦ (bk) ◦ F−1 is an element of L2(R × R,OP−r(Y,F)), with
r := q + u < p, which implies that bk also belongs to L2(R × R,OP−r(Y,F)) with
r < p. Now, using the key Lemma again we have a bounded linear map

OP−p(cyl(Y ),Fcyl) ⊗ OP−1(cyl(Y ),Fcyl) ⊗ OP−s(cyl(Y ),Fcyl)
→ L2(R × R, B−r(Y,F)) ⊗ L2(R × R,OP−t(Y,F))

defined by

b⊗ �⊗ b′ → b00[χ0, �] ⊗ [b′, χ0]χ0

with r < p, t < s − 1/2. Thus one has r + t < p + s − 1/2 and hence can take
r+t > dimN. Thus we conclude, see (10.54), that ωΓ(b00[χ0, �][b′, χ0]χ0) is a bounded
linear functional with respect to b, � and b′. A similar argument can be applied to
the remaining terms

ωΓ(b01[χ0, �]10b′00) = ωΓ(χ0[χ0, b][χ0, �]b′00)
ωΓ(b10[χ0, �]01b′11) = ωΓ((1 − χ0)[χ0, b][χ0, �]b′11)
ωΓ(b11[χ0, �]10b′01) = ωΓ(b11[χ0, �][χ0, b′](1 − χ0))

to conclude that they are also bounded with respect to b. � and b′. Thus we have
proved that ωΓ(b[χ0, �]b′) is bounded with respect b, � and b′. Observing that the
derivations δj , j = 1, 2, are bounded from Bm to OP−1 we finally see that the eta
cocycle σm extends to a continuous cyclic cocycle on Bm. This completes the proof.

��
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10.8.3 Proof of Proposition 8.13 (extension of the regularized GV cyclic cochain).
Recall that we want to show that if degSp−1τ r

GV = 2p > m(m − 1)2 − 2 =
m3 − 2m2 +m− 2, with m = 2n+ 1 and 2n equal to the dimension of the leaves in
(X,F), then the regularized Godbillon–Vey cochain Sp−1τ r

GV extends to a bounded
cyclic cochain on Am.

Proof. Recall the Banach space decomposition Am = Jm ⊕ χ0Bmχ
0. We consider

elements in Am of the the following type:

– kα = k1 · · · knα
, the product of nα elements in Jm

– bβ = χ0�1χ
0�2χ

0 · · ·χ0�nβ
χ0, the product of nβ elements in χ0Bmχ

0.

We call nα and nβ the length of kα and bβ respectively.
Let aj = kj + χ0�jχ

0 ∈ Am, j = 1, . . . , r and consider the product a := a1 · · · ar.
We write a =

∑

γ a
γ with aγ a product of a certain number of elements of type kα

and of type bβ .

Lemma 10.59. Suppose that r > s(t−1)+s−1. Then for a = a1 · · · ar, a =
∑

γ a
γ ,

at least one of the following will occur for each aγ .

(1) aγ contains at least s elements in Jm;
(2) aγ contains one element of the form bβ whose length is at least t.

Proof. The proof of the Lemma is elementary. Fix r = s(t − 1) + s − 1. Then the
generic element aγ in the statement of the Lemma will satisfy at least one of the
two above conditions or will be of the form

bγ1k1b
γ2k2b

γ3 · · · bγs−1ks−1b
γs

where the length of each bγi is t − 1 and the total length is r. It is then easy to
see that if now r is strictly larger than s(t − 1) + s − 1 then one of the above two
conditions must necessarily occur. ��

Observe now that χ0�1χ
0�2χ

0−χ0�1�2χ
0 = χ0[χ0, �1][χ0, �2]χ0. This simple obser-

vation is at the basis of the following

Lemma 10.60. Let bβ be an element of length t, namely bβ =
∏t

j=1 χ
0�jχ

0 with
�j ∈ Bm. Then one has

bβ = χ0

⎛

⎝

t
∏

j=1

�j

⎞

⎠χ0 + χ0cχ0 (10.61)

where c is a linear combination of ck and ck is the product of t1 elements of type
[χ0, �i] and t2 elements of type �i with t1 + t2 = t and t1 ≥ 1. Moreover the number
of such ck is at most 2t−1 − 1

The proof of Lemma 10.60 is based on an elementary induction argument.
Consider now the product, a, of r elements ai ∈ Am and write a =

∑

γ a
γ as

above. Then, obviously, either one of the following will apply to each aγ :
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(a) aγ is of the form bβ introduced after the statement of the Proposition, namely
aγ =

∏r
i=1 χ

0�iχ
0;

(b) aγ contains at least one kj ∈ Jm.

