Corso di Laurea in Fisica. a.a. 2023-24. Geometria. Canale 3. Compito a casa del 3/11/23. SOLUZIONI

Esercizio 1. Si consideri il sistema omogeneo di 4 equazioni in 5 incognite

$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 = 0 \\ x_1 - x_2 + x_4 + x_5 = 0 \\ x_1 - x_3 - x_5 = 0 \\ x_1 + 2x_2 + 5x_3 + 3x_5 = 0 \end{cases}$$

Sia Σ_0 l'insieme delle soluzioni. Determinare una matrice A tale che $\Sigma_0 = \operatorname{Ker} A$. Applicare il metodo di Gauss e determinare un sistema omogeneo a scala, $S\underline{x} = \underline{0}$, equivalente al sistema dato.

Determinare una base di Σ_0 .

Soluzione esercizio 1. È chiaro che $\Sigma_0 = \text{Ker} A$ con

$$A = \left| \begin{array}{ccccc} 1 & 1 & 2 & 0 & 1 \\ 1 & -1 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 & -1 \\ 1 & 2 & 5 & 0 & 3 \end{array} \right|$$

Applicando il metodo di Gauss scopriamo che $A\underline{x}=\underline{0}$ è equivalente al sistema $S\underline{x}=\underline{0}$ con

$$S = \left| \begin{array}{ccccc} \mathbf{1} & 1 & 2 & 0 & 1 \\ 0 & \mathbf{1} & 1 & -1/2 & 0 \\ 0 & 0 & \mathbf{2} & 1/2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

I pivots di questa matrice a scala sono $p_1 = 1$ nella colonna $j_1 = 1$, $p_2 = 1$ nella colonna $j_2 = 2$ e $p_3 = 2$ nella colonna $j_3 = 3$. Da quanto visto a lezione il rango di S è 3 ed una base per Im S è costituita dalle colonne $S^{j_1}, S^{j_2}, S^{j_3}$, cioè dalle colonne S^1, S^2, S^3 . Inoltre:

- (i) Ker A = Ker S (equivalentemente, il sistema $A\underline{x} = \underline{0}$ è equivalente a $S\underline{x} = \underline{0}$)
- (ii) rgA = rgS (= 3)
- (iii) le colonne $A^{j_1}, A^{j_2}, A^{j_3}$, cioè le colonne A^1, A^2, A^3 , costituiscono una base per Im A.

Tornando all'esercizio: $\Sigma_0 = \mathrm{Ker} A$ è ottenuto trovando $\mathrm{Ker} S$ che è l'insieme delle soluzioni del sistema

$$\begin{cases} \mathbf{x_1} + \mathbf{x_2} + 2\mathbf{x_3} + x_5 = 0 \\ \mathbf{x_2} + \mathbf{x_3} - \frac{1}{2}x_4 = 0 \\ 2\mathbf{x_3} + \frac{1}{2}x_4 + 2x_5 = 0 \end{cases}$$

con variabili dipendenti $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ e variabili libere x_4 e x_5 . (Da ora in poi tralasceremo però la notazione in grassetto.) Risolvendo all'indietro il sistema

$$\begin{cases} x_1 + x_2 + 2x_3 = -x_5 \\ x_2 + x_3 = \frac{1}{2}x_4 \\ 2x_3 = -\frac{1}{2}x_4 - 2x_5 \end{cases}$$

otteniamo (controllate i conti)

$$\begin{cases} x_1 = -\frac{1}{4}x_4 \\ x_2 = \frac{3}{4}x_4 + x_5 \\ x_3 = -\frac{1}{4}x_4 - x_5 \end{cases}$$

che è ovviamente equivalente a

$$\begin{cases} x_1 = -\frac{1}{4}x_4 \\ x_2 = \frac{1}{4}x_4 + x_5 \\ x_3 = -\frac{1}{4}x_4 - x_5 \\ x_4 = x_4 \\ x_5 = x_5 \end{cases}$$

Quindi

$$\operatorname{Ker} S = \left\{ \left| \begin{array}{c} -\frac{1}{4}x_4 \\ \frac{1}{4}x_4 + x_5 \\ -\frac{1}{4}x_4 - x_5 \\ x_4 \\ x_5 \end{array} \right|, \quad x_4, x_5 \in \mathbb{R} \right\} = \left\{ \begin{array}{c|c} -1 & & 0 & \\ 1 & 1 & \\ -1 & +x_5 & -1 \\ 4 & 0 & 1 \end{array} \right|, \quad x_4, x_5 \in \mathbb{R} \right\}$$

Conclusione:

$$\Sigma_0 = \text{Ker} A = \text{Ker} S = \text{Span}((-1, 1, -1, 4, 0), (0, 1, -1, 0, 1))$$

ed è chiaro che questi due vettori sono una base per Σ_0 perché Σ_0 ha dimensione uguale a 5-3=2.

