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Introduction

The topological invariance of the de Rham groups suggests that there should be some purely
topological way of computing them. In fact, there exists such a way and the connection
between the de Rham groups and topology was first proved by Georges de Rham himself in
the 1931.

In these notes we give a proof of de Rham’s Theorem, that states there exists an isomor-
phism between de Rham and singular cohomology groups of a smooth manifold. In the first
chapter we recall some notions of homological algebra, and then we summarize basic ideas of
singular homology and cohomology (Hp(·) and Hp(·;R)), such as the functoriality of Hp(·)
and Hp(·;R) and the existence of Mayer-Vietoris sequences for both singular homology and
cohomology.

In the second chapter, we recall the notion of de Rham cohomology and then we shall
prove that in this cohomology there also exists a Mayer-Vietoris sequence. In order to find a
connection between de Rham and singular cohomology, we need to know the Stokes’ Theorem
on a smooth manifold with boundary. Stokes’ Theorem is an expression of duality between de
Rham cohomology and the homology of chains. It says that the pairing of differential forms
and chains, via integration, gives a homomorphism from de Rham cohomology to singular
cohomology groups. We shall also see that this theorem is true on smooth manifolds with
corners. Using this special case, we shall define explicitly a homomorphism between de Rham
and singular cohomology. At the end of the chapter, we turn our attention to the de Rham’s
theorem. The proof we shall give is due to Glen E. Bredon.
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Chapter 1

Elements of Homological Algebra and
Singular Homology

In this chapter we recall some notions from basic homological algebra and algebraic topology.
We define homology (and cohomology) groups of a chain complex (respectively, cochain
complex) of modules over a ring R. Then we study some properties of a special type of
homology defined for topological spaces.

1.1 Homology of chain complexes

Let R be a ring. A sequence A = (Ap, dA) of R-modules and homomorphisms

· · · −→ Ap+1
dA−→ Ap

dA−→ Ap−1 −→ · · ·

is called a chain complex if dA ◦ dA = 0, i.e., Im(dA) ⊆ Ker(dA). Thus, Im(dA) is a
submodule of Ker(dA) and the p-th homology group of A is defined as the quotient module

Hp(A) =
Ker(dA : Ap −→ Ap−1)

Im(dA : Ap+1 −→ Ap)
.

Given two chain complexes A = (Ap, dA) and B = (Bp, dB), a chain map is a sequence of
homomorphisms f : Ap −→ Bp such that the square

Ap
dA //

f

��

Ap−1

f

��
Bp

dB
// Bp−1

commutes, i.e., f ◦ dA = dB ◦ f .
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Dually, a cochain complex is a sequence A = (Ap, dA) of R-modules and homomorphisms

· · · −→ Ap−1
dA−→ Ap

dA−→ Ap+1 −→ · · ·
such that dA ◦ dA = 0. The p-th cohomology group of A is defined as

Hp(A) =
Ker(dA : Ap −→ Ap+1)

Im(dA : Ap−1 −→ Ap)
.

Given two cochain complexes A = (Ap, dA) and B = (Bp, dB), a cochain map is a sequence
of homomorphisms f : Ap −→ Bp such that the square

Ap
dA //

f

��

Ap+1

f

��
Bp

dB
// Bp+1

commutes, i.e., f ◦ dA = dB ◦ f .

Proposition 1.1.1.

(1) Every chain map f : A −→ B between chain complexes induces a homomorphism
between homology groups.

(2) Every cochain map f : A −→ B between cochain complexes induces a homomorphism
between cohomology groups.

Proof: We only prove (2). Let [a] ∈ Hp(A). Consider the commutative square

Ap
dA //

f

��

Ap+1

f

��
Bp

dB
// Bp+1

We have dB(f(a)) = f(dA(a)) = f(0) = 0, since a ∈ Ker(dA). Then f(a) ∈ Ker(dB).
Thus we set f ∗ : Hp(A) −→ Hp(B) by f ∗([a]) = [f(a)]. We must show that f ∗ is well
defined. Let a′ ∈ Ker(dA) such that [a] = [a′]. Then a − a′ = dA(x), where a ∈ Ap−1.
We have f(a′) − f(a) = f(a′ − a) = f(dA(x)) = dB(f(x)), where f(x) ∈ Bp−1. Then
[f(a)] = [f ′(a)]. It is only left to show that f ∗ is a group homomorphism. We have

f ∗([a] + [a′]) = f ∗([a+ a′]) = [f(a+ a′)]

= [f(a) + f(a′)] = [f(a)] + [f(a′)]

= f ∗([a]) + f ∗([a′]),

for every [a], [a′] ∈ Hp(A).
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Lemma 1.1.1 (Five Lemma). Given the following commutative diagram with exact rows

A1
d1 //

f1

��

A2
d2 //

f2

��

A3
d3 //

f3

��

A4
d4 //

f4

��

A5

f5

��
B1

d′1

// B2
d′2

// B3
d′3

// B4
d′4

// B5

If f1, f2, f4 and f5 are isomorphisms, then so is f3.

Proof: First, we prove that f3 is injective. Let x ∈ A3 such that f3(x) = 0. Then
f4(d3(x)) = 0 since the diagram commutes. We get d3(x) = 0 since f4 is injective. Thus,
x ∈ Ker(d3) = Im(d2). Then there exists y ∈ A2 such that x = d2(y). Since the diagram
commutes, we have 0 = f3(x) = f3(d2(y)) = d′2(f2(y)). It follows f2(y) ∈ Ker(d′2) =
Im(d′1). Thus, there exists z ∈ B1 such that f2(y) = d′1(z). On the other hand, there
exists w ∈ A1 such that z = f1(w), since f1 is surjective. So we get

f2(y) = d′1(z) = d′1(f1(w)) = f2(d1(w)).

It follows y = d1(w) ∈ Im(d1) = Ker(d2) since f2 is injective. Hence x = d2(y) = 0, i.e.,
f3 is injective. Now we prove that f3 is surjective. Let y ∈ B3. Consider d′3(y) ∈ B4 =
Im(f4). There exists x ∈ A4 such that d′3(y) = f4(x). Since the diagram commutes, we
have f5(d4(x)) = d′4(f4(x)) = d′4(d′3(y)) = 0. It follows d4(x) = 0 since f5 is injective.
Thus x ∈ Ker(d4) = Im(d3). Then there exists z ∈ A3 such that x = d3(z). Consider
y − f3(z) ∈ B3. We have

d′3(y − f3(z)) = d′3(y)− d′3(f3(z)) = f4(x)− f4(d3(z))

= f4(x− d3(z)) = f4(0) = 0.

Then y−f3(z) ∈ Ker(d′3) = Im(d′2). Thus there exists w ∈ B2 such that y−f3(z) = d′2(w).
Since f2 is surjective, there exists u ∈ A2 such that w = f2(u). So we have

y − f3(z) = d′2(w) = d′2(f2(u)) = f3(d2(u)).

Hence y = f3(z) + f3(d2(u)) = f3(z + d2(u)) and f3 is surjective.
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1.2 Singular homology and cohomology

Let R∞ have the standard basis e1, e2, . . . , and let e0 = 0. Then the standard p-simplex is
defined as the set

∆p =

{
x =

p∑
i=0

λiei :

p∑
i=0

λi = 1, 0 ≤ λi ≤ 1

}
.

Given points v0, . . . , vp in RN , let [v0, . . . , vp] denote the map ∆p −→ RN taking

p∑
i=0

λiei −→
p∑
i=0

λivi.

This is called an affine singular p-simplex. The expresion [e0, . . . , êi, . . . , ep] denotes the
affine singular (p− 1)-simplex obtained by dropping the i-th vertex. Notice that its image is
contained in ∆p. The affine singular simplex

[e0, . . . , êi, . . . , ep] : ∆p−1 −→ ∆p

is called the i-th face map and is denoted Fi,p.