Suppose now that r > m(m−1)+m−1 = m2 −2m. Recall the definition of the map
t : Am → Jm, see (4.13). Clearly, by definition, in case b) we have that t(aγ) = aγ ,
since aγ ∈ Jm given that Jm is an ideal in Am. In case a) we can write

t(aγ) =
r
∏

i=1

χ0�iχ
0 − χ0(

r
∏

i=1

�i)χ0 =
∑

j

χ0cjχ
0

according to Lemma 10.60. Here cj is a product of r elements out of [χ0, �i] and �i.
Then at least one of the following will occur:

(a-1) cj contains at least m elements of the form [χ0, �j ];
(a-2) cj contains a consecutive product of at least m elements in Bm.

The latter claim is proved by the same reasoning in the proof of Lemma 10.59. Now,
in the case a-1) one has cj ∈ I1, given that [χ0, �] ∈ Jm. In case a-2) we apply
the following Lemma, Lemma 10.62, in order to see that cj ∈ I1, observing that cj
contains a consecutive product of at least m elements �j and, according to Lemma
10.60, at least one [χ0, �i] (which belongs to Jm by definition). All things consid-
ered we have shown that in case a) the element cj and thus t(aγ) belongs to I1 for
a = a1 · · · ar and r > m2 − 2m.

Lemma 10.62. Recall the Banach algebra OP−p on (cyl(Y ),Fcyl), defined as the

closure of Ψ−p
c (Gcyl/RΔ) with respect to the norm ||| |||p. If p is greater than the

dimension of the leaves, then for each natural number ν ≥ 1

Jν OP−p ⊂ I1 and OP−p Jν ⊂ I1. (10.63)

Moreover if k ∈ Jν and � ∈ OP−p then

‖kb‖I1 ≤ C‖k‖Jν
|||b|||p and ‖bk‖I1 ≤ C|||b|||p‖k‖Jν

(10.64)

with C is a constant depending only on the Dirac operator D on (Y,FY ).

We remark that it is precisely for the validity of this Lemma that the extra
condition involving g(s, y) = 1 + s2 was added in the definition of Bk and Jk.

Proof. Let k ∈ Jν and let � ∈ OP−p . One can write k� = kgg−1(1 + D2)−p/2(1 +
D2)p/2�. Note that kg and (1+D2)p/2� are bounded since k ∈ Jν and � ∈ OP−p . Next
we prove that g−1(1+D2)−p/2 ∈ I1. It suffices to show that g−1/2(1+D2)−p/4 ∈ I2;
equivalently, using that g = (s+i)(s−i) we can prove that (s±i)−1(1+D2)−p/4 ∈ I2.
Let us fix the plus sign, for example. We want to show that A := (s + i)−1(1 +
D2)−q/2 ∈ I2 if 2q is greater than the dimension of the leaves. First, we conjugate A
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with the Fourier transformation in the cylindrical direction, obtaining F ◦A◦F−1 =
(i + (1

i
d
dt))

−1(1 + t2 + DY )−q/2. For fixed t ∈ R let Kθ,t the Schwartz kernel of
(1 + t2 +DY )−q/2 along Ñ × {θ}. Using elementary properties of the Fourier trans-
formation one can check that F ◦Aθ ◦ F−1 has Schwartz kernel Lθ(t, s, y, y′) given,
up to a multiplicative constant, by

Lθ(s, t, y, y′) = u(s− t)e−|s−t|Kθ,t(y, y′),

with u(x) = χ[0,+∞). Now we estimate

‖F ◦A ◦ F−1‖I2(cyl(Y ),Fcyl) = sup
θ∈T

(∫

R×R

dsdt

∫

Ñ×Ñ
dydy′χΓ|Lθ(s, t, y, y′)|2

)

≤ sup
θ∈T

(∫

R×R

dsdte−2|s−t|
∫

Ñ×Ñ
dydy′χΓ|Kθ,t(y, y′)|2

)

≤
∫

dsdte−2|s−t| 1
1 + t2

‖(1+D2
Y )−(q−1)/2‖2

I2(Y,FY )<+∞.

