Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza

Compito a casa del 31/10/06

Esercizio 1. Sia $V = \mathbb{R}^3$. Consideriamo i sottospazi

$$U = \{ \underline{x} \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0 \}, \quad W = \{ \underline{x} \in \mathbb{R}^3 \mid x_1 + 2x_2 + x_3 = 0 \}.$$

Decidere se $\mathbb{R}^3 = U \oplus V$.

Esercizio 2. Come l'esercizio 1 ma con $U = \{\underline{x} \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0\}$ e $W = \operatorname{Span}((1, 1, 1))$.

Esercizio 3. Dire se l'applicazione lineare $L_A:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definita dalla matrice

$$A = \left| \begin{array}{ccc} 1 & 3 & -1 \\ 2 & 1 & -1 \\ 2 & -1 & 0 \end{array} \right|$$

è iniettiva. Dire se è biettiva. Determinare l'immagine tramite L_A del vettore (1,2,1). Determinare l'immagine tramite L_A dei vettori della base canonica.

Esercizio 4. Sia $L_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita dalla matrice

$$A = \left| \begin{array}{ccc} 1 & -1 & 1 \\ 2 & 0 & -3 \\ 0 & -2 & 5 \end{array} \right|.$$

Scrivere l'espressione di L_A in coordinate: $L_A \left| \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right| = \dots$

Determinare la dimensione del nucleo di L_A . Determinare una base per lo spazio immagine.

Esercizio 5. Spiegare perché esiste ed è unica l'applicazione lineare $F:\mathbb{R}^3\to\mathbb{R}^3$ tale che

$$F(1,1,1) = (2,3,2), \quad F(0,1,1) = (1,3,2), \quad F(0,1,-1) = (1,1,-2).$$

(Per ragioni tipografiche scriveremo spesso i vettori di \mathbb{R}^n per righe.) Determinare l'immagine tramite F degli elementi della base canonica: $\underline{e}_1 = (1,0,0)$, $\underline{e}_2 = (0,1,0)$, $\underline{e}_3 = (0,0,1)$. (Suggerimento: esprimere i vettori della base canonica come combinazioni lineari dei vettori (1,1,1), (0,1,1), (0,1,-1) e applicare la linearità.)

ULTERIORI ESERCIZI

Esercizio 6. Sia $W \subset \mathbb{R}^5$ il sottospazio $W = \{\underline{x} \in \mathbb{R}^5 \,|\, x_1 + x_3 + x_5 = 0\}$. Determinare un sottospazio U di \mathbb{R}^5 tale che $W \oplus U = \mathbb{R}^5$. (Determinare U vuol dire qui dare U tramite una sua base.) Determinare un secondo sottospazio U' distinto da U ma tale che sia ancora $\mathbb{R}^5 = W \oplus U'$.

Suggerimenti: qual è la dimensione di W? Che dimensione ci aspettiamo per U?

Esercizio 7. In
$$\mathbb{R}^4$$
 sono dati $U = \{ \underline{x} \in \mathbb{R}^4 \mid A\underline{x} = \underline{0} \}$, $W = \{ \underline{x} \in \mathbb{R}^4 \mid B\underline{x} = \underline{0} \}$ con $A = \left| \begin{array}{ccc} -2 & 1 & 1 & 0 \\ 0 & -1 & 0 & 4 \end{array} \right|$, $B = \left| \begin{array}{ccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{array} \right|$. Verificare se $\mathbb{R}^4 = U \oplus W$.

Esercizio 8. Una matrice $A = (a_{ij}) \in M_{nn}(\mathbb{R})$ è detta simmetrica se $a_{ij} = a_{ji}$ per ogni i, j. Una matrice A è detta antisimmetrica se $a_{ij} = -a_{ji}$ per ogni i, j.

- **8.1.** Verificare che il sottoinsieme $S_{nn}(\mathbb{R}) \subset M_{nn}(\mathbb{R})$ delle matrici simmetriche è un sottospazio.
- **8.2.** Verificare che il sottoinsieme $\mathcal{A}_{nn}(\mathbb{R}) \subset M_{nn}(\mathbb{R})$ delle matrici antisimmetriche è un sottospazio.
- **8.3.** Verificare che $S_{nn}(\mathbb{R}) \cap A_{nn}(\mathbb{R}) = \underline{0}$; verificare che $M_{nn}(\mathbb{R}) = S_{nn}(\mathbb{R}) + A_{nn}(\mathbb{R})$ (suggerimento: utilizzare il fatto che $A = (A + A^T)/2 + (A A^T)/2$)). Dedurne che $M_{nn}(\mathbb{R}) = S_{nn}(\mathbb{R}) \oplus A_{nn}(\mathbb{R})$
- che $M_{nn}(\mathbb{R}) = \mathcal{S}_{nn}(\mathbb{R}) \oplus \mathcal{A}_{nn}(\mathbb{R})$ 8.4 Nel caso n = 3 determinare una base del sottospazio $\mathcal{S}_{33}(\mathbb{R})$ e una base del sottospazio $\mathcal{A}_{33}(\mathbb{R})$.