Esercizio 2. Si consideri il sistema non-omogeneo di 4 equazioni in 5 incognite (ottenuto dal sistema omogeneo dell'esercizio precedente)

$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 = 1 \\ x_1 - x_2 + x_4 + x_5 = 2 \\ x_1 - x_3 - x_5 = 1 \\ x_1 + 2x_2 + 5x_3 + 3x_5 = 1 \end{cases}$$

- **2.0** Applicare il metodo di Gauss e determinare un sistema a scala, $S\underline{x} = \underline{c}$, equivalente al sistema dato.
- **2.1** Verificare che il sistema a scala $S\underline{x} = \underline{c}$ è compatibile. (Otteniamo quindi la compatibiltà del sistema iniziale.)
- ${\bf 2.2}$ Sia Σ l'insieme delle soluzioni del sistema iniziale. Scrivere Σ nella forma

$$\Sigma = \operatorname{Span}(\underline{w}_1, \dots, \underline{w}_\ell) + \underline{v}_0$$

per un opportuno $\ell \in \mathbb{N}$ e per opportuni vettori $\underline{w}_1, \dots, \underline{w}_\ell, \underline{v}_0$ in \mathbb{R}^5 , con $\{\underline{w}_1, \dots, \underline{w}_\ell\}$ linearmente indipendenti ¹; verificate in questo modo che vale il teorema di struttura.

Soluzione esercizio 2. Applicando Gauss a

$$A = \left| \begin{array}{cccccc} 1 & 1 & 2 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 & 1 & 2 \\ 1 & 0 & -1 & 0 & -1 & 1 \\ 1 & 2 & 5 & 0 & 3 & 1 \end{array} \right|$$

 $^{^1}Suggerimento:$ utilizzate i passi della riduzione di Gauss che avete utilizzato per l'esercizio precedente \dots

otteniamo

$$\left|\begin{array}{ccc|ccc|ccc} \mathbf{1} & 1 & 2 & 0 & 1 & 1 \\ 0 & \mathbf{1} & 1 & -1/2 & 0 & -1/2 \\ 0 & 0 & \mathbf{2} & 1/2 & 2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right|$$

Sia S la matrice 4×5 a sinistra (la stessa dell'esercizio precedente); sia

$$\underline{c} = (1, -\frac{1}{2}, \frac{1}{2}, 0).$$

Allora $S\underline{x} = \underline{c}$ è un sistema compatibile (Corollario 6.2). Per quanto visto a lezione sappiamo che il nostro sistema non-omogeneo è equivalente al sistema $S\underline{x} = \underline{c}$; ne segue che il nostro sistema $A\underline{x} = \underline{0}$ è compatibile e le sue soluzioni sono date dalle soluzioni di $S\underline{x} = \underline{c}$. Procedendo come nell'esercizio precedente, ma tenendo conto dei termini noti, otteniamo

$$\Sigma = \underline{v}_0 + \text{Span}((0, 1, -1, 4, 0), (0, 1, -1, 0, 1))$$

con

$$\underline{v}_0 = (\frac{5}{4}, -\frac{3}{4}, \frac{1}{4}, 0, 0).$$

Controllate i conti. Osservate che abbiamo verificato esplicitamente il Teorema di struttura: Σ è espresso come somma di una soluzione particolare del sistema, \underline{v}_0 , e di tutte le soluzioni del sistema *omogeneo* associato.

Esercizio 3. Utilizzando quanto visto ultimamente a lezione, determinare una base per il sottospazio di \mathbb{R}^5 :

$$W = \{ \underline{x} \in \mathbb{R}^5 \mid x_1 - x_3 + x_4 + x_5 = 0 \}$$

Soluzione esercizio 3. Notiamo innanzitutto che $W=\operatorname{Ker} A$ con $A\in M_{1,5}(\mathbb{R}),$ $A=|1\ 0\ -1\ 1\ 1|$. Dato che A ha ovviamente rango uguale ad 1, ne segue che W ha dimensione $5-\operatorname{rg} A=4$. Per determinare una base di W risolviamo il sistema omogoneo di 1 equazione in 5 incognite che definisce W:

scriviamo quindi $W = \{\underline{x} \in \mathbb{R}^5 \mid \mathbf{x_1} = x_3 - x_4 - x_5\}$. Variabile dipendente: x_1 . Variabili libere x_2, x_3, x_4, x_5 . Quindi

$$W = \left\{ \left| \begin{array}{c} x_3 - x_4 - x_5 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right| , x_2, x_3, x_4, x_5 \in \mathbb{R} \right\}$$

Ne segue, ragionando come al solito, che

Dato che W ha dimensione 4 ne segue che necessariamente i quattro vettori dati sono una base di W.

