Corso di Laurea in Fisica. a.a. 2013-14. Geometria. Canale 3. Soluzioni del compito a casa del 4/10/13

Soluzione esercizio 1. L'applicazione $f_1: \mathbb{R} \longrightarrow \mathbb{R} \ x \longrightarrow x^2 - 3x + 7$ non è suriettiva. Dimostriamolo. Sia **b** un qualsiasi elemento del codominio. Ci domandiamo se esiste x nel dominio tale che $f_1(x) = \mathbf{b}$. Tale x esiste se e solo se esiste una soluzione dell'equazione

$$x^{2} - 3x + 7 = \mathbf{b}$$
 o, equivalentemente, $x^{2} - 3x + (7 - \mathbf{b}) = 0$.

Per studiare la risolubilità delle equazioni di secondo grado $ax^2 + bx + c = 0$ dobbiamo considerare il discriminante $\Delta := b^2 - 4ac$. Nel nostro caso $\Delta = 3^2 - 4(7 - \mathbf{b}) = -19 + 4\mathbf{b}$; ne deduciamo che esistono $\mathbf{b} \in \mathbb{R}$, ad esempio $\mathbf{b} = 0$, per i quali questo numero è strettamente negativo; quindi esistono $\mathbf{b} \in \mathbb{R}$, ad esempio $\mathbf{b} = 0$, tali che $x^2 - 3x + 7 = \mathbf{b}$ non ammette soluzioni reali; quindi esistono elementi del codominio, ad esempio $\mathbf{b} = 0$, che non sono immagine tramite f_1 di alcun x nel dominio. Detto altrimenti, l'immagine di f_1 non è tutto \mathbb{R} e f_1 non e' suriettiva.

 f_1 non è iniettiva perché per ogni $\mathbf{b} \in \text{Im}(f_1)$ ci sono **due** soluzioni dell'equazione $x^2 - 3x + 7 = \mathbf{b}$ (tranne quando $(3^2 - 4(7 - \mathbf{b}) = 0)$, o, detto, altrimenti, ci sono due elementi nel dominio, $x_{\mathbf{b}}$ e $\tilde{x}_{\mathbf{b}}$ tali che la loro immagine tramite f_1 coincide ed è uguale a \mathbf{b} .

 $f_2: \mathbb{R} \longrightarrow [-1,1], x \longrightarrow \sin x$ è chiaramente non iniettiva perchè il seno è una funzione periodica. L'immagine è [-1,1] e quindi la funzione seno, da \mathbb{R} a [-1,1] è suriettiva.

 $f_3:\mathbb{Z} \longrightarrow \mathbb{Z} \ x \longrightarrow x+1$ è iniettiva e suriettiva.

Per l'iniettività: se $f_3(x) = f_3(x')$ allora x + 1 = x' + 1 e quindi aggiungendo ad ambo i membri (-1) otteniamo x = x'. Quindi

$$f_3(x) = f_3(x') \Rightarrow x = x'$$

che è la definizione di iniettività.

Per la suriettività: se $\mathbf{b} \in \mathbb{Z}$ allora $\mathbf{b} = (\mathbf{b} - 1) + 1 = f_3(\mathbf{b} - 1)$ e quindi f_3 è suriettiva.

 $f_4: \mathbb{R} \longrightarrow \mathbb{R} \ x \longrightarrow 2x+5$ è iniettiva e suriettiva. La dimostrazione è simile a qualla data per f_3 .

 $f_5: \mathbb{N}^* \longrightarrow \mathbb{Q} \ n \longrightarrow 1/n$ è iniettiva ma chiaramente non suriettiva (l'immagine è contenuta nei numeri razionali nell'intervallo [0,1]).

 $f_6:\mathbb{Z}\longrightarrow\mathbb{Z}\ x\longrightarrow 2x$ è iniettiva ma non suriettiva, dato che ha come immagine i numeri pari.

Soluzione esercizio 2. Vediamo che f_g è suriettiva. Sia e l'elemento neutro di G. Sia $\gamma \in G$. Dobbiamo verificare che esiste $\eta \in G$ tale che $f_g(\eta) = \gamma$. Ma $f_g(\eta) := \eta \bullet g$. Quindi cerchiamo η tale che $\eta \bullet g = \gamma$. Dobbiamo usare l'ipotesi e cioè che (G, \bullet) è un gruppo: esiste quindi g^{-1} e se consideriamo $\eta = \gamma \bullet g^{-1}$ allora abbiamo, per l'associatività,

$$\eta \bullet g = (\gamma \bullet g^{-1}) \bullet g = \gamma \bullet (g^{-1} \bullet g) = \gamma \bullet e = \gamma$$

ed abbiamo finito. Vediamo ora che l'applicazione f_g è iniettiva. Infatti se $f_g(h) = f_g(h')$ allora $h \bullet g = h' \bullet g$; quindi moltiplicando ambo i membri per l'inverso di g, che denotiamo g^{-1} , otteniamo

$$(h \bullet q) \bullet q^{-1} = (h' \bullet q) \bullet q^{-1}$$

Utilizzando l'associatività e la definizione di inverso otteniamo $h=h^\prime$ e quindi f_g è iniettiva.

