Corso di Laurea in Fisica. Geometria. a.a. 2012-13. Canale L-PE. Prof. P. Piazza

Esercizi su autovalori ed autovettori

Esercizio 1. Sia $V = \mathbb{R}^3$ con base canonica fissata. Consideriamo l'applicazione lineare $F_A : \mathbb{R}^3 \to \mathbb{R}^3$ definita dalla matrice:

$$A = \left| \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 3 \\ -3 & 1 & 3 \end{array} \right|.$$

1.1. Determinare gli autovalori di F_A .

1.2. Determinare equazioni cartesiane per gli autospazi associati.

1.3. Per ogni autospazio determinare una base.

1.4. Verificare che esiste una base di \mathbb{R}^3 costituita da autovettori per F_A . Determinare esplicitamente una tale base. Questa base è unica?

1.5. Scrivere la matrice associata a F_A nella base di cui in 1.4. (Utilizzate la definizione di matrice associata ad F_A in una base $\{\underline{v}_1,\underline{v}_2,\underline{v}_3\}$; vi ricordo che questa è la matrice che ha come j-ma colonna le coordinate di $F_A(\underline{v}_j)$ nella base $\{\underline{v}_1,\underline{v}_2,\underline{v}_3\}$.)

1.6 Determinare una matrice invertibile M tale che $M^{-1}AM$ sia diagonale.

Esercizio 2. Rifare l'Esercizio 1 ma per l'operatore $F_A: \mathbb{R}^3 \to \mathbb{R}^3$ definito dalla matrice

$$\left| \begin{array}{ccc} 0 & -2 & -1 \\ 0 & 1 & 0 \\ -1 & -2 & 0 \end{array} \right|.$$

Esercizio 3. Spazio vettoriale \mathbb{R}^2 con base canonica $\{\underline{e}_1,\underline{e}_2\}$ fissata. Sia $F: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione *lineare* che ammette il sottospazio $\mathbb{R}(1,1)$ come autospazio associato all'autovalore $\lambda_1 = -2$ e il sottospazio $\mathbb{R}(-1,0)$ come autospazio associato all'autovalore $\lambda_2 = 3$.

(3.1) Spiegare perché ${\cal F}$ è univocamente determinata dalle condizioni date.

(3.2) Determinare la matrice associata ad F nella base canonica.

Esercizio 4. Sia $F_A: \mathbb{R}^2 \to \mathbb{R}^2$ definita da

$$A = \left| \begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array} \right|$$

4.1 Verificare che F_A non è diagonalizzabile.

4.2 Sia ora $F_A^{\mathbb{C}}: \mathbb{C}^2 \to \mathbb{C}^2$ l'applicazione lineare definita su \mathbb{C}^2 da A:

$$\left. F_A^{\mathbb{C}} \left| \begin{array}{c} z_1 \\ z_2 \end{array} \right| := \left| \begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array} \right| \left| \begin{array}{c} z_1 \\ z_2 \end{array} \right|$$

(stessa definizione di F_A ma su \mathbb{C}^2); studiare la diagonalizzabilità di $F_A^{\mathbb{C}}$.

Esercizio 5. Sia

$$A = \left| \begin{array}{rrr} 3 & 1 & 2 \\ -2 & 0 & -2 \\ -1 & 0 & -1 \end{array} \right|$$

e sia $T := L_A$

Stabilire se T è diagonalizzabile.