Example 1.2.1. The 0-simplex is the point 0, the 1-simplex is the line segment [0, 1], the
2-simplex is the triangle with vertices (0, 0), (1, 0) and (0, 1) together with its interior, and
the 3-simplex is the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1), together
with its interior.

Δ1

Δ2

(0,0) (1,0)

(0,1)

Δ3

(1,0,0)

(0,0,0)

(0,1,0)

(0,0,1)

IfX is a topological space then a singular p-simplex ofX is a continuous map σp : ∆p −→ X.
The singular p-chain group Cp(X) is the free abelian group generated by the singular p-
simplices of X. Thus, a p-chain in X is a formal finite sum c =

∑
σ nσσ of p-simplices σ with

integer coefficients nσ. If σ : ∆p −→ X is a singular p-simplex, then the i-th face of σ is
σ ◦ Fi,p.
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Δ1

Δ2

X

σ

F2,2

F0,2
F1,2

singular simplex and face maps

The boundary of σ is ∂p(σ) =
∑p

i=0(−1)iσ◦Fi,p, a (p−1)-chain. If c =
∑

σ nσσ is a p-chain,
then we set

∂p(c) = ∂p

(∑
σ

nσσ

)
=
∑
σ

nσ∂p(σ).

That is, ∂p is extended to Cp(X) and so we have a group homomorphism

∂p : Cp(X) −→ Cp−1(X).

Lemma 1.2.1. ∂p ◦ ∂p+1 = 0.

Proof: See [2, Lemma 16.1, page 412].

By the previous lemma, we have a chain complex

· · · −→ Cp+1(X)
∂p+1−→ Cp(X)

∂p−→ Cp−1(X) −→ · · · .
The p-th homology group of this complex Hp(X) = Ker(∂p)

Im(∂p+1)
is called the p-th singular

homology group of X. Now consider the dual sequence

· · · −→ Hom(Cp−1(X),R)
δp−1−→ Hom(Cp(X),R)

δp−→ Hom(Cp+1(X),R) −→ · · · ,
where each map δp, called the coboundary, is defined by δp(f) = f ◦ ∂p+1 for every group
homomorphism f : Cp(X) −→ R. Notice that

δp+1 ◦ δp(f) = δp+1(f ◦ ∂p+1) = f ◦ (∂p+1 ◦ ∂p+2) = f ◦ 0 = 0.

So the previous sequence defines a cochain complex. The p-th cohomology group of this
complex, denoted Hp(X;R), is called the p-th singular cohomology group of X.
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1.3 Induced homomorphisms

Any continuous map F : X −→ Y induces a homomorphism F# : Cp(X) −→ Cp(Y ) by
F#(σ) = F ◦ σ, for every singular p-simplex σ.

X

Y

F♯(σ) = F∘σ

σ F

The new homomorphism F# induces a chain map, since

F# ◦ ∂(σ) = F#

(
p∑
i=0

(−1)iσ ◦ Fi,p
)

=

p∑
i=0

(−1)iF#(σ ◦ Fi,p)

=

p∑
i=0

(−1)i(F ◦ σ) ◦ Fi,p = ∂(F ◦ σ) = ∂ ◦ F#(σ).

It follows F] induces a homomorphism between homology groups F∗ : Hp(X) −→ Hp(Y ),
given by F∗([σ]) = [F#(σ)], for every [σ] ∈ Hp(X). Notice that (G◦F )∗ = G∗◦F∗ and (idX)∗ =
idHp(X). Then, the p-th singular homology defines a covariant functor from the category
Top of topological spaces and continuous functions, to the category Ab of abelian groups
and homomorphisms. We shall also define a homomorphism F ∗ : Hp(Y ;R) −→ Hp(X;R).
Consider the diagram

· · · // Hom(Cp−1(Y ),R)
δY //

F#

��

Hom(Cp(Y ),R)
δY //

F#

��

Hom(Cp+1(Y ),R) //

F#

��

· · ·

· · · // Hom(Cp−1(X),R)
δX

// Hom(Cp(X),R)
δX

// Hom(Cp+1(X),R) // · · ·

where F# is the map F#(f)(c) = f(F ◦ c), for every homomorphism f : Cp(Y ) −→ R and
every singular p-chain c in X.
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We prove the diagram above is commutative. Let σ be a singular p-simplex in X and
f ∈ Hom(Cp−1(Y ),R). We have

δX(F#(f))(σ) = F#(f) ◦ ∂X(σ) = F#(f)(∂X(σ)) = f(F ◦ ∂X(σ)) = f(F#(∂X(σ)))

= f(∂Y (F#(σ))) = f(∂Y (F ◦ σ)) = f ◦ ∂Y (F ◦ σ) = δY (f)(F ◦ σ)

= F#(δY (f))(σ).

So F# defines a cochain map and hence it induces a homomorphism between cohomology
groups F ∗ : Hp(Y ;R) −→ Hp(X;R) given by F ∗([f ]) = [F#(f)]. Notice that (G ◦ F )∗ =
F ∗ ◦ G∗ and (idX)∗ = idHp(X;R). Then singular cohomology defines a contravariant functor
from Top to Ab.

Let {Xj} be any collection of topological spaces. Recall that the disjoint union of this
family is the set ∐

j

Xj =
⋃
j

{(x, j) : x ∈ Xj}.

Let X =
∐

j Xj. For each j, let ij : Xj −→ X be the canonical injection defined by
ij(x) = (x, j). The disjoint union topology on X is defined by the condition

U is open in X if and only if i−1
j (U) is open in Xj, for every j.

Given two continuous maps F,G : X −→ Y , a homotopy between F and G is a continuous
map H : X × [0, 1] −→ Y such that H(x, 0) = F (x) and H(x, 1) = G(x). We denote
F ' G when there exists a homotopy between F and G. A continuous map F : X −→ Y is a
homotopy equivalence if there exists a continuous map G : Y −→ X such that G◦F ' idX
and F ◦G ' idY . If F : X −→ Y is a homotopy equivalence then we say that X and Y are
homotopy equivalent.

Proposition 1.3.1 (Properties of singular cohomology).

(1) For any one-point space {q}, Hp({q};R) is trivial except when p = 0, in which case it
is 1-dimensional.

(2) If {Xj} is any collection of topological spaces and X =
∐

j Xj, then the inclusion maps
ij : Xj −→ X induce an isomorphism from Hp(X;R) to

∏
j H

p(Xj;R).

(3) Homotopy equivalent spaces have isomorphic singular cohomology groups.

Proof: See [2, Proposition 16.4].
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1.4 The Mayer-Vietoris sequence for singular

homology and cohomology

Let U and V be open subsets of X whose union is X. The commutative diagram

U
k

  @
@@

@@
@@

@@

U ∩ V

j
""F

FFFFFFFFF

i

<<xxxxxxxxxx
X

V
l

>>~~~~~~~~~

in Top gives rise to the following commutative diagram in Ab, since Hp is a functor:

Hp(U)

k∗

##F
FF

FF
FF

FF
F

Hp(U ∩ V)

j∗ $$JJJJJJJJJJJ

i∗

::ttttttttttt
Hp(X)

Hp(V)

l∗

;;xxxxxxxxxx

Theorem 1.4.1 (Mayer-Vietoris sequence for singular homology). For each p there is a
homomorphism

∂∗ : Hp(X) −→ Hp−1(U ∩ V),

called the connecting homomorphism, such that the following sequence is exact:

· · · ∂∗−→ Hp(U ∩ V)
α−→ Hp(U)⊕Hp(V)

β−→ Hp(X)
∂∗−→ Hp−1(U ∩ V)

α−→ · · · ,

where α([c]) = (i∗([c]),−j∗([c])), β([c], [c′]) = k∗([c]) + l∗([c
′]), and ∂∗([e]) = [c] provided

there exists d ∈ Cp(U) and d′ ∈ Cp(V) such that k#(d) + l#(d′) is homologus to e and
(i#(c),−j#(c)) = (∂d, ∂d′).