Ne segue che f_g è bigettiva. La sua inversa è l'applicazione $f_{g^{-1}}$ che associa a h l'elemento $h \bullet g^{-1}$.

Soluzione esercizio 3. Denotiamo con • l'operazione in G. Supponiamo che g_0 e g_0' siano due elementi neutri. Vogliamo dimostrare che $g_0 = g_0'$. Ma $g_0 \bullet g = g = g \bullet g_0$ $\forall g \in G$. In particolare $g_0 \bullet g_0' = g_0'$. D'altra parte anche g_0' è un elemento neutro e quindi, ragionando come sopra, abbiamo che $g_0' \bullet g_0 = g_0 = g_0 \bullet g_0'$. In definitiva:

$$g_0 = g_0 \bullet g_0' = g_0'$$

e abbiamo finito.

Sia ora g un elemento di G e siano g' e \tilde{g}' due elementi inversi di g. Vogliamo dimostrare che sono uguali. Sia e l'elemento neutro di G. Si ha

$$g' = g' \bullet e = g' \bullet (g \bullet \tilde{g}') = (g' \bullet g) \bullet \tilde{g}' = e \bullet \tilde{g}' = \tilde{g}'$$

e abbiamo finito.

Soluzione esercizio 4. Mettendo insieme quanto visto a lezione e gli appunti in rete manca solo la commutatività del prodotto e la distributività. Le verifiche sono semplici e dirette; le ometto.

Soluzione esercizio 5. Dobbiamo verificare che se $f:A\to B$ è bigettiva e $f^{-1}:B\to A$ è la sua inversa, allora $f\circ f^{-1}=\operatorname{Id}_B$ e $f^{-1}\circ f=\operatorname{Id}_A$. Ricordiamo che se $\beta\in B$ allora l'insieme $f^{-1}(\beta)\subset A$ è non vuoto (perché f è surgettiva) e costituito da un unico elemento $\alpha\in A$ (perché f è iniettiva); per definizione $f(\alpha)=\beta$ (perché α è nella controimmagine di β). Vi ricordo anche che la funzione inversa f^{-1} calcolata in β vale proprio α . Quindi

$$(f \circ f^{-1})(\beta) = f(f^{-1}(\beta)) = f(\alpha) = \beta = \mathrm{Id}_B(\beta)$$

da cui dediciamo, dato che β è arbitrario, che $f \circ f^{-1} = \operatorname{Id}_B$. Per dimostrare che $f^{-1} \circ f = \operatorname{Id}_A$ procediamo analogamente: $(f^{-1} \circ f)(\alpha) = f^{-1}(f(\alpha))$; ma la funzione inversa applicata a $f(\alpha)$ è uguale all'unico elemento di A che ha come immagine $f(\alpha)$; questo elemento è, ovviamente, α . Conclusione $(f^{-1} \circ f)(\alpha) = \alpha = \operatorname{Id}_A(\alpha)$ e, dato che α è arbitrario, ne deduciamo che $f^{-1} \circ f = \operatorname{Id}_A$.

Soluzione esercizio 6. Dobbiamo innanzitutto verificare l'associatività della composizione. Se f, g, h sono applicazioni di A in sé allora $((f \circ g) \circ h)(a)$ è uguale, per definizione di composizione, a $(f \circ g)(h(a))$ che è uguale, sempre per definizione di $f \circ g$, all'elemento f(g(h(a))). È facile verificare che questo elemento è anche uguale a $(f \circ (g \circ h))(a)$ e quindi $\forall a \in A$

$$((f\circ g)\circ h)(a)=(f\circ (g\circ h))(a)$$

da cui l'associatività. Poi occorre trovare un elemento neutro; consideriamo l'applicazione identità Id_A . Si ha allora $f \circ \mathrm{Id}_A = f = \mathrm{Id}_A \circ f$ (basta applicare le definizioni); quindi Id_A è l'elemento neutro. Infine, per ogni f occorre trovare l'elemento

inverso: dato che f è bigettiva basta prendere f^{-1} perché allora sappiamo che $f\circ f^{-1}=\mathrm{Id}_A=f^{-1}\circ f.$

Soluzione esercizio 7. Consideriamo $A = \{1, 2, 3\}$. I sei elementi di S_3 sono

$$\begin{split} \operatorname{Id}_A := \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \quad \alpha := \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right), \quad \beta := \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \\ \gamma := \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \quad \delta := \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right), \quad \epsilon := \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right) \end{split}$$
 Si ha che $\delta \circ \alpha = \epsilon$ mentre $\alpha \circ \delta = \beta$; ne segue che

$$\delta \circ \alpha \neq \alpha \circ \delta$$

e quindi S_3 non è un gruppo commutativo.