A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. ESERCITAZIONI. FOGLIO 12.

Esercizio 11.1. Sia A un anello unitario. Consideriamo $\mathcal{F}(A, A)$, l'insieme delle applicazioni da A in A. Notare che esse formano un anello unitario rispetto alle operazioni:

$$(f+g)(a) = f(a) + g(a); \quad (f \cdot g)(a) = f(a) \cdot g(a).$$

Denotiamo con $\mathcal{U}(A)$ l'insieme degli invertibili dell'anello A.

Definiamo infine per ogni $u \in \mathcal{U}(A)$ ed ogni $f \in \mathcal{F}(A,A)$ l'applicazione:

$$(u \bullet f) : A \to A; \quad (u \bullet f)(a) = u \cdot f(a \cdot u^{-1})$$

(A) Mostrare che se $\mathcal{U}(A)$ è commutativo valgono le seguenti proprietà:

$$(u \cdot u') \bullet f = u \bullet (u' \bullet f); \quad 1_A \bullet f = f.$$

- **(B)** Diremo che $f \in \mathcal{U}(A)$ -invariante se vale $(u \bullet f)(a) = f(a)$ per ogni $a \in A$. Mostrare che le funzioni $\mathcal{U}(A)$ invarianti formano un sottogruppo additivo di $(\mathcal{F}(A,A),+,\cdot)$ ma non sono un sottoanello.
- (C) Mostrare che se $f \in \mathcal{U}(A)$ -invariante allora $f(1_A) = 1_A$ se e soltanto se f(u) = u per ogni $u \in \mathcal{U}(A)$.
- (**D**) Supponiamo adesso che f sia un omomorfismo di A e che sia $\mathcal{U}(A)$ -invariante; dimostrare che vale: $f(u \, a \, u^{-1}) = u \, f(a) \, u^{-1}$ per ogni $u \in \mathcal{U}(A)$, per ogni $a \in A$.
- (E) Determinare le funzioni $\mathcal{U}(\mathbb{Z})$ -invarianti in $\mathcal{F}(\mathbb{Z},\mathbb{Z})$. Determinare gli $\mathcal{U}(\mathbb{Z})$ -invarianti in $\mathbb{Z}[X]$.

Esercizio 11.2. Mostrare che il polinomio $P(X) = X^4 - 3X^2 + X + 5$ è irriducibile in $\mathbb{Q}[X]$.

Esercizio 11.3. Consideriamo l'anello di polinomi $\mathbb{Z}[X]$. Siano $P(X) = X^{n+1} - 1$, $Q(X) = X^n - 1$; dimostrare che l'ideale generato da P, Q in $\mathbb{Z}[X]$ è principale.

Esercizio 11.4. Sia G un gruppo abeliano e siano H, K due sottogruppi di G. Siano m = [G : H], n = [G : K], $d := [G : H \cap K]$. Dimostrare che:

- (1) $d \leq m \cdot n$; [Suggerimento. Sfruttare le classi laterali di G/H e G/K]
- (2) $d \mid m \cdot n$;
- (3) $d = m \cdot n$ se e soltanto se $G = \langle H, K \rangle$.

Esercizio 11.5. Un sottogruppo proprio M di un gruppo G è detto massimale se per ogni sottogruppo $H \leq G$ di G tale che $M \leq H$ vale la seguente dicotomia: o H = M altrimenti H = G.

- (A) Dimostrare che se $K \subseteq G$ e K < M allora M è massimale in G se e soltanto se M/K è massimale in G/K.
- (B) Dimostrare che se G è un gruppo finito ogni sottogruppo di G è contenuto in un sottogruppo massimale di G.
- (C) Mostrare che se G è un gruppo abeliano finito non banale i suoi sottogruppi massimali sono tutti e soli i sottogruppi il cui indice in G è primo.

Esercizio 11.6. Sia G un gruppo finito e sia $\varphi \in Hom(G,G)$. Mostrare che esiste $N \in \mathbb{N}$ tale che per ogni $n \geq N$ risulta $|Im(\varphi^n)| = |Im(\varphi^N)|$.

ESERCIZI PER CASA

Esercizio 11.7. Sia $\omega = \frac{1}{2} \cdot \left(-1 + i\sqrt{3}\right) = e^{\frac{i2\pi}{3}} \in \mathbb{C}$. Gli interi di Eisenstein sono l'insieme di numeri complessi del tipo $\mathscr{E} = \{a + b\omega \mid a, b \in \mathbb{Z}\}$.