Proof: See [2, Theorem 16.3, page 414].
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Similarly, we have the following commutative square in Ab:

Hp(U ;R)

i∗

''OOOOOOOOOOOOO

Hp(X;R)

l∗
&&MMMMMMMMMMMM

k∗
88qqqqqqqqqqqq

Hp(U ∩ V ;R)

Hp(V ;R)

l∗

77ooooooooooooo

Theorem 1.4.2 (Mayer-Vietoris sequence for singular cohomology). The following sequence
is exact:

· · · ∂∗−→ Hp(X;R)
k∗⊕l∗−→ Hp(U ;R)⊕Hp(V ;R)

i∗−j∗−→ Hp(U ∩ V ;R)
∂∗−→ Hp+1(X;R)

k∗⊕l∗−→ · · · ,

where k∗ ⊕ l∗([f ]) = ([k#(f)], [l#(g)]), (i∗ − j∗)([f ], [g]) = [i#(f)] − [j#(g)], and ∂∗([f ]) =
[f ] ◦ ∂∗.

Remark 1.4.1. The definition of ∂∗ makes sense since Hp(W ;R) ∼= Hom(Hp(W),R), for
every open subset W of X.

Proof: See [2, Theorem 16.5, page 416].
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Chapter 2

De Rham’s Theorem

2.1 De Rham cohomology

De Rham cohomology is defined constructing a chain complex of forms on a smooth manifold
X. The groups of this complex are the sets Ωk(X) of differential k-forms, and the connecting
homomorphism is the exterior derivative. The existence of such a complex is given by the
following result.

Theorem 2.1.1. If X is a smooth manifold, then there exists a unique linear map

d : Ωk(X) −→ Ωk+1(X)

such that:

(1) If f ∈ Ω0(X) = C∞(X), then df = Df .

(2) d ◦ d = 0

(3) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, where α ∈ Ωk(X).

Proof: See [3, Theorem 2.20, page 65].

The map d is called the exterior derivative. Locally, d is defined as follows: if
(U , ϕ = (x1, . . . , xn)) is a smooth chart, then every k-form on X can be written as

α|U =
∑

i1<···<ik

ai1...ik(x)dxi1 ∧ · · · ∧ dxik ,
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where ai1...ik ∈ C∞(X), thus we define dα|U by

dα|U =
∑

i1<···<ik

dai1...ik ∧ dxi1 ∧ · · · ∧ dxik .

Recall that Ωp(X) = 0 if p > n = dim(X) and that, by convention, Ωp(X) = 0 if p < 0. We
have a cochain complex

0 −→ Ω0(X)
d−→ Ω1(X)

d−→ · · · d−→ Ωn(X)
d−→ 0 −→ · · · .

The p-th cohomology group of this complex defined by Hp
dR(X) =

Ker(d|Ωp(X))

Im(d|Ωp−1(X))
, is called

the p-th de Rham cohomology group of X. Smooth maps between manifolds F :
X −→ Y induce homomorphisms between cohomology groups, since the pullback map
F ∗ : Ωp(Y ) −→ Ωp(X) commutes with the exterior derivative. We denote the induced map
in cohomology by F ∗ : Hp

dR(Y ) −→ Hp
dR(X), which is defined as F ∗([ω]dR) = [F ∗(ω)]dR.

If F : X −→ Y and G : Y −→ Z are smooth maps, then (G ◦ F )∗ = F ∗ ◦ G∗ and
(idX)∗ = idHp

dR(X). Thus de Rham cohomology defines a contravariant functor from the cat-
egory Man of smooth manifolds and smooth maps to the category Ab. Given two smooth
maps F,G : X −→ Y , a homotopy between F and G is a smooth map H : X × [0, 1] −→ Y
such that H(x, 0) = F (x) and H(x, 1) = G(x).

Proposition 2.1.1 (Properties of de Rham cohomology).

(1) Diffeomorphic manifolds have isomorphic de Rham cohomology groups.

(2) Hp(X) = 0 if p > dim(X).

(3) H0
dR(X) ∼= R

(4) If X and Y are homotopy equivalent, then Hp
dR(X) ∼= Hp

dR(Y ) for each p.

Proof: (1) and (2) are trivial. For (3), there are no −1-forms, so Im(d|Ω−1(X)) = {0}. A
closed 0-form is a smooth real valued function f such that df = 0. Since X is connected,
we have that f must be constant. Thus H0

dR(X) = Ker(d|Ω0(X)) = {constant functions} ∼=
R. You can see a proof for (4) in [2, Theorem 15.6, page 393].

12



Proposition 2.1.2.

(1) Let {Xj} be a countable collection of smooth manifolds, and let X =
∐

j Xj. For each
p, the inclusion maps ij : Xj −→ X induce an isomorphism from Hp

dR(X) to the direct
product space

∏
j H

p
dR(Xj).

(2) Hp
dR({q}) = 0 for p > 0.

(3) Poncaré’s Lemma: Let U be a convex open subset of Rn. Them Hp
dR(U) = 0 for

p > 0.

Proof:

(1) It suffices to show that the pullback maps i∗j : Ωp(X) −→ Ωp(Xj) induce an isomor-
phism from Ωp(X) to

∏
j Ωp(Xj). Define ϕ : Ωp(X) −→∏

j Ωp(Xj) by

ϕ(ω) = (i∗1(ω), i∗2(ω), . . . ) = (ω|X1 , ω|X2 , . . . ).

This maps is clearly a homomorphism of R-modules. Now if ϕ(ω) = 0 then ω|Xj
= 0

for every j. Since X =
∐

j Xj, we have ω = 0. Let ω1, ω2, . . . be p-forms on X1,
X2, . . . , respectively. Define a smooth p-form ω on X by ω = ωj on Xj. We have
ϕ(ω) = (ω1, ω2, . . . ). Therefore, ϕ is an isomorphism.

(2) Since dim({q}) = 0, the equality follows.

(3) Fix q ∈ U . For every x ∈ U there exists a line segment joining x and q. We can define
a homotopy H : U×[0, 1] −→ U by H(x, t) = q+t(x−q). Consider the inclusion and
identity maps i : {q} −→ U and idU . We have thatH is a homotopy between idU and
the constant map c : U −→ U (x 7→ q). Then i◦ id{q} = c ' idU and id{q} ◦ i = id{q}.
Thus i is a homotopy equivalence and hence Hp

dR(U) ∼= Hp
dR({q}) = 0 for p > 0.

13



2.2 Mayer-Vietoris sequence for de Rham cohomology

Consider the commutative diagram in Top

U
k

  @
@@

@@
@@

@@

U ∩ V

j
""F

FFFFFFFFF

i

<<xxxxxxxxxx
X

V
l

>>~~~~~~~~~

where the maps i, j, k and l are inclusions and U and V is an open covering of X.
Consider the pullback maps

i∗ : Ωp(U) −→ Ωp(U ∩ V) i∗(ω) = ω|U∩V ,
j∗ : Ωp(V) −→ Ωp(U ∩ V) j∗(ω) = ω|U∩V ,

k∗ : Ωp(X) −→ Ωp(U) k∗(ω) = ω|U ,
l∗ : Ωp(X) −→ Ωp(V) l∗(ω) = ω|V .

Lemma 2.2.1. The sequence

0 −→ Ωp(X)
k∗⊕l∗−→ Ωp(U)⊕ Ωp(V)

i∗−j∗−→ Ωp(U ∩ V) −→ 0

is exact, where k∗ ⊕ l∗(ω) = (ω|U , ω|V) and (i∗ − j∗)(ω, ω′) = ω|U∩V − ω′|U∩V .

Proof:

(1) k∗ ⊕ l∗ is injective: Let ω be a p-form on U ∩ V such that k∗ ⊕ l∗(ω) = 0. Then
ω|U = 0 and ω|V . Hence ω = 0 on X.

