Algebra Lineare. Gruppo I-Z. Prof. P. Piazza

Compito pomeridiano del 18/12/02

Esercizio 1. Consideriamo lo spazio affine A^3 con riferimento $RA(O, \underline{i}, \underline{j}, \underline{k})$ fissato e coordinate associate (x, y, z).

Determinare l'equazione cartesiana del piano π passante per il punto Q di coordinate (0,0,1) e per la retta r di equazioni cartesiane

$$\begin{cases} x - z = 2 \\ y + 3z = 4 \end{cases}.$$

Esercizio 2. Scrivere equazioni parametriche e cartesiane per la retta s passante per P = (0, 0, 1) e parallela alla retta r di equazione cartesiane

$$\begin{cases} x + 2y + z = 1 \\ x - 3y - z = 2 \end{cases}$$

Riassunto della lezione del 17/12/02.

Sia \mathcal{V}_O lo spazio vettoriale tridimensionale dei vettori centrati in O. Fissiamo una base ortonormale $\{\underline{i},\underline{j},\underline{k}\}$ con coordinate associate (x,y,z). Vi ricordo che il prodotto scalare di due vettori $\underline{v},\underline{w}$ è per definizione il numero reale:

$$\langle \underline{v}, \underline{w} \rangle = ||\underline{v}|| \, ||\underline{w}|| \cos \widehat{vw}$$
.

Si noti che allora

$$||\underline{v}||^2 = <\underline{v},\underline{v}>$$

e che

$$\cos \widehat{vw} = \langle \underline{v}, \underline{w} \rangle / \sqrt{\langle \underline{v}, \underline{v} \rangle} \cdot \sqrt{\langle \underline{w}, \underline{w} \rangle} \quad \text{se} \quad \underline{v} \neq \underline{0}, \underline{w} \neq \underline{0}.$$

Abbiamo poi verificato che se $\underline{v}=x\underline{i}+y\underline{j}+z\underline{k}$ e $\underline{w}=x'\underline{i}+y'\underline{j}+z'\underline{k}$ allora

$$<\underline{v},\underline{w}>=xx'+yy'+zz'$$
.

In particolare $||v||^2 = x^2 + y^2 + z^2$ e

$$\cos \widehat{\underline{vw}} = (xx' + yy' + zz') / \sqrt{x^2 + y^2 + z^2} \cdot \sqrt{(x')^2 + (y')^2 + (z')^2}$$

Vi ricordo anche che il vettore

$$\frac{<\underline{v},\underline{w}>}{<\underline{w},\underline{w}>}\underline{w}$$

rappresenta la proiezione ortogonale del vettore \underline{v} sulla retta individuata dal vettore \underline{w} . Se \underline{w} è unitario (e cioè $||\underline{w}||=1$) allora tale proiezione è data semplicemnte da $(<\underline{v},\underline{w}>)\underline{w}$. Infine se $\{\underline{w}_1,\underline{w}_2,\underline{w}_3\}$ è una qualsiasi base di \mathcal{V}_O allora la sua base ortogonalizzata secondo il procedimento di Gram-Schmidt è la base $\{\underline{u}_1,\underline{u}_2,\underline{u}_3\}$ con $\underline{u}_1=\underline{w}_1$,

$$\underline{u}_2 = \underline{w}_2 - \frac{\langle \underline{w}_2, \underline{u}_1 \rangle}{\langle \underline{u}_1, \underline{u}_1 \rangle} \underline{u}_1$$

$$\underline{u}_3 = \underline{w}_3 - \frac{\langle \underline{w}_3, \underline{u}_1 \rangle}{\langle \underline{u}_1, \underline{u}_1 \rangle} \underline{u}_1 - \frac{\langle \underline{w}_3, \underline{u}_2 \rangle}{\langle \underline{u}_2, \underline{u}_2 \rangle} \underline{u}_2$$

Una base ortonormalizzata è invece

$$\{\frac{1}{||\underline{u}_1||}\underline{u}_1,\frac{1}{||\underline{u}_2||}\underline{u}_2,\frac{1}{||\underline{u}_3||}\underline{u}_3\}\,.$$

Esercizio 3. Sia $W = \mathbb{R}(1, -1, 1)$ (Vi ricordo la notazione $\mathbb{R}(l, m, n)$ per il sottospazio Span(l, m, n).) Determinare un versore di questa retta. Determinare il versore di questa retta che forma un angolo acuto con il vettore della base \underline{j} .

1

Esercizio 4. Sia W la retta vettoriale di equazioni cartesiane

$$\begin{cases} x - y = 0 \\ x - y + z = 0 \end{cases}$$

Determinare i vettori di W che hanno lunghezza uguale a 2.

Esercizio 5. Determinare le coordinate dei vettori \underline{v} che hanno lunghezza uguale a 2 e sono ortogonali sia a f = (1, -1, 2) che a g = (0, 1, -1).

Osservazione. I vettori di lunghezza 2 sono anche i vettori il cui quadrato della lunghezza è 4.

Esercizi per casa.

Esercizio 6. Consideriamo il piano vettoriale σ di equazione cartesiana

$$x + 2y - z = 0$$

Verificare che i vettori

$$\underline{f}_1 = (\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}, 0) \qquad \underline{f}_2 = (\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}})$$

costituiscono una base ortonormale di σ .

(ii) Decomporre il vettore $\underline{u}=(0,1,2)$ del piano σ nella somma $\underline{u}=\underline{u}_1+\underline{u}_2$ con $\underline{u}_1\in\mathbb{R}\underline{f}_1$ e $\underline{u}_2\in\mathbb{R}\underline{f}_2$.

Esercizio 7. Spazio vettoriale \mathcal{V}_O con base ortonormale $\{\underline{i},\underline{j},\underline{k}\}$ fissata e coordinate associate (x,y,z).

Applicare il procedimento di ortonormalizzazione di Gram-Schmidt alla seguente base di \mathcal{V}_O :

$$\underline{w}_1 = (1, 1, 0), \quad \underline{w}_2 = (0, 1, 0), \quad \underline{w}_3 = (0, 0, 2).$$

¹Suggerimento per (ii). Sappiamo che \underline{u} ∈ σ . Quindi esistono coefficienti α e β tali che $\underline{u}=\alpha \underline{f}_1+\beta \underline{f}_2$ e per definizione sarà $\underline{u}_1=\alpha \underline{f}_1$, $\underline{u}_2=\beta \underline{f}_2$. Utilizzare il fatto che \underline{f}_1 , \underline{f}_2 è una base ortonormale di σ e le proprietà di linearità del prodotto scalare per dimostrare che $\langle \underline{u},\underline{f}_1\rangle = \alpha$ e che $\langle \underline{u},\underline{f}_2\rangle = \beta$. Questo ragionamento è stato già fatto quando si è parlato della ortonormalizzazione di Gram-Schmidt.