Geometria 1

Prof. Paolo Piazza

Esercizi per la mattina del 5/6/18.

Esercizio 1. Sia \mathcal{C} la curva di $A^2(\mathbb{C})$ di equazione $f(X;Y) = XY^2 - Y^4 + X^3 - 2X^2Y = 0$.

- 1. Determinare i punti impropri di \mathcal{C} rispetto a X_0 .
- 2. Stabilire se esistono asintoti.
- 3. Verificare che l'origine è punto singolare per \mathcal{C} ; determinare le tangenti principali nell'origine, stabilendo quindi se essa è singolarità ordinaria o non-ordinaria.
- 4. Sia σ la retta di equazione Y=7. Calcolare $\sum_{P\in\sigma}I(\mathcal{C},\sigma;P)$. 5. sia P=(4,-4) e sia r la retta di equazione 2X+3Y+4=0. Determinare $I(\mathcal{C},r;P)$.

Esercizio 2. Nel piano affine complesso $A^2(\mathbb{C})$ è data la curva algebrica \mathcal{C}_A di equazione $X+Y+Y^4=0$.

- 1. Scrivere l'equazione della curva algebrica \mathcal{C} in $P^2(\mathbb{C})$ ottenuta per chiusura proiettiva rispetto a X_0 .
- 2. Scrivere l'equazione della curva algebrica in $A^2(\mathbb{C}) = P^2(\mathbb{C}) \setminus H_1$, $H_1 = \{X_1 = 0\}$, ottenuta per deomogenizzazione di \mathcal{C} rispetto a X_1 .
- 3. Verificare che $\mathcal C$ ammette un unico punto singolare S; determinare la molteplicità di S.
- 4. Scrivere l'equazione di ogni tangente principale in S e per ognuna di esse la relativa molteplicità d'intersezione con la curva nel punto S. (Suggerimento: può essere utile utilizzare il punto 2.)
- 5. Dimostrare che $\mathcal C$ ha un punto di flesso F nell'origine: scrivere l'equazione cartesiana della tangente τ in (0,0) e verificare che $I(\mathcal{C},\tau;F) > 2$.