(2) Ker(i∗ − j∗) = Im(k∗ ⊕ l∗): Let ω ∈ Ωp(X). We have

(i∗ − j∗) ◦ (k∗ ⊕ l∗)(ω) = (i∗ − j∗)(ω|U , ω|V) = (ω|U)|U∩V − (ω|V)|U∩V
= ω|U∩V − ω|U∩V = 0

Then Ker(i∗ − j∗) ⊇ Im(k∗ ⊕ l∗). Now let (ω, ω′) ∈ Ker(i∗ − j∗). We have ω|U∩V =
ω′|U∩V , i.e., ω and ω′ agree on U ∩ V . So we define η ∈ Ωp(X) by setting

η =

{
ω on U ,
ω′ on V .

Clearly we have k∗ ⊕ l∗(η) = (ω, ω′). Hence the other inclusion follows.
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(3) i∗ − j∗ is surjective: Let ω be an arbitrary p-form on U ∩ V and let {ϕ, ψ} be a
partition of unity subordinate to the covering {U ,V}. Define η ∈ Ωp(U) by

η =

{
ψ · ω on U ∩ V ,
0 on U − supp(ψ)

We verify that η is well defined. Let x ∈ (U ∩ V) ∩ (U − supp(ψ)) = (U ∩ V) −
supp(ψ). We have ψ(x) · ω(x) = 0 since ω(x) = 0. Then η is a smooth p-form on
U . Similarly, we define the smooth p-form η′ on V by

η′ =

{
−ϕ · ω on U ∩ V ,
0 on V − supp(ϕ).

Hence (η, η′) ∈ Ωp(U)⊕ Ωp(V) and

(i∗ − j∗)(η, η′) = η|U∩V − η′|U∩V = ψ · ω + ϕ · ω = (ψ + ϕ) · ω = ω

Theorem 2.2.1. There exists a long exact sequence

· · · ∆−→ Hp
dR(X)

k∗⊕l∗−→ Hp
dR(U)⊕Hp

dR(V)
i∗−j∗−→ Hp

dR(U ∩ V)
∆−→ Hp+1

dR (X) −→ · · ·

Proof: We shall use the following commutative diagram with exact rows in order to
construct the connecting homomorphism ∆.

...

��

...

��

...

��
0 // Ωp−1(X) //

��

Ωp−1(U)⊕ Ωp−1(V) //

��

Ωp−1(U ∩ V) //

��

0

0 // Ωp(X) //

��

Ωp(U)⊕ Ωp(V) //

��

Ωp(U ∩ V) //

��

0

0 // Ωp+1(X) //

��

Ωp+1(U)⊕ Ωp+1(V) //

��

Ωp+1(U ∩ V) //

��

0

...
...

...
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Let ω be a closed p-form on U ∩ V . Since i∗ − j∗ is surjective, there exists (η, η′) ∈
Ωp(U)⊕Ωp(V) such that ω = (i∗ − j∗)(η, η′) = η|U∩V − η′|U∩V . Since ω is closed we have
(i∗−j∗)◦(d, d)(η, η′) = (i∗−j∗)(dη, dη′) = 0. We get (dη, dη′) ∈ Ker(i∗−j∗) = Im(k∗⊕l∗).
Thus there exists α ∈ Ωp+1 such that (dη, dη′) = k∗ ⊕ l∗(α). On the other hand

k∗ ⊕ l∗(dα) = (d, d)(k∗ ⊕ l∗(α)) = (d, d)(dη, dη′) = (ddη, ddη′) = (0, 0).

Since k∗ ⊕ l∗ is injective, we get dα = 0. Hence α is a closed (p + 1)-form. It makes
sense to define ∆([ω]dR) = [α]dR. We verify that ∆ is well defined. The class [α]dR

does not depend on the choice of the pair (η, η′). Let (ζ, ζ ′) ∈ Ωp(U) ⊕ Ωp(V) such that
w = (i∗ − j∗)(ζ, ζ ′). Let α′ be a (p+ 1)-form such that k∗ ⊕ l∗(α′) = (dζ, dζ ′). Note that
(η, η′) − (ζ, ζ ′) ∈ Ker(i∗ − j∗) = Im(k∗ ⊕ l∗). Then there exists β ∈ Ωp(X) such that
(η, η′)− (ζ, ζ ′) = k∗ ⊕ l∗(β). We have

k∗ ⊕ l∗(α− α′) = (dη − dζ, dη′ − dζ ′) = d ◦ (k∗ ⊕ l∗)(β) = (k∗ ⊕ l∗)(dβ).

Since k∗ ⊕ l∗ is injective, we get α− α′ = dβ, i.e., [α]dR = [α′]dR. Now we prove that the
sequence

· · · ∆−→ Hp
dR(X)

k∗⊕l∗−→ Hp
dR(U)⊕Hp

dR(V)
i∗−j∗−→ Hp

dR(U ∩ V)
∆−→ Hp+1

dR (X) −→ · · ·
is exact. Exactness at Hp

dR(U)⊕Hp
dR(V) follows from the previous lemma.

(i) Ker(k∗ ⊕ l∗) = Im(∆): Let ∆([ω]dR) ∈ Im(∆). We have

k∗ ⊕ l∗(∆([ω]dR)) = [k∗ ⊕ l∗(α)]dR = [(dη, dη′)]dR = ([dη]dR, [dη
′]dR) = 0.

So the inclusion ⊇ holds. Now let [α]dR ∈ Ker(k∗ ⊕ l∗). We have [α|U ]dR = 0 and
[α|V ]dR = 0, i.e. α|U = dβ for some β ∈ Ωp(U), and α|V = dγ for some γ ∈ Ωp(V).
Let ω be the following p-form on U ∩ V . We have ω = β|U∩V−γ|U∩V = (i∗−j∗)(β, γ).
Then dω = dβ|U∩V − dγ|U∩V = α− α = 0, i.e. ω is a closed p-form on U ∩ V . Also,
k∗ ⊕ l∗(α) = (α|U , α|V) = (dβ, dγ). Hence [α]dR = ∆([ω]dR) and the other inclusion
also holds.

(ii) Ker(∆) = Im(i∗ − j∗): Let (i∗ − j∗)([η]dR, [η
′]dR) ∈ Im(i∗ − j∗), where η and η′ are

closed p-forms on U and V , respectively. We have

∆ ◦ (i∗ − j∗)([η]dR, [η
′]dR) = ∆([η|U∩V − η′|U∩V ]dR) = 0

since dη = 0 and dη′ = 0. So we get the inclusion ⊇. Now let [ω]dR ∈ Ker(∆).
Then [α]dR = 0, i.e., there exists β ∈ Ωp(X) such that α = dβ. Let η ∈ Ωp(U)
and η′ ∈ Ωp(V) satisfying α|U = dη, α|V = dη′ and ω = η|U∩V − η′|U∩V . We have
d(η−β) = 0 and d(η′−β) = 0. It follows ([η−β]dR, [η

′−β]dR) ∈ Hp
dR(U)⊕Hp

dR(V).
Hence (i∗ − j∗)([η − β]dR, [η

′ − β]dR) = [η|U∩V − η′|U∩V ]dR = [ω]dR and the other
inclusion holds
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Corollary 2.2.1. The connecting homomorphism ∆ : Hp
dR(U ∩ V) −→ Hp+1

dR (X) is defined as
follows: for each ω ∈ Ker(d : Ωp(U ∩ V) −→ Ωp+1(X)), there are smooth p-forms η ∈ Ωp(U)
and η′ ∈ Ωp(V) such that ω = η|U∩V−η′|U∩V , and then ∆([ω]dR) = [dη]dR, where η is extended
by zero to all of X.

Proof: Let η and η′ be the forms defined in Part (3) of Lemma 2.2.1’s proof. Then
ω = η − η′ on U ∩ V . Let σ be the p-form on X obtained by extending dη to be zero
outside U ∩ V . We have σ|U∩V = dη|U∩V = d(ω + η′)|U∩V = dη′|U∩V , since ω is closed.
It follows σ|U = σ|V = dη = dη′ = 0 on X − U ∩ V , and σ|U = σ|U∩V = dη|U∩V and
σ|V = σ|U∩V = dη′|U∩V on U ∩ V . Then ∆([ω]dR) = [σ]dR.