Here we have used the characteristic function χΓ for a fundamental domain for the
action of Γ on Ñ . We have also used the inequality of positive self-adjoint elements
(1+t2+D2

Y )−q/2 ≤ (1+t2)−1/2(1+D2
Y )−(q−1)/2 (we have already used this inequality

in the proof of the key Lemma). This implies that

sup
θ∈T

( ∫

Ñ×Ñ
dydy′χΓ|Kθ,t(y, y′)|2

)

= ‖(1 + t2 +D2
Y )−q/2‖2

I2(Y,FY )

≤ 1
1 + t2

‖(1 +D2
Y )−(q−1)/2‖I2(Y,FY )

which is what is used above. Since we have proved that ‖F ◦A ◦F−1‖I2(cyl(Y ),Fcyl) is
finite, we conclude that ‖A‖I2(cyl(Y ),Fcyl) is also finite. Thus g−1(1+D2)−p/2 is in I1

if p is greater than the dimension of the leaves. Now it is obvious that kχ0�χ0 ∈ I1

from the ideal property of I1. Similarly χ0�χ0k ∈ I1. In order to get the estimate in
10.64 we use standard properties:

‖kb‖I1 = ‖(kg)(g−1(1 +D2)−p/2)((1 +D2)p/2b)‖I1

≤ ‖g−1(1 +D2)−p/2‖I1‖kg‖C∗‖(1 +D2)p/2b‖C∗

≤ C‖kg‖C∗‖(1 +D2)p/2b‖C∗ ≤ C‖k‖Jν
|||b|||p.

The Lemma is proved. ��
Now we consider the case (b), namely aγ contains at least one kj ∈ Jm. Applying

the same argument as in Lemma 10.59 we see that at least one of the following will
occur if r > m(t− 1) +m− 1:

(b-1) aγ contains at least m elements in Jm;
(b-2) aγ contains a bβ of length t.
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In the case b-1) one has aγ ∈ I1 in an obvious way. In case b-2), we apply Lemma
10.60 in order to see that bβ has the form χ0(

∏t
i=1 �i)χ

0 +
∑

χ0cjχ
0. The first term

belongs to χ0 OP−t χ0. Then, the corresponding term in aγ will be in I1 if t ≥ m,
since we can apply Lemma 10.62 once we recall that aγ contains at least one kj ∈ Jm.
Here we are using a small extension of Lemma 10.62:

if p is greater than the dimension of the leaves, then

Jν(X,F)(χ0 OP−p(cyl ∂X,Fcyl)χ0) ⊂ I1(X,F) and
(χ0 OP−p(cyl ∂X,Fcyl)χ0)Jν(X,F) ⊂ I1(X,F).

Now recall that t(aγ) ∈ I1 for a = a1 · · · ar if r > m2 − 2m. Applying the same
reasoning to bβ with length t we obtain cj ∈ I1(cyl(∂X),Fcyl) if t > m2 − 2m. Then
the corresponding term in aγ also belongs to I1(X,F). Thus, if r > m(t−1)+(m−1),
with t − 1 = m2 − 2m, namely r > m(m − 1)2 − 1, then we can conclude that
cj ∈ I1(cyl(∂X),Fcyl) in both cases b-1) and b-2) ; consequently aγ , which in this
case is t(aγ), belongs to I1(X,F).

