Corso di Laurea in Fisica. a.a. 2020-21. Geometria. Canale 3. Compito a casa del 23/10/20

Esercizio 1. Dimostrare che

$$M_{nn}(\mathbb{R}) = \mathcal{S}_{nn}(\mathbb{R}) \oplus \mathcal{A}_{nn}(\mathbb{R})$$

con $S_{nn}(\mathbb{R})$ ($A_{nn}(\mathbb{R})$) il sottospazio delle matrici simmetriche (antisimmetriche).

Esercizio 2. Sia $\mathbb{C}_{\mathbb{R}}$ lo spazio vettoriale che ha come insieme di vettori i numeri complessi e come campo degli scalari i numeri reali. Calcolare la dimensione di $\mathbb{C}_{\mathbb{R}}$. Esercizio 3. Vero o Falso :

- 4 vettori non-nulli in \mathbb{R}^6 sono sempre linearmente dipendenti
- \bullet 6 vettori non-nulli in \mathbb{R}^4 sono sempre linearmente dipendenti.
- 4 vettori non-nulli in \mathbb{R}^6 sono sempre linearmente indipendenti

Giustificare le risposte.

Esercizio 4. Sia $V = \mathbb{R}^3$. Consideriamo i sottospazi

$$U = \{\underline{x} \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0\}, \quad W = \{\underline{x} \in \mathbb{R}^3 \mid x_1 + 2x_2 + x_3 = 0\}.$$

Determinare la dimensione di U e la dimensione di W.

Decidere se $\mathbb{R}^3 = U \oplus V$.

Esercizio 5. Consideriamo i sottospazi $U=\{\underline{x}\in\mathbb{R}^3\,|\,x_1-x_2-x_3=0\}$ e $W=\mathrm{Span}((1,1,1)).$ Decidere se $\mathbb{R}^3=U\oplus V.$

Esercizio 6. Sia $W \subset \mathbb{R}^4$ il sottospazio $W = \{\underline{x} \in \mathbb{R}^4 \mid x_1 + x_3 + x_4 = 0\}.$

6.1. Determinando una base di W, verificare che dim W=3.

6.2. Determinare un supplementare di W (e cioè un sottospazio U di \mathbb{R}^4 tale che $W \oplus U = \mathbb{R}^4$; determinare U vuol dire qui dare U tramite una sua base.)

Determinare un secondo supplementare di $W,\,U',\,$ distinto da U.

Suggerimento per 6.2: Che dimensione ci aspettiamo per U?

Preambolo all'esercizio 7. Se U è un sottospazio di \mathbb{R}^n dato come insieme delle soluzioni di un sistema omogeneo $A\underline{x}=\underline{0}$ e se W è un secondo sottospazio di \mathbb{R}^n dato come insieme delle soluzioni di un sistema omogeneo $B\underline{x}=\underline{0}$, allora $U\cap W$, che sappiamo essere un sottospazio, è dato dalle soluzioni del sistema omogeneo $C\underline{x}=\underline{0}$ con $C=\left|\begin{array}{c}A\\B\end{array}\right|$.

Esercizio 7. In
$$\mathbb{R}^4$$
 sono dati $U = \{ \underline{x} \in \mathbb{R}^4 \mid A\underline{x} = \underline{0} \}$, $W = \{ \underline{x} \in \mathbb{R}^4 \mid B\underline{x} = \underline{0} \}$ con $A = \left| \begin{array}{ccc} -2 & 1 & 1 & 0 \\ 0 & -1 & 0 & 4 \end{array} \right|$, $B = \left| \begin{array}{ccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{array} \right|$. Stabilire se $\mathbb{R}^4 = U \oplus W$.

Preambolo all'esercizio 8. Sia V uno spazio vettoriale, siano W_1 , W_2 due sottospazi vettoriali di V e sia $V = W_1 \oplus W_2$ una decomposizione di V in somma diretta di W_1 e W_2 . Definiamo qui sotto due applicazioni:

 $P_{W_1}^{W_2}$, la proiezione su W_1 parallelamente a W_2 ;

 $P_{W_2}^{W_1}$, la proiezione su W_2 parallelamente a W_1 .

Per semplificare la notazione poniamo $P_1:=P_{W_1}^{W_2}\,,\quad P_2:=P_{W_2}^{W_1}$

Vediamo la definizione: abbiamo visto in classe che ogni vettore \underline{w} di V si scrive in maniera unica come $\underline{w} = \underline{w}_1 + \underline{w}_2$ con $\underline{w}_1 \in W_1$ e $\underline{w}_2 \in W_2$. Definiamo $P_1: V \to V$

associando a $\underline{w} \in V$ il vettore $\underline{w}_1 \in W_1 \subset V$: quindi $P_1(\underline{w}) = \underline{w}_1$ per definizione. Analogamente: $P_2(\underline{w}) = \underline{w}_2$ per definizione. Riassumendo:

$$P_1(\underline{w}) := \underline{w}_1, \quad P_2(\underline{w}) := \underline{w}_2.$$

Esercizio 8.

- **8.1.** Verificare che $P_1:V\to V$ e $P_2:V\to V$ sono applicazioni **lineari**.
- **8.2.** Considerate $V = \mathbb{R}^2$, W_1 e W_2 di dimensione 1 e ovviamente distinti. Su un disegno indicate un generico vettore \underline{w} di \mathbb{R}^2 , $P_1(\underline{w})$, $P_2(\underline{w})$.
- 8.3. Verificare che, in generale, sussistono le seguenti identità:

(1)
$$(P_1)^2 = P_1; \quad (P_2)^2 = P_2; \quad P_1 + P_2 = \mathrm{Id}$$

8.4. Ritrovate la (1) sul vostro disegno.