2.3 Stokes’ Theorem

A topological manifold with boundary is a topological space X such that every point
has a neighbourhood homeomorphic to an open subset of Euclidean half-space

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

Let X be a topological manifold with boundary. The interior of X, denoted int(X), is the
set of points in X which have neighbourhoods homeomorphic to an open subset of int(Hn).
The boundary of X, denoted ∂X, is the complement of int(X) in X.

To see how to define a smooth structure on a topological manifold with boundary, recall that
a smooth map from an arbitrary subset A ⊆ Rn to Rk is defined to be a map that admits a
smooth extension to an open neighbourhood of each point of A. Thus if U is an open subset
of Hn, a map F : U −→ Rk is smooth if for each x ∈ U , there exists an open set V ⊆ Rn and
a smooth map F̃ : V −→ Rk that agrees with F on U . If F is such a map, the restriction of
F to U ∩ int(Hn) is smooth in the usual sense. By continuity, all the partial derivatives of F
at points of U ∩ ∂Hn are determined by their values in int(Hn), and therefore in particular
are independent of the choice of the extension.

Now let X be a topological manifold with boundary. A smooth structure for X is defined to
be a maximal smooth atlas. With such a structure X is called a smooth manifold with
boundary. A point p ∈ X is called a boundary point if its image under some smooth
chart is in

∂(Hn) = {(x1, . . . , xn) ∈ Rn : xn = 0},
and an interior point if its image under some smooth chart is in

int(Hn) = {(x1, . . . , xn) ∈ Rn : xn > 0}.

The boundary ∂X is an (n − 1)-dimensional manifold. If X is oriented, then it induces an
orientation on ∂X (see [2, Proposition 13.17, page 339]).

17



Theorem 2.3.1 (Stokes). Let X be a smooth and oriented n-dimensional manifold with
boundary, and let ω be an (n− 1)-form on X having compact support. Then∫

X

dω =

∫
∂X

ω.

Proof: See [2, Theorem 14.9, page 358].

Now we study the notion of a manifold with corners. Consider the set

Rn
+ = {(x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0}.

Suppose X is a topological manifold with boundary. A chart with corners for X is a pair
(U , ϕ), where U is an open subset of X and ϕ is a homeomorphism from U to a (relatively)
open set Ũ ⊆ Rn

+.

Ũ

Rn
+

U

X φ

Two charts with corners (U , ϕ), (V , ψ) are said to be smoothly compatible if the composite
map ϕ ◦ ψ−1 : ψ(U ∩ V) −→ ϕ(U ∩ V) is smooth. A smooth structure with corners on
a topological manifold with boundary is a maximal collection of smoothly compatible charts
with corners whose domains cover the entire set X. A topological manifold with boundary
together with a smooth structure with corners is called a smooth manifold with corners.

Theorem 2.3.2 (Stokes’ Theorem on Manifolds with Corners). Let X be a smooth and
oriented n-dimensional manifold with corners, and let ω be an (n − 1)-form on X having
compact support. Then ∫

X

dω =

∫
∂X

ω.
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Proof: See [2, Theorem 14.20, page 367].

2.4 Smooth singular cohomolohy and

de Rham homomorphisms

The de Rham’s Theorem states that there exists an isomorphism from Hp
dR(X) to Hp(X;R),

for every smooth manifold X. A good way to construct such a homomorphism is defining
a cochain map ψ : Ωp(X) −→ Hom(Cp(X),R) and then take the induced homomorphism
in cohomology. Let ω be a p-form on X and σ be a singular simplex. We define a map
Cp(X) −→ R by pulling ω back by σ. However, the problem with this procedure is that σ
need not be smooth. So we are going to consider smooth singular simplices in order to pull
ω back by σ.

A smooth singular p-simplex in X is a smooth map σ : ∆p −→ X. Recall that smoothness
is defined for maps whose domain is an open set. Thus by σ smooth on ∆p we mean there is
an open set U ⊇ ∆p and a smooth map F : U −→ X such that F |U = σ.

U X

σ

smooth singular simplex

The subgroup of Cp(X) generated by all smooth singular p-simplices is called the smooth
chain group in dimension p and is denoted C∞p (X). An element c ∈ C∞p (X) is called
a smooth chain. Consider the boundary map ∂ : Cp(X) −→ Cp−1(X) given by ∂σ =∑p

i=0(−1)iσ ◦Fi,p, where Fi,p : ∆p−1 −→ ∆p is the i-th face map. Restricting ∂ to C∞p (X) we
have that ∂σ is a smooth singular p− 1 simplex. Recall that ∂ ◦ ∂ = 0, so we get a complex

· · · −→ C∞p+1(X)
∂−→ C∞p (X)

∂−→ C∞p−1(X) −→ · · · .
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Applying the contravariant functor Hom(−,R) we obtain the associated dual complex

· · · −→ Hom(C∞p−1(X),R)
δ−→ Hom(C∞p (X),R)

δ−→ Hom(C∞p+1(X),R) −→ · · · .

The p-th cohomology group of the previous cochain complex

Hp
∞(X;R) =

Ker(δ : Hom(C∞p (X),R) −→ Hom(C∞p+1(X),R))

Im(δ : Hom(C∞p−1(X),R) −→ Hom(C∞p (X),R))
,

is called the p-th smooth singular cohomology group of X. If F : X −→ Y is a smooth
map and c is a smooth chain in X, then F ◦ c is a smooth chain in Y . So we have that
F ](f) ∈ Hom(C∞p (X),R) for every c ∈ Hom(C∞p (Y ),R). Hence, smooth maps F : X −→ Y
induce homomorphisms between smooth cohomology groups F ∗ : Hp

∞(Y ;R) −→ Hp
∞(X;R).

Given a smooth singular p-simplex σ : ∆p −→ X and a p-form on X, we integrate the
pullback σ∗ω on ∆p and set ∫

σ

ω :=

∫
∆p

σ∗ω. (1)

There is a problem when we consider the previous integral. Recall that integration of forms
is defined over oriented manifold. The standard p-simplex ∆p is an example of a manifold
with corners whose boundary is ∂∆p. Also, we can give to ∆p an orientation as follows: take
the positive orientation on the 0-simplex ∆0 and, if an orientation has been chosen for ∆p−1,
choose the one on ∂∆p making the face map F0,p : ∆p−1 −→ ∂∆p orientation preserving.
Hence, it makes sense to define (1). Now we define

∫
c
ω for any smooth chain c =

∑
σ nσσ in

C∞p (X) extending (1) linearly, i.e., ∫
c

ω :=
∑
σ

nσ

∫
σ

ω.

This provides a homomorphism Ψ(ω) : C∞p (X) −→ R given by Ψ(ω)(c) =
∫
c
ω. Thus, for

each p-form ω on X we have a homomorphism Ψ(ω) ∈ Hom(C∞p (X),R). So we get a R-linear
map of vector spaces Ψ : Ωp(X) −→ Hom(C∞p (X),R).

Proposition 2.4.1. The diagram

· · · // Ωp−1(X)
d //

Ψ

��

Ωp(X) d //

Ψ

��

Ωp+1(X) //

Ψ

��

· · ·

· · · // Hom(C∞p−1(X),R)
δ
// Hom(C∞p (X),R)

δ
// Hom(C∞p+1,R) // · · ·

commutes, i.e., the map Ψ : Ωp(X) −→ Hom(C∞p (X),R) is a cochain map
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Proof: Let ω be a (p− 1)-form on X and σ a smooth singular p-simplex in X. We have

δ(Ψ(ω))(σ) = Ψ(ω)(∂σ) =

∫
∂σ

ω =

∫
∑p

i=0(−1)iσ◦Fi,p

ω =

p∑
i=0

(−1)i
∫
σ◦Fi,p

ω

=

p∑
i=0

(−1)i
∫

∆p−1

(σ ◦ Fi,p)∗ω =

p∑
i=0

(−1)i
∫

∆p−1

F ∗i,p ◦ σ∗ω

On the other hand

∫
∆p−1

F ∗i,p ◦ σ∗ω =

{ ∫
Fi,p(∆p−1)

σ∗ω if Fi,p is orientation preserving,

−
∫
Fi,p(∆p−1)

σ∗ω if Fi,p is orientation reversing.

