- 6. Recall the definition of the connected sum of two connected smooth manifolds M_1 , M_2 of equal dimension n: pick points $p_i \in M_i$, and coordinate charts $f_i : U_i \to \mathbb{R}^n$ such that $f_i(p_i) = 0$, and let $M_1 \# M_2$ be the quotient of the disjoint union $M_1 \setminus \{p_1\} \sqcup M_2 \setminus \{p_2\}$ by the equivalence relation $x_1 \sim x_2$ if $x_i \in U_i$ and $f_1(x_1) = \frac{f_2(x_2)}{|f_2(x_2)|^2}$.
 - (a) Show that replacing the charts f_i in the definition with different charts f'_i around p_i gives the same manifold $M_1 \# M_2$ up to diffeomorphism, provided that the transition functions $f'_i \circ f_i^{-1}$ are orientation-preserving.

WLOG $f'_2 = f_2$. Suppose we have a diffeomorphism $\phi : \mathbb{R}^n \to \mathbb{R}^n$ which equals $f'_1 \circ f_1^{-1}$ on B(r) and *id* outside B(R) (where $B(r) \subset \mathbb{R}^n$ is ball of radius *r* centred at origin). Then we can define a diffeomorphism $g : M_1 \# M_2 \to M_1 \#' M_2$ by imposing:

- g = id on $M_1 \setminus f_1^{-1}(B(R))$
- $f_1 \circ g = \phi \circ f_1$ on $U_1 \setminus \{p_1\}$
- g = id on $M_2 \setminus f_2^{-1}(B(1/r))$

These three sets cover $M_1 \# M_2$, and by the condition on ϕ the definition of g agrees on the overlaps.

For r_0 sufficiently small, $f'_1 \circ f_1^{-1}$ restricts to a smooth map $h : B(r_0) \to \mathbb{R}^n$, with $D_0 h$ invertible. Let $\rho : [0, \infty) \to [0, 1]$ be a smooth function that equals 1 on [0, 1], and 0 on $[2, \infty)$. For m > 0 small, the first derivatives of the function $x \mapsto \rho(m|x|) (h(x) - D_0 h(x))$ can be bounded in terms of m and the Hessian of h at 0. Q13b implies that for m sufficiently small, $\phi(x) = D_0 h(x) + \rho(m|x|) (h(x) - D_0 h(x))$ is a diffeomorphism $\mathbb{R}^n \to \mathbb{R}^n$. It equals h on $B(mr_0)$, and $D_0 h$ on $B(2mr_0)$.

We can use Q13b again together with the fact that $GL_+(n, \mathbb{R})$ is generated by a neighbourhood of *id* to show that for any $A \in GL_+(n, \mathbb{R})$ there is a diffeomorphism $\mathbb{R}^n \to \mathbb{R}^n$ which equals A on $B(2mr_0)$ and *id* outside B(R) for some large R.

(b) Show that up to diffeomorphism, M₁#M₂ is independent of the choice of points p_i. To be precise, show that if M_i are both orientable then the diffeomorphism type of M₁#M₂ depends only on the orientations of the charts f_i, so that given orientations on M_i we can define M₁#M₂ uniquely (including an orientation); if either of M_i are non-orientable then M₁#M₂ is independent of all the choices in the definition.

WLOG $p'_2 = p_2$. By the previous part, it does not matter what chart f'_1 around p'_1 we use in the definition of the connected sum. If $p'_1 \in U_1$ then we can easily define a chart $f'_1 : U_1 \to \mathbb{R}^n$ to equal f_1 outside a compact set $K \subset U_1$ while mapping p'_1 to 0. Then we can define a diffeomorphism $M_1 \# M_2 \to M_1 \#' M_2$ by requiring it to be *id* on $M_1 \setminus K$, $(f'_1)^{-1} \circ f_1$ on U_1 and *id* on $M_2 \setminus \{p_2\}$.

If M_1 is oriented then a pair of charts can be connected by a sequence of overlapping charts with orientation-preserving transition functions iff they induce the same orientation; if M_1 is non-orientable then any pair of charts can be connected this way (cf. Q4).

7. (a) Let M_1 , M_2 be smooth manifolds with boundary, and $f : \partial M_1 \to \partial M_2$ a diffeomorphism. Define a natural smooth structure on $M_1 \cup_f M_2 = M_1 \sqcup M_2/\sim$, where $x_1 \sim x_2$ if $x_i \in \partial M_i$ and $f(x_1) = x_2$.

This problem was not very well designed, since in general it is best dealt with using the collar neighbourhood theorem, which I have not yet covered in lectures: For any manifold M with boundary, ∂M has a neighbourhood diffeomorphic to $\partial M \times [0, \epsilon)$.

(b) Let f: Sⁿ⁻¹ → Sⁿ⁻¹ be a diffeomorphism. Show that Bⁿ ∪_f Bⁿ is homeomorphic to Sⁿ. We call this a twisted sphere. Show that if it is not diffeomorphic to Sⁿ, then f is not smoothly isotopic to id_{Sⁿ⁻¹}.

Define a homeomorphism $B^n \cup_{id_{S^{n-1}}} B^n \to B^n \cup_f B^n$ as the identity on the first half, and $x \mapsto |x| f(\frac{x}{|x|})$ on the second half (this is not smooth at the origin of the second half).

If $S^{n-1} \times [0,1] \to S^{n-1}$, $(x,t) \mapsto F_t(x)$ is an isotopy with $F_t = id$ for t in a neighbourhood of 0 and $F_1 = f$ then we can define a diffeomorphism $B^n \cup_{id_{S^{n-1}}} B^n \to B^n \cup_f B^n$ as the identity on the first half, and $x \mapsto |x|F_{|x|}(\frac{x}{|x|})$ on the second half.