Now we put everything together and we show that the regularized cochain τ r
2p

extends to a continuous cochain on Am, with m = 2n+1. Recall that the regularized
cochain is defined through the regularized weight which was shown to be equal to
ωΓ ◦ t on Ac ⊂ A∗. See Proposition 5.54. Here we recall for later use that ωΓ extends
continuously to I1. For an element such as

a0 · · · ai−1 δ1(ai)ai+1 · · · aj−1 δ2(aj)aj+1 · · · a2p

with ak ∈ Ac ⊂ Am, we need to prove that

|ωΓ(t(a0 · · · ai−1 δ1(ai)ai+1 · · · aj−1 δ2(aj)aj+1 · · · a2p))| ≤ C

2p
∏

j=1

‖aj‖Am
. (10.65)

We shall prove a stronger statement, namely that the left hand side of (10.65) makes
already sense for aj ∈ Am and for the closures δj and that the estimate in (10.65)
holds.

Let a = a1a2 · · · ar, with aj ∈ Am, and write, as above, a =
∑

γ a
γ . Suppose

that r = 2p + 1, 2p > m(m − 1)2 − 2, so that r > m(m − 1)2 − 1. We have proved
that t(aγ) ∈ I1 for each γ. We will now estimate the norm ‖t(aγ)‖ in terms of the
norms ‖aj‖Am

. We shall analyze one by one the terms appearing in cases (a-1), (a-2),
(b-1), (b-2). To this end recall that if q > dimV then for k ∈ Jν and � ∈ OP−q the
following estimate holds

‖kb‖I1 ≤ C‖k‖Jν
|||b|||q and ‖bk‖I1 ≤ C|||b|||q‖k‖Jν

(10.66)

with C depending only on the Dirac operator on (Y,FY ).
Consider first the case a); then t(aγ) =

∑

j χ
0cjχ

0. In case a-1) cj contains at
least m elements in Jm, say k1 = [χ0, �1], . . . , kt = [χ0, �t] with t ≥ m; thus, without
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loss of generality, we can assume that cj = [χ0, �1] · · · [χ0, �t]�t+1 · · · �r. Then

‖χ0cjχ
0‖I1(X,F) ≤ ‖cj‖I1(cyl ∂X,Fcyl) ≤

t
∏

i=1

‖[χ0, �i]‖Im

r
∏

i=t+1

‖�i‖B∗

≤
t
∏

i=1

‖[χ0, �i]‖Jm

r
∏

i=t+1

‖�i‖B∗ ≤
r
∏

i=1

‖ai‖Am

where we recall that if a = χ0�χ0 + k then ‖a‖Am
:= ‖�‖Bm

+ ‖k‖Jm
and that

‖�‖Bm
:= |||�||| + ‖[χ0

cyl, �]‖Jm
+ |||∂α�||| + 2‖[f, �]‖B∗ + ‖[f, [f, �]]‖B∗

so that, clearly,

‖a‖Am
≥ ‖�‖Bm

≥ |||�||| + ‖[χ0, �]‖Jm
≥ ‖�‖B∗ + ‖[χ0, �]‖Jm

.

Next we tackle the case (a-2). Then we can assume without loss of generality
that cj is of the form b(�1 · · · �t)b′ with t ≥ m and b and b′ are certain products of
�i and [χ0, �j ] and either b or b′ contains at least one [χ0, �k]. Say that it is b that
contains [χ0, �k]. Then, using (10.66) for q = t and ν = m we get

‖χ0cjχ
0‖I1(X,F) ≤ ‖cj‖I1(cyl ∂X,Fcyl) ≤ C‖b‖Jm

‖b′‖B∗ |||�1 · · · �t|||t

≤ C‖b‖Jm
‖b′‖B∗

t
∏

i=1

|||�i||| ≤ C

r
∏

i=1

‖ai‖Am
.

Thus, in case (a) we have proved that ‖t(aγ)‖I1 ≤ C2r
∏r

i=1 ‖ai‖Am
since the number

of cj is at most 2r.
Now we consider the case b). In the case b-1) we have that aγ is a product

of [χ0, �1], . . . , [χ0, �t], t ≥ m and of �t+1, . . . , �r. Then, as already remarked, aγ ∈
I1, t(aγ) = aγ , and moreover, from standard estimates we have

‖aγ‖I1(X,F) ≤
t
∏

i=1

‖[χ0, �i]‖Im

r
∏

i=t+1

‖�i‖B∗ ≤
t
∏

i=1

‖[χ0, �i]‖Jm

r
∏

i=t+1

‖�i‖B∗ ≤
r
∏

i=1

‖ai‖Am
.