Let π be the map sending e0 7→ ei, e1 7→ e0, . . . , ei 7→ ei−1, ei+1 7→ ei+1, 7→, ep 7→ ep. We
shall see that Fi,p = π ◦ F0,p.

π ◦ F0,p(e0) = π(e1) = e0

π ◦ F0,p(e1) = π(e2) = e1

...

π ◦ F0,p(ei−1) = π(ei) = ei−1

π ◦ F0,p(ei) = π(ei+1) = ei+1

...

π ◦ F0,p(ep−1) = π(ep) = ep.

Hence Fi,p = π ◦ F0.p. Recall that F0,p is orientation preserving. So Fi,p is orientation
preserving if and only if π is. On the other hand, π is the permutation

(0, 1, . . . , i, i+ 1, . . . , p) 7→ (i, 0, . . . , i− 1, i+ 1, · · · , p)

whose sign is (−1)i. It follows Fi,p is orientation preserving if and only if i is even.
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Thus we have

δ(Ψ(ω))(σ) =

p∑
i=0

(−1)i
∫

∆p−1

F ∗i,p ◦ σ∗ω =

p∑
i=0

(−1)i(−1)i
∫
Fi,p(∆p−1)

σ∗ω

=

p∑
i=0

∫
Fi,p(∆p−1)

σ∗ω

=

∫
⋃p

i=0 Fi,p(∆p−1)

σ∗ω since the integral is additive

=

∫
∂∆p

σ∗ω

=

∫
∆p

d(σ∗ω) by the Stokes’ Theorem on manifolds with corners

=

∫
∆p

σ∗(dω) =

∫
σ

dω = Ψ(dω)(σ)

By the previous proposition we have that Ψ induces a homomorphism between cohomology
groups Ψ∗ : Hp

dR(X) −→ Hp
∞(X;R) given by Ψ∗([ω]dR) = [Ψ(ω)]. Now we see the relation

between the induced homomorphisms Ψ∗ and F ∗.

Proposition 2.4.2. If F : X −→ Y is a smooth map then the following diagram commutes:

Hp
dR(Y ) F ∗ //

Ψ∗

��

Hp
dR(X)

Ψ∗

��
Hp

dR(Y ;R)
F ∗

// Hp
∞(X;R)

Proof: Let ω be a closed p-form on Y and σ a smooth singular p-simplex in X. We have

Ψ(F ∗ω)(σ) =

∫
σ

F ∗ω =

∫
∆p

σ∗F ∗ω =

∫
∆p

(F ◦ σ)∗ω =

∫
F◦σ

ω = Ψ(ω)(F ◦ σ) = F ](Ψ(ω))(σ).

Then Ψ(F ∗ω) = F ](Ψω) for every closed p-form ω on Y , and hence

Ψ∗ ◦ F ∗([ω]dR) = F ∗ ◦Ψ∗([ω]dR).
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A smooth manifold X is said to be a de Rham manifold if for each p the homomorphism
Ψ∗ : Hp

dR(X) −→ Hp
∞(X;R) is an isomorphism.

Corollary 2.4.1. If F : X −→ Y is a diffeomorphism and X is a de Rham manifold, then
Y is also de Rham.

Proof: The induced homomorphisms F ∗ in both de Rham and smooth singular cohomol-
ogy are isomorphisms since F : X −→ Y is a diffeomorphism. By the previous proposi-
tion, we can write Ψ∗Y : Hp

dR(Y ) −→ Hp
∞(Y ;R) as the composition Ψ∗ = (F ∗)−1◦Ψ∗X ◦F ∗,

where (F ∗)−1, Ψ∗X and F ∗ are isomorphisms. Hence Ψ∗Y is an isomorphism, i.e., Y is a
de Rham manifold.

2.5 De Rham’s Theorem

Using the last definition we gave in the previous section, we can formulate de Rham’s Theorem
as follows:

Theorem 2.5.1. Every smooth manifold is de Rham.

Before giving the proof, we introduce some definitions in order to simplify the proof. If X is
a smooth manifold, an open cover {Ui} of X is called a de Rham cover if each open set Ui
is a de Rham manifold, and every finite intersection Ui1 ∩ · · · ∩ Uik is de Rham. A de Rham
cover that is also a basis fir the topology of X is called a de Rham basis for X. First, we
are going to prove the theorem for five particular cases:

Case 1. If {Xj} is any countable collection of de Rham manifolds, then their disjoint union
is de Rham.

Proof: Let X =
∐

j Xj. We know the inclusion maps ij : Xj −→ X induce isomor-
phisms ϕ : Hp

dR(X) −→ ∏
j H

p
dR(Xj) and ϕ′ : Hp

∞(X;R) −→ ∏
j H

p
∞(Xj;R). Recall that

ϕ([ω]dR) = ([ω|Xj
]dR)j. On the other hand, if f : Cp

∞(X) −→ R then ϕ′([f ]) = ([fj])j,
where fj : Cp

∞(Xj) −→ R is the linear map given by fj(σ) = f(ij ◦ σ), for every smooth
singular p-simplex σ : ∆p −→ Xj. For each j, we have an isomorphism

Ψ∗j : Hp
dR(Xj) −→ Hp

∞(Xj;R).
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So
∏

j Ψ∗j :
∏

j H
p
dR(Xj) −→

∏
j H

p
∞(Xj;R) is an isomorphism. Let ω be a closed p-form

on X. We have ∏
j

Ψ∗j ◦ ϕ([ω]dR) =
∏
j

Ψ∗j(([ω|Xj
])j) = (Ψ∗j([ω|Xj

]dR))j

ϕ′ ◦Ψ∗([ω]dR) = ϕ′([Ψ(ω)]) = ([(Ψ(ω))j])j

Let σj be a p-simplex on Xj.

Ψj(ω|Xj
)(σj) =

∫
σj

ω|Xj
=

∫
∆p

σ∗jω|Xj
,

(Ψ(ω))j(σj) = Ψ(ω)(ij ◦ σj) =

∫
ij◦σj

ω =

∫
∆p

σ∗j i
∗
jω =

∫
∆p

σ∗jω|Xj
.

Hence
∏

j Ψ∗j ◦ ϕ([ω]dR) = ϕ′ ◦Ψ∗([ω]dR). So we have
∏

j ψ
∗
j ◦ ϕ = ϕ′ ◦Ψ∗. Since ϕ′ is an

isomorphism, we get Ψ∗ = (ϕ′)−1 ◦∏j ψ
∗
j ◦ ϕ. It follows that Ψ∗ is an isomorphism.

Case 2. Every convex open subset of Rn is de Rham.

Proof: Let U be a convex open subset of Rn. By Poincaré’s Lemma, Hp
dR(U) = Hp

dR({q}),
where q is some fixed point in U . By Proposition 1.3.1, we also have Hp

∞(U ;R) =
Hp
∞({q};R). If p ≥ 1, we have Hp

dR({q}) = 0 and Hp
∞({q};R) = 0. In this case, Ψ∗ is

clearly an isomorphism. If p = 0 then H0
dR({q}) = R and H0

∞({q};R) = R. So it is only
left to show that Ψ∗ is non-zero, since it is a group homomorphism. Let σ be a smooth
0-simplex and f the constant function 1, then

Ψ(f)(σ) =

∫
σ

f =

∫
∆0

σ∗f = (f ◦ σ)(0) = 1.

We have Ψ(1) ≡ 1 and then [Ψ(f)] 6= 0. Hence Ψ∗ is not the zero map, i.e., ψ∗ is an
isomorphism if p = 0.