Esercizio 4. Siano $U, V \subset \mathbb{R}^4$ i sottospazi di \mathbb{R}^4 dati da

$$U = \operatorname{Span} \left(\begin{array}{c|c|c} 1 & 0 & 2 \\ 1 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{array} \right), \quad V = \operatorname{Span} \left(\begin{array}{c|c|c} 2 & 2 & 2 \\ 1 & 3 & -1 \\ -2 & -2 & -2 \\ -1 & -3 & 1 \end{array} \right).$$

Determinare basi di U e di V. Determinare una base per U+V (È ovvio che U+V ha come insieme di generatori i vettori ottenuti prendendo l'unione di generatori di U ed di generatori di V.) Stabilire se \mathbb{R}^4 è somma diretta di U e V, cioè se $\mathbb{R}^4 = U \oplus V$.

Soluzione esercizio 4. Determiniamo innanzitutto basi per questi due sottospazi, utilizzando la riduzione a scala. Scopriamo che

$$U = \operatorname{Span} \left(\left| \begin{array}{c|c} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right), \quad V = \operatorname{Span} \left(\left| \begin{array}{c|c} 2 & 2 & 2 \\ 1 & -2 & -2 \\ -1 & -3 & -3 \end{array} \right).$$

È chiaro che queste due coppie di vettori sono basi rispettivamente per U e V. Consideriamo i 4=2+2 vettori ottenuti prendendo l'unione delle due basi. Vogliamo estrarre una base (sicuramente sono un insieme di generatori per U+V). Di fatto essi sono sono linearmente indipendenti e quindi una base di U+V; per verificare questa affermazione basta mettere i 4 vettori in colonna e ridurre con Gauss. Scopriamo che il rango della relativa matrice 4×4 è proprio 4 (ci sono 4 pivot); ne segue che i 2+2=4 vettori sono linearmente indipendenti e quindi, necessariamente, una base di U+V come volevasi. Per rispondere alla domanda sulla somma diretta vi ricordo che dobbiamo verificare se accade che $U+V=\mathbb{R}^4$ e $U\cap V=\underline{0}$. Già sappiamo che $U+V=\mathbb{R}^4$ ma allora applicando la formula di Grassmann scopriamo che si deve avere dim $U\cap V=0$, dato che dim $U\cap V=\dim U+\dim V-\dim (U+V)=2+2-4$. Conclusione: $\mathbb{R}^4=U\oplus V$.

Esercizio 5 Sia $A \in M_{34}(\mathbb{R})$ la matrice data da

$$A = \left| \begin{array}{cccc} 2 & 1 & 3 & -1 \\ 1 & 1 & 1 & -2 \\ -1 & 1 & -3 & -4 \end{array} \right|$$

e sia $L_A : \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare ad essa associata. Determinare una base per $\operatorname{Ker}(L_A)$ ed una base per $\operatorname{Im}(L_A)$. Studiare iniettività e suriettività di L_A . Dire se L_A è bigettiva.

Soluzione esercizio 5 Sappiamo che

$$\operatorname{Ker}(L_A) \equiv \operatorname{Ker} A = \{ \underline{x} \in \mathbb{R}^4 \mid L_A(\underline{x}) = \underline{0} \} = \{ \underline{x} \in \mathbb{R}^4 \mid A\underline{x} = \underline{0} \};$$

basta allora risolvere il sistema omogeneo $A\underline{x}=\underline{0}$ trovandone una base. Riducendo con Gauss, risolvendo il sistema a scala che ne risulta otteniamo che

$$\operatorname{Ker}(L_A) = \operatorname{Span} \left(\left| \begin{array}{c} -2 \\ 1 \\ 1 \\ 0 \end{array} \right|, \left| \begin{array}{c} -1 \\ 3 \\ 0 \\ 1 \end{array} \right| \right).$$

Dato che il nucleo è non banale, ne segue che L_A non è iniettiva. Per il teorema della dimensione, dato che dimensione di $\operatorname{Ker} A=2$, si ha che dim $\operatorname{Im} A=4-2=2$ Ne segue che L_A non è suriettiva.

Abbiamo visto che $\operatorname{Im} L_A$ è il sottospazio di \mathbb{R}^3 generato dalle colonne di A; la riduzione di Gauss, già effettuata, ci dice che i primi due vettori colonna di A sono una base per lo spazio generato dalle colonne di A. Quindi l'immagine di A ha dimensione 2 ed è generato dalle prime due colonne di A. Dato che $\operatorname{Im} L_A$ non è tutto \mathbb{R}^3 , essendo di dimensione 2, ritroviamo che L_A non è suriettiva.