Geometria Differenziale. a.a. 2006-07. Prof. P. Piazza

Esercizi per il periodo 27/12/06 - 8/1/07. Prima parte.

Esercizio. Decidere se la semisfera chiusa $\{(x,y,z)\in\mathbb{R}^3, x^2+y^2+z^2=1, z\geq 0\}$ è una superficie regolare.

Esercizio. Verificare che l'applicazione $\phi(u,v)=(u^2,uv,v^2)$ definita sull'aperto $U=\{(u,v),u>0,v>0\}$ è una parametrizzazione locale.

Esercizio. Consideriamo la parametrizzazione

$$\phi(u, v) = (v \cos u, v \sin u, \sin 2u), \quad (u, v) \in \mathbb{R}^2.$$

Decidere se ϕ è una superficie parametrizzata.

Sia S il sostegno di ϕ . Verificare che $S' := S \setminus \{x = 0, y = 0\}$ è una superficie regolare connessa e non-compatta (esprimere S' come grafico di una funzione).

Esercizio. Svolgere gli esercizi 3.14, 3.15, 4.5, 4.19 del libro di testo.

Esercizio. Svolgere i Problemi 4.4, 4.5, 4.6, 4.7 del libro di testo.

Esercizio. Sia S il cilindro parametrizzato da $\phi(u,v):=(r\cos u,r\sin u,v),$ $\forall (u,v)\in\mathbb{R}^2.$ Sia $Q\subset\mathbb{R}^2$ il compatto delimitato dai grafici delle funzioni

$$v = \pm r \sin u, \quad u \in [0, 2\pi]$$

Calcolare l'area della regione $R := \phi(Q)$ e verificare che Area $(R) = r \operatorname{Area}(Q)$.

Esercizio. Sia S il paraboloide a sella di equazione cartesiana z=xy. Sia $P=(1,1,1)\in S$. Sia $f:S\to\mathbb{R}$ la funzione $f(x,y,z)=xyz\ \forall (x,y,z)\in S$. Dopo aver spiegato perché f è differenziabile si calcoli la matrice associata a df_P con base di partenza uguale alla base indotta dalla parametrizzazione $(u,v)\to(u,v,uv)$ e base di arrivo la base canonica di \mathbb{R} .

Determinare il vettore tangente $\underline{w}_P \in T_PS$ tale che $df_P(\underline{v}_P) = \langle \underline{v}_P, \underline{w}_P \rangle_P$. Dopo aver parametrizzato i versori di T_PS tramite una base ortonormale di T_PS , verificare che df_P ristretto ai versori assume un massimo in $\underline{w}_P/||\underline{w}_P||$.

Esercizio. Sia S la superficie data dalla parametrizzazione locale $\phi(u,v)=(u,v,u^2+v^3)$. Studiare la natura dei punti di S (ellittici, iperbolici etc...). Decidere se in un intorno del punto parabolico O:=(0,0,0), S giace o meno in uno dei due semispazi definiti dal piano tangente T_OS .

1