Case 3. If X has a finite de Rham cover, then X is de Rham.

Proof: We use induction. Let {U ,V} be a finite de Rham cover of X. Then U , V and
U ∩ V are de Rham manifolds. We shall prove that X = U ∪ V is de Rham. Considering
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the Mayer-Vietoris sequences for both de Rham and smooth singular cohomology, we
have the following diagram

Hp−1
dR (U)⊕Hp−1

dR (V) //

(Ψ∗U ,Ψ
∗
V )

��

Hp−1
dR (U ∩ V)

∆ //

Ψ∗U∩V

��

Hp
dR(X) //

Ψ∗

��
Hp−1
∞ (U ;R)⊕Hp−1

∞ (V ;R) // Hp−1
∞ (U ∩ V ;R)

∂∗
// Hp
∞(X;R) //

// Hp
dR(X) //

Ψ∗

��

Hp
dR(U)⊕Hp

dR(V) //

(Ψ∗U ,Ψ
∗
V )

��

Hp
dR(U ∩ V)

Ψ∗U∩V

��
// Hp
∞(X;R) // Hp

∞(U ;R)⊕Hp
∞(V ;R) // Hp

∞(U ∩ V ;R)

We prove this diagram commutes:

(1) Ψ∗U∩V ◦ (i∗ − j∗) = (i∗ − j∗) ◦ (Ψ∗U ,Ψ
∗
V): Let ([ω]dR, [ω

′]dR) ∈ Hp−1
dR (U) ⊕ Hp−1

dR (V).
We have

Ψ∗U∩V ◦ (i∗ − j∗)([ω]dR, [ω
′]dR) = Ψ∗U∩V([ω|U∩V ]dR − [ω′|U∩V ]dR)

= Ψ∗U∩V([ω|U∩V ]dR)−Ψ∗U∩V([ω′|U∩V ]dR)

= [ΨU∩V(ω|U∩V)]− [ΨU∩V(ω′|U∩V)]

= (i∗ − j∗)([ΨU(ω)], [ΨV(ω′)])

= (i∗ − j∗) ◦ (Ψ∗U ,Ψ
∗
V)([ω]dR, [ω

′]dR).

(2) (Ψ∗U ,Ψ
∗
V) ◦ (k∗ ⊕ l∗) = (k∗ ⊕ l∗) ◦Ψ∗: Let [ω] ∈ Hp

dR(U ∩ V).

(Ψ∗U ,Ψ
∗
V) ◦ (k∗ ⊕ l∗)([ω]dR) = (Ψ∗U ,Ψ

∗
V)([ω|U ]dR, [ω|V ]dR)

= (Ψ∗U([ω|U ]dR),Ψ∗V([ω|V ]dR))

= (Ψ∗([ω|U ]dR),Ψ∗([ω|V ]dR)) = ([ΨU(ω|U)], [ΨV(ω|V)])

= (k∗([Ψ(ω)]), l∗([Ψ(ω)])) = (k∗ ⊕ l∗)([Ψ(ω)])

= (k∗ ⊕ l∗) ◦Ψ∗([ω]dR)

(3) Ψ∗ ◦ ∆ = ∂∗ ◦ Ψ∗|U∩V : Using the identification Hp
∞(U ∩ V ;R) ∼=

Hom(H∞p (U ∩ V);R), where H∞p (U ∩ V) denote the smooth singular homology. Let

[ω]dR ∈ Hp−1
dR (U ∩ V) and [e] ∈ Hp

∞(U ∪ V ;R). We have to show

Ψ∗(∆([ω]dR))([e]) = ∂∗(Ψ∗|U∩V([ω]dR))([e]),
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where ∂∗ : Hom(H∞p−1(U ∩ V),R) −→ Hom(H∞p (U ∪ V),R) is the dual map of ∂∗ :
Hp(U ∪ V) −→ Hp−1(U ∩ V), the connecting homomorphism in the Mayer-Vietoris
for singular homology. We have ∂∗([e]) = [c], provided there exist d ∈ C∞p (U) and
d′ ∈ C∞p (V) such that [k]d+ l]d

′] = [e] and (i]c− j]c) = (∂d, ∂d′). Then

∂∗(Ψ∗|U∩V([ω]dR))([e]) = Ψ∗|U∩V([ω]dR)([e]) = Ψ∗|U∩V([ω]dR)([c]) =

∫
c

ω,

Ψ∗(∆([ω]dR))([e]) =

∫
e

σ, where σ is a smooth p-form representing ∆([ω]dR).

Thus, it is only left to show that
∫
e
σ =

∫
c
ω. By Corollary 2.2.1, we can choose

σ = dη (extended by zero to all of U ∪ V), where η ∈ Ωp−1(U) and η′ ∈ Ωp−1(V) are
smooth forms such that ω = η|U∩V − η′|U∩V . On the other hand, c = ∂d, where d
and d′ are smooth p-chains in U and V , respectively, such that d+ d′ represents the
same homology class of e. Since ∂d+ ∂d′ = ∂e = 0 and dη|U∩V − dη′|U∩V = dω = 0,
we have ∫

c

ω =

∫
∂d

ω =

∫
∂d

η −
∫
∂d

η′ =

∫
∂d

η −
∫
−∂d′

η′

=

∫
∂d

η +

∫
∂d′
η′ =

∫
d

dη +

∫
d′
dη′

=

∫
d

dη +

∫
d′
dη =

∫
d

σ +

∫
d′
σ

=

∫
e

σ.

Therefore, Ψ∗ ◦∆ = ∂∗ ◦Ψ∗|U∩V .

We have that the previous diagram commutes. Moreover, (Ψ∗U ,Ψ
∗
V) and Ψ∗U∩V are iso-

morphisms. It follows by the Five Lemma that Ψ∗ is an isomorphism.

Now assume the statement is true for smooth manifolds admitting a de Rham cover with
k ≥ 2 sets, and suppose that {U1, . . . ,Uk+1} is a de Rham cover of X. Put

U = U1 ∪ · · · ∪ Uk and V = Uk+1.

We have that U and V are de Rham manifolds. Note that

U ∩ V = (U1 ∩ Uk+1) ∪ · · · ∪ (Uk ∩ Uk+1),

where each Ui ∩ Uk+1 is de Rham and every finite intersection of Ui ∩ Uk+1’s is de Rham.
It follows by induction hypothesis that U ∩ V is de Rham. Applying the same argument
above, we obtain X = U ∪ V is de Rham.
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In Case 4 we shall prove that every smooth manifold having a de Rham basis is de Rham.
Before giving a proof of this fact, we need to show the existence of exhaustion functions
for any smooth manifold. If X is a smooth manifold, an exhaustion function for X is a
continuous function f : X −→ R with the property that the set f−1((−∞, c]) is compact, for
every c ∈ R. A subset K of X is said to be precompact in X if K is compact in X.

Lemma 2.5.1. Every smooth manifold has a countable basis of precompact coordinate balls.

Proof: Let X be an n-dimensional smooth manifold. First, suppose that X is covered
by a single chart. Let ϕ : X −→ ϕ(X) ⊆ Rn be a global coordinate map, and let B be the
collection of all open ballsB(x, r) ⊆ Rn, where r is rational, x has rational coordinates and
B(x, r) ⊆ ϕ(X). Clearly each B(x, r) is precompact in ϕ(X), and that B is a countable
basis for the relative topology of ϕ(X). Since ϕ(X) is a homeomorphism, we have that
ϕ−1 : ϕ(X) −→ X is continuous and so the collection {ϕ−1(B(x, r)) : B(x, r) ∈ B} is a
countable basis for X. Also, ϕ−1(B(x, r)) = ϕ−1(B(x, r)) is compact in X. Hence each
ϕ−1(B(x, r)) is a precompact coordinate ball.

