ALGEBRA 1 PB-Z X. 25 V 2012

Esercizio 1. Sia A un dominio d'integrità unitario e a ideali principali. Si mostri che, per un ideale di A, esser massimale è equivalente a esser primo $(^1)$.

Esercizio 2. Sia $\mathbb{Z}[i]$ 'anello degli interi di Gauß. Si risponda in maniera dettagliata alle seguenti domande a proposito dell'ideale $I = \langle 2i, 6+4i \rangle$

- è forse vero che I è principale (se sì, si esibisca un suo generatore)?
- è forse vero che I è primo?
- è forse vero che I è massimale?

Esercizio 3. Si mostri che l'anello $\mathbb{Z}[\sqrt{-7}]$ non è euclideo.

Esercizio 4. Per ogni $n \in \mathbb{N}$ sia $n\mathbb{Z}[i] = \{a_0 + ia_1 \in \mathbb{Z}[i] \mid a_0, a_1 \in n\mathbb{Z}\}$ l'anello degli interi di Gauß con coefficienti multipli di n.

Si mostri che $4\mathbb{Z}[i]$ è un ideale di $2\mathbb{Z}[i]$ e si descriva l'insieme quoziente $2\mathbb{Z}[i]/4\mathbb{Z}[i]$.

Esercizio 5. Si mostri che, in $\mathbb{Z}[\sqrt{-6}]$, gli elementi dell'insieme

$$E = \{2, -2, 5, -5, 2 + \sqrt{-6}, 2 - \sqrt{-6}\} \subseteq \mathbb{Z}[\sqrt{-6}]$$

sono irriducibili ma non sono primi (2).

Esercizio 6. Determinare gli ideali dell'anello $\mathbb{Z}_3[X]/\langle X^3+X+\bar{1}\rangle$.

Esercizio 7. Siano κ un campo e $\kappa[X_1, X_2]$ l'anello dei polinomi in due indeterminate a coefficienti in κ . Mostrare che l'anello $\kappa[X_1, X_2]$ non è a ideali principali.

1

 $^{^1}$ Sugg.: Si inizi mostrando che, per un elemento di A, esser irriducibile è equivalente a esser primo. Dunque, si mostri che, per un ideale di A, esser massimale è equivalente a esser generato da un elemento irriducibile e, parallelamente, che esser primo è equivalente a esser generato da un elemento primo.

 $^{^2 \}mathrm{Sugg}$: Per provare che gli elementi di E non sono primi, si considerino due diverse fattorizzazioni di 10...