Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Compito a casa del 24/11/06

Esercizi sui determinanti.

Esercizio 1. Calcolare il determinante della matrice

$$\left|\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & k & -1 \\ 1 & 1 & -1 & 1 \\ 0 & 2 & 0 & -1 \end{array}\right|$$

e determinare per quali valori di k la matrice è invertibile.

Esercizio 2. Consideriamo le matrici

$$A = \left| \begin{array}{cccc} a & b & 0 & 0 \\ c & d & 0 & 0 \\ e & f & g & h \\ x & y & z & w \end{array} \right|, \quad B = \left| \begin{array}{cccc} a & b & l & m \\ c & d & n & p \\ 0 & 0 & g & h \\ 0 & 0 & z & w \end{array} \right|.$$

Dimostrare che

Dimostrare che
$$\det B = \det \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \cdot \det \left| \begin{array}{cc} g & h \\ z & w \end{array} \right|$$
 Cosa possiamo dire circa $\det A$? 1

Esercizio 3. Studiare il Teorema di Cramer, pag 160. (Corollario 9.11) Verificare che la matrice dei coefficienti del seguente sistema è non singolare. Ap-

plicare il teorema di Cramer per determinare l'unica soluzione del sistema.

$$\begin{cases} 2x_1 + 3x_2 - x_3 = 1\\ x_1 + 4x_2 + 2x_3 = 2\\ 3x_1 - x_2 - x_3 = 3 \end{cases}$$

Esercizi di geometria affine.

Esercizi sul piano affine. Consideriamo il piano affine A^2 e sia $RA(O,\underline{i},j)$ un riferimento affine. Denotiamo con (x, y) le coordinate associate. Disegnate sul vostro foglio un riferimento affine.

Esercizio 1. Sia r la retta di equazione cartesiana 2x - y + 2 = 0. Determinare i parametri direttori di r. Determinare un'equazione parametrica per r. Disegnare r nel riferimento assegnato.

Disegnare le seguenti rette:

 r_2 di equazione cartesiana x=3.

 r_3 di equazione cartesiana y = -1.

 r_4 di equazioni parametriche x = 1 + 2t, y = -1 - 2t.

$$N = \left| \begin{array}{cc} A & B \\ 0 & C \end{array} \right|$$

con $A \in M_{k,k}(\mathbb{R}), C \in M_{(n-k),(n-k)}(\mathbb{R}), B \in M_{k,(n-k)}(\mathbb{R}),$ con k < n. Allora

 $\det N = \det A \cdot \det C \,.$

La dimostrazione non è difficile; utilizza l'induzione su k ed è alla vostra portata.

¹Vale in generale la Proposizione : sia $N \in M_{n,n}(\mathbb{R})$ e supponiamo che

Esercizio 2. Dire se le 3 rette di equazione cartesiana

$$3x + 3y - 1 = 0$$
 $2x + y + 2 = 0$ $x - y + 2 = 0$

sono incidenti in un punto.

Esercizio 3. Determinare l'equazione cartesiana della retta r passante per l'intersezione delle due rette 2x - y + 3 = 0, x + y + 1 = 0 e per il punto P_0 di coordinate (0, 1).

Esercizi sullo spazio affine. Passiamo allo spazio affine \mathcal{A}^3 con riferimento $RA(O,\underline{i},j,\underline{k})$ e coordinate associate (x,y,z).

Esercizio 4.

- **4.1** Determinare le equazioni parametriche e cartesiane del piano π per i punti $P_1=(1,0,0), P_2=(0,1,0)$ e $P_3=(0,0,1)$.
- **4.2** Determinare due vettori di giacitura \underline{v} , \underline{v}' per π (e cioè una base per il sottospazio π_0 di \mathbb{R}^3 associato al sottospazio affine π)..
- **4.3** Determinare l'equazione cartesiana del piano σ parallelo al piano π e passante per il punto P = (16, 1, 0).

Esercizio 5. Determinare l'equazione cartesiana del piano parallelo al piano coordinato yz e passante per P = (2, 3, 1). (Il piano coordinato yz è il piano per l'origine individuato dall'asse y e dall'asse z e cioè dalla giacitura $W = \operatorname{Span}(j, \underline{k})$.)

Esercizio 6. Disegnare

- il piano di equazione cartesiana x + y 1 = 0.
- il piano di equazione cartesiana z=3
- la retta di equazione cartesiana x = 1 y = 2
- la retta di equazioni parametriche x = t, y = t, z = 1.

Esercizio 7. È data la retta r di equazioni parametriche

$$\begin{cases} x = 2t + 1 \\ y = -t - 2 \\ z = t + 3 \end{cases}$$

Determinare i parametri direttori di r. Scrivere equazioni cartesiane per r. Dire se queste equazioni sono univocamente determinate.

Esercizio 8. Determinare i parametri direttori della retta r

$$\begin{cases} 2x + y - 3z = 2\\ x - y + z = 1 \end{cases}$$

Scrivere le equazioni cartesiane della rette s parallela a r e passante per P = (0, 1, 1).

Esercizio 9. Scrivere l'equazione cartesiana del piano per il punto (0, 2, 0) e per la retta di equazione cartesiana

$$\begin{cases} x - z = 3 \\ y + 2z = 1 \end{cases}$$

Esercizio 10. Scrivere l'equazione del piano per la retta di cui nell'esercizio 8 e parallelo alla retta di direzione (11, 0, -1).

Esercizio 11 Determinare l'equazione cartesiana per il piano π che contiene il punto (3,2,1) e la retta di equazioni parametriche x=2+3t, y=4+t, z=1+5t.