Now suppose that X is an arbitrary n-manifold. Let {(Uα, ϕα)} be an atlas of X. Since X
is second countable, X is covered by countable many charts {(Ui, ϕi)}. By the argument
of the previous case, each Ui has a countable basis of precompact coordinate balls, and
the union of all these countable bases is a countable basis for the topology of X. We have
to show that each V ⊆ Ui is precompact in X, where V is a precompact ball of the basis
of Ui. Denote V Ui the closure of V with respect to Ui. We have that V Ui is compact in
Ui and then closed in X. So we have that V = V Ui and V is precompact in X.

Proposition 2.5.1. Every smooth manifold admits a smooth positive exhaustion function.

Proof: By the previous lemma, X has a countable cover {Vi} of precompact open sets.
Let {fi} be a partition of unity subordinate to the covering {Vi}. Define f : X −→ R
by f(x) =

∑∞
i=1 i · fi(x). The function f is smooth because only finitely many terms are

non-zero in a neighbourhood of any point. It is also positive since f(x) ≥∑∞i=1 fi(x) = 1.

Let N be a positive integer, we prove f(x) ≤ N =⇒ x ∈ ⋃N
j=1 V j. Suppose x 6∈ ⋃N

j=1 V j.

Then fj(x) = 0 if 1 ≤ j ≤ N since supp(fj) ⊆ V j. Thus

f(x) =
∞∑

j=N+1

j · fj(x) >
∞∑

j=N+1

N · fj(x) = N ·
∞∑

j=N+1

fj(x),
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so f(x) > N . Let c ∈ R. There exists N ∈ N such that c ≤ N . Then

f−1((−∞, c]) ⊆ f−1((−∞, N ]) ⊆
N⋃
j=1

V j

and hence f−1((−∞, c]) is a closed subset of the compact set
⋃N
j=1 V j. It follows

f−1((−∞, c]) is compact.

Case 4. If X has a de Rham basis, then X is de Rham.

Proof: Let f : X −→ R be an exhaustion function. For each m ∈ N the set
f−1((−∞,m]) is compact in X. On the other hand, the set

Am = {x ∈ X : m ≤ f(x) ≤ m+ 1}

is a closed subset of the compact set f−1((−∞,m+ 1]), and hence it is compact. The set

A′m =

{
x ∈ X : m− 1

2
< f(x) < m+

3

2

}
is an open set containing the set Am, then for each x ∈ Am there exists a de Rham basis
element Uxm such that x ∈ Uxm ⊆ A′m.

X

Am

Am-1

Am+1

Am’
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The collection {Uxm} forms an open cover of Am. Since Am is compact, there is a finite
subcover of Am. Let Bm =

⋃n
i=1 U im, then {U im} is a finite de Rham cover of Bm. It

follows by Case 3 that Bm is de Rham. Note that Bm ⊆ A′m, so Bm ∩ Bn 6= ∅ iff
n = m− 1,m,m+ 1.

X

Bm

Bm+1

Bm-1

Hence U = ∪m oddBm is the disjoint union of de Rham sets. It follows by Case 1 that U
is de Rham. Similarly, V = ∪n evenBn is also de Rham. Also, X = U ∪ V . It is only left
to show that U ∩ V is de Rham in order to prove that {U ,V} is a finite de Rham cover
of X. We have

U ∩ V =

( ⋃
m odd

Bm

)⋂( ⋃
n even

Bn

)
=
⋃

Bm ∩Bn

=

( ⋃
m odd

Bm ∩Bm−1

)⋃( ⋃
m odd

Bm ∩Bm+1

)
.

This is a disjoint union. In fact,

(i) m and n are odd: If (Bm ∩ Bm−1) ∩ (Bn ∩ Bn−1) 6= ∅ then n = m,m − 1,m + 1.
If n = m − 1 then ∅ 6= (Bm ∩ Bm−1) ∩ (Bm−1 ∩ Bm−2) = ∅. We get a similar
contradiction if n = m+ 1. Then n = m.

(ii) Similarly, (Bm ∩Bm+1) ∩ (Bn ∩Bn+1) 6= ∅ =⇒ n = m.

(iii) If (Bm ∩ Bm−1) ∩ (Bn ∩ Bn+1) 6= ∅ then Bm−1 ∩ Bn+1 6= ∅. It follows n + 1 =
m− 1,m,m− 2.

(a) If n+ 1 = m− 1 then ∅ 6= (Bm ∩Bm−1) ∩ (Bm−2 ∩Bm−1) = ∅.
(b) The case n+ 1 = m is not possible since n and m are odd.
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(c) If n+ 1 = m− 2 then ∅ 6= (Bm ∩Bm−1) ∩ (Bm−3 ∩Bm−2) = ∅.

Hence (Bm ∩Bm−1) ∩ (Bn ∩Bn+1) = ∅.

So we have that U ∩ V is the disjoint union of sets of the form Bm∩Bm−1 and Bm∩Bm+1,
with m odd. Note that

Bm ∩Bm−1 =

(
p⋃
j=1

U jm

)⋂(
q⋃
i=1

U im−1

)
=
⋃
i,j

(U jm ∩ U im−1),

where each U jm ∩ U im−1 and each finite intersection of the U jm ∩ U im−1’s is de Rham since
{Uα} is a de Rham basis. So {U jm ∩ U im−1} is a finite de Rham cover of Bm ∩ Bm−1. It
follows by Case 3 that Bm∩Bm−1 is de Rham. Similarly, Bm∩Bm+1 is de Rham. Hence,
U ∩ V is the disjoint union of de Rham sets, then U ∩ V is de Rham by Case 1.

Case 5. Any open subset of Rn is de Rham.

Proof: Let U be an open set of Rn. Then U has a cover of open balls. Since each open
ball is convex, it follows by Case 2 that it is de Rham. Also, every finite intersection of
open balls is convex and so de Rham. Hence U has a de Rham basis of open balls. By
Case 4, U is de Rham.

Now we are ready to proof the de Rham’s Theorem

Proof of de Rham’s Theorem”. Let A = {(Uα, ϕα)} be an atlas of X. Each Uα is
diffeomorphic to an open set Vα of Rn, which is de Rham by Case 5. It follows by
Corollary 2.4.1 that Uα is de Rham. By a similar argument one can prove that each finite
intersection Uα1 ∩ · · · ∩ Uαn is de Rham. Hence X has a de Rham basis and so it is de
Rham, by Case 4.

The proof we just gave here is due to Glen E. Bredon, and it dates to 1962 when he gave it
in a course on Lie groups. In fact, Bredon proved a more general result, namely
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Lemma 2.5.2 (Bredon). Let X be a smooth n-dimensional manifold. Suppose that P (U)
is a statement about open subsets of X, satisfying the following three properties:

(1) P (U) is true for U diffeomorphic to an open convex subset of Rn;

(2) P (U), P (V) and P (U ∩ V) =⇒ P (U ∪ V); and

(3) {Uα} disjoint, and P (Uα) for all α =⇒ P (∪αUα).

Then P (X) is true.

Note that the proof given in these notes is a particular case of this lemma, putting

P (U) = Ψ∗ : Hp
dR(U) −→ Hp

∞(U ;R) is an isomorphism.

In fact, (1), (2) and (3) are Case 2, Case 3 and Case 1, respectively. The previous lemma
can be proven using the same argument of the proof given in Case 4.

We have proven the de Rham’s Theorem for smooth singular cohomology. We would like to
replace that by ordinary singular cohomology. The inclusion C∞p (X) −→ Cp(X) induces, via
Hom(·,R), the cochain map Hom(Cp(X),R) −→ Hom(C∞p (X),R). Exactly the same proof
as the above use of Lemma 2.5.2 shows that the induced map Hp(X;R) −→ Hp

∞(X;R) is an
isomorphism for all smooth manifolds X.

31



32



Bibliography

[1] Bredon, G. Topology and Geometry. Springer-Verlag. New York (1993).

[2] Lee, J. Introduction to Smooth Manifolds. Springer-Verlag. New York (2003).

[3] Warner, F. Foundations of Differentiable Manifolds and Lie Groups. Springer-Verlag.
New York (1983).

33


