Corso di Laurea in Fisica. Geometria. a.a. 2009-10. Prof. P. Piazza

Compito a casa del 10/11/09

Esercizio 1. Sia U il sottospazio di \mathbb{R}^5 definito come l'insieme degli $\underline{x} \in \mathbb{R}^5$ soluzioni di

$$\begin{cases} x_1 - x_2 + x_3 + x_5 = 0 \\ x_3 + x_4 = 0 \\ x_1 - x_2 - x_4 + x_5 = 0 \end{cases}$$

1.1 Determinare la dimensione di U. Determinare una base di U.

1.2 Determinare $\ell \in \{1, 2, 3, 4, 5\}$ e un'applicazione lineare iniettiva $T : \mathbb{R}^{\ell} \to \mathbb{R}^{5}$ che abbia come immagine U. (Suggerimento: utilizzare la Proposizione 5.2 del testo.)

1.3 Determinare l'espressione in coordinate di T e cioè una matrice C tale che $T=L_C$.

1.4 Determinare equazioni parametriche per U.

Esercizio 2. Determinare equazioni cartesiane per il sottospazio W di \mathbb{R}^5 definito da

$$W = \text{Span} \left(\begin{array}{c|c|c} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & -1 \end{array} \right)$$

Esercizio 3. Determinare una base per $U \cap W$, con U il sottospazio dell'esercizio 1 e W il sottospazio dell'esercizio 2.

Esercizio 4. Determinare equazioni cartesiane per il sottospazio affine di \mathbb{R}^3 parallelo al sottospazio W = Span(1, -1, 2) e contenente il vettore $\underline{v}_0 := (0, 1, 0)$.

Esercizio 5. (Molto istruttivo) Sia $Q: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita dalla matrice

$$A = \left| \begin{array}{ccc} 1 & -1 & 1 \\ 2 & 0 & -3 \\ 0 & -2 & 5 \end{array} \right|.$$

Quindi $Q = L_A$.

(5.0) Scrivere l'espressione di Q in coordinate.

(5.1) Determinate equazioni cartesiane e parametriche per Ker(Q) e ImQ. Studiare l'iniettività/suriettività di Q. Determinare la controimmagine del vettore $(2, -1, 5)^1$

(5.2) Determinare l'immagine tramite Q della retta² di \mathbb{R}^3 di equazioni cartesiane

$$\begin{cases} x_1 - x_3 = 0 \\ x_2 + 2x_3 = 0 \end{cases}$$

(5.3) Determinare equazioni cartesiane per l'immagine del piano π di equazione $x_1 - x_3 = 0$. Qual è la dimensione di $Q(\pi)$?

 $^{^1}$ Vi ricordo che se $f:A\to B$ è un'applicazione fra insiemi, allora la controimmagine di $b\in B$ tramite f è il sottoinsieme di A definito da $\{a\in A\,|\, f(a)=b\}$. Analogamente si definisce la controimmagine di un sottoinsieme di B. La controimmagine di b tramite b viene denotata con b $f^{-1}(b)$.

²Se $f: A \to B$ è un'applicazione fra insiemi, allora l'immagine di un sottoinsieme A' di A mediante f è il sottoinsieme di B definito da $f(A') = \{f(a) | a \in A'\}$.

(5.4) Determinare equazioni parametriche per l'immagine del piano σ di equazione $5x_1 - 3x_2 = 0$. Qual è la dimensione di $Q(\sigma)$? Confrontare le dimensioni di $Q(\pi)$ e $Q(\sigma)$. C'è qualcosa di strano oppure è tutto

OK?

Cercate di spiegare cosa succede.