(A) Dimostrare che $a + b\omega$ è una radice del polinomio monico a coefficienti in \mathbb{Z}

$$P_{a,b}(X) = X^2 - (2a - b)X + (a^2 - ab + b^2)$$

- (B) Dedurre dal punto (A) che gli interi di Eisenstein, \mathscr{E} , sono il sottoanello di \mathbb{C} denotato $\mathbb{Z}[\omega]$.
- (C) Dimostrare che la funzione d che associa all'intero di Eisenstein $a + b\omega$ il modulo del termine noto del polinomio $P_{a,b}$ è ben definita ed è una valutazione su $\mathbb{Z}[\omega]$. [Suggerimento. Come si relaziona tale funzione con la norma su \mathbb{C} ? L'algoritmo di divisione è definito nel modo sequente: sia $(a + b\omega)$ il divisore e $(c+d\omega)$ il dividendo. Si consideri il reticolo di $\mathbb C$ dato dall'ideale $\mathbb Z[\omega]\cdot(a+b\omega)$. Tale reticolo fornisce una tassellazione di C in triangoli equilateri il cui lato ha lunghezza uguale alla norma complessa di $a+b\omega$. Poiché il reticolo dà luogo ad una tassellazione di $\mathbb C$ l'elemento $c+d\omega$ dovrà cadere in uno dei triangoli di tale tassellazione; il quoziente sarà allora l'elemento di $\mathbb{Z}[\omega]$ che moltiplicato per $a+b\,\omega$ fornisce l'elemento del reticolo più vicino (rispetto alla distanza della norma su $\mathbb C$) a $c+d\,\omega$ ed il resto sarà la differenza tra $c+d\omega$ e tale elemento. Esempio: allo scopo di sincerarvi di aver capito l'algoritmo di divisione verificate che una possibile divisione con resto di $(-2-\omega)$ per $2+2\omega$ *è* la seguente: $-\omega - 2 = \omega \cdot (2 + 2\omega) - \omega$

Esercizio 11.8. Dimostrare in modo diretto che la funzione:

$$\gamma: \mathbb{Z}[X] \to \mathbb{N} \cup \{-\infty\}, \ \gamma(P) := \deg(P) + \mathsf{t}(P)$$

non definisce una valutazione su $\mathbb{Z}[X]$ (denotiamo con $\mathsf{t}(P)$ il modulo del coefficiente direttore di P).

Esercizio 11.9. Consideriamo $\mathbb{Z}_8[X]$ Definiamo per ogni $\overline{x} \in \mathcal{U}(\mathbb{Z}_8)$

$$(\overline{x} \bullet P)(X) = \overline{x} \cdot P(\overline{x}^{-1} X)$$

- (A) Dimostrare le proprietà: $((\overline{xy}) \bullet P) = (\overline{x} \bullet (\overline{y} \bullet P)), \overline{1} \bullet P = P$.
- (B) Diremo che P è $\mathcal{U}(\mathbb{Z}_8)$ -invariante se $\overline{x} \bullet P = P$ per ogni $\overline{x} \in \mathcal{U}(\mathbb{Z}_8)$. Determinare l'insieme dei polinomi $\mathcal{U}(\mathbb{Z}_8)$ -invarianti (denoteremo in seguito $\mathbb{Z}_8^{\mathcal{U}(\mathbb{Z}_8)}[X]$ tale insieme). (C) Dimostrare che ogni polinomio P si scrive come P = P' + P'' dove P'' è $\mathcal{U}(\mathbb{Z}_8)$ -invariante mentre
- P' non contiene alcun monomio $\mathcal{U}(\mathbb{Z}_8)$ -invariante.
- (D) Consideriamo la seguente applicazione:

$$\pi: \mathbb{Z}_8[X] \to \mathbb{Z}_8[X], \qquad \pi(P) = \sum_{\overline{x} \in \mathcal{U}(\mathbb{Z}_0)} (\overline{x} \bullet P)$$

Mostrare che si tratta di un omomorfismo di gruppi. Sia $m_{\overline{2}}$ l'omomorfismo di anelli da $\mathbb{Z}_8[X]$ in sé dato dalla moltiplicazione per $\overline{2}$. Mostrare che $Im(\pi) = \ker(m_{\overline{2}}) \cap \mathbb{Z}_8^{\mathcal{U}(\mathbb{Z}_8)}[X]$.