In case (b-2) we can write aγ = cbβc′ with bβ =
∏t

i=1 χ
0�iχ

0 and t ≥ m, and c, c′ are
certain products of ki ∈ Jm and χ0�iχ

0 for ai = ki + χ0�iχ
0, i = 1, . . . , r. Here we

know that at least one ki ∈ Jm will appear in c or c′. Say that it is c that contains
such ki. Then we can apply the same argument in case (a) and conclude that

‖aγ‖I1(X,F) ≤ ‖cbβ‖I1‖c′‖C∗ ≤ C‖c‖Jm
|||

t
∏

i=1

�i|||t‖c′‖C∗ ≤ C‖c‖Jm

t
∏

i=1

|||�i|||‖c′‖C∗

≤ C

r
∏

i=1

‖ai‖Am
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with (10.66) used in order to justify the second estimate. We finish the proof by
observing that the two closed derivations δ1 and δ2 are bounded from Am to Am

and that the inclusion Am ⊂ Am is bounded; this proves that (10.65) holds for
aj ∈ Am which is what is needed in order to conclude. ��
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bundles. Astérisque, 327 (2009), 201–287.

[BC90a] J.-M. Bismut and J. Cheeger. Families index for manifolds with boundary,
superconnections, and cones. I. Families of manifolds with boundary and Dirac
operators. Journal of Functional Analysis, (2)89 (1990), 313–363.

[BC90b] J.-M. Bismut and J. Cheeger. Families index for manifolds with boundary,
superconnections and cones. II. The Chern character. Journal of Functional Anal-
ysis, (2)90 (1990), 306–354.

[Bla98] B. Blackadar. K-theory for operator algebras. In: Mathematical Sciences
Research Institute Publications, Vol. 5, 2nd edn. Cambridge University Press,
Cambridge (1998).

[BG95] B. Botvinnik and P.B. Gilkey. The eta invariant and metrics of positive scalar
curvature. Mathematische Annalen, (3)302 (1995), 507–517.

[CW03] S. Chang and S. Weinberger. On invariants of Hirzebruch and Cheeger-Gro-
mov. Geometry & Topology, 7 (2003), 311–319.



GAFA THE GODBILLON–VEY ETA COCYCLE 1811

[Con82] A. Connes. A survey of foliations and operator algebras. In: Operator Algebras
and Applications, Part I (Kingston, Ont., 1980). Proceedings of Symposium on
Pure Mathematics, Vol. 38. American Mathematical Society, Providence (1982),
pp. 521–628.

[Con86] A. Connes. Cyclic cohomology and the transverse fundamental class of a folia-
tion. In: Geometric Methods in Operator Algebras (Kyoto, 1983). Pitman Research
Notes in Mathematical Series, Vol. 123. Longman Sci. Tech., Harlow (1986), pp.
52–144.

[Con85] A. Connes. Noncommutative differential geometry. Inst. Hautes Études Sci.
Publ. Math. 62 (1985), 257–360.

[Con94] A. Connes. Noncommutative Geometry. Academic Press, San Diego (1994).
[CM90] A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture and

hyperbolic groups. Topology, (3)29 (1990), 345–388.
[CM98] A. Connes and H. Moscovici. Hopf algebras, cyclic cohomology and the trans-

verse index theorem. Communications in Mathematical Physics, 198 (1998), 199–
246.

[Dou80] R.G. Douglas. C∗-algebra extensions and K-homology. In: Annals of Mathe-
matics Studies, Vol. 95. Princeton University Press, Princeton (1980).

[Esf12] M. Esfahani Zadeh. A higher index theorem for foliated manifolds with bound-
ary. Bulletin des Sciences Mathematiques, (2)136 (2012), 201-238.

[Get93] E. Getzler. Cyclic homology and the Atiyah-Patodi-Singer index theorem. In:
Index Theory and Operator Algebras (Boulder, CO, 1991). Contemporary Mathe-
matics, Vol. 148. American Mathematical Society, Providence (1993), pp. 19–45.
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