Corso di Istituzioni di Algebra Superiore

Docente: Guido Pezzini a.a. 2023/2024 Foglio di esercizi n.8 17.11.2023

Se non specificato diversamente, tutti gli spazi vettoriali (e quindi tutte le algebre di Lie) sono definiti su un campo k algebricamente chiuso di caratteristica 0.

Esercizio 1. Sia V uno spazio vettoriale e $T: V \to V$ un endomorfismo semisemplice. Si dimostri che $\text{Ker}(T) \cap \text{Im}(T) = \{0\}.$

Esercizio 2. Siano $S_i \colon V \to V$ degli endomorfismi semisemplici di uno spazio vettoriale V indicizzati da i che varia in un insieme I qualsiasi, e si supponga $[T_i, T_j] = 0$ per ogni $i, j \in I$. Si dimostri che questi endomorfismi si diagonalizzano simultaneamente, cioè esiste una base di V fatta di autovettori di T_i per ogni i.

Esercizio 3. Sia L un'algebra di Lie, consideriamo L-moduli V, W e lo spazio vettoriale Hom(V, W) delle applicazioni lineari $f: V \to W$ con la struttura naturale di L-modulo vista a lezione.

- (1) Si dimostri che f è un omomorfismo di L-moduli se e solo se x cdot f = 0 per ogni $x \in L$.
- (2) Analogamente, se G è un gruppo e V, W sono G-moduli, si dimostri che f è un omomorfismo di G-moduli se e solo se $g \cdot f = f$ per ogni $g \in G$.

Esercizio 4. Sia L un'algebra di Lie, e $b: L \times L \to k$ una forma bilineare. Sia $f: L \otimes L \to k$ la corrispondente applicazione lineare, cioè tale che $f(\mathsf{x} \otimes \mathsf{y}) = b(\mathsf{x}, \mathsf{y})$ per ogni $\mathsf{x}, \mathsf{y} \in L$. Dunque f è un elemento del duale $(L \otimes L)^*$ di $L \otimes L$. Si consideri L come un L-modulo tramite la rappresentazione aggiunta, il che induce una struttura naturale di L-modulo sul duale $(L \otimes L)^*$. Dimostrare che, considerando questa struttura di L-modulo, la forma bilineare b è associativa se e solo se $\mathsf{x}.f = 0$ per ogni $\mathsf{x} \in L$.

Esercizio 5. Sia L algebra di Lie semplice, e siano $b, c \colon L \times L \to k$ applicazioni bilineari associative (nel senso visto per la forma di Killing) e non degeneri. Si dimostri che b e c sono linearmente dipendenti. (Suggerimento: si usino b e c per costruire isomorfismi $L \to L^*$ di L-moduli, dove L agisce su se stessa tramite ad. Poi usare il Lemma di Schur.)

Esercizio 6. Sia V un $\mathfrak{sl}(2)$ -modulo irriducibile di dimensione 2, e sia W un $\mathfrak{sl}(2)$ -modulo irriducibile di dimensione 3. Si consideri $V \otimes W$ come $\mathfrak{sl}(2)$ -modulo.

- (1) Si trovino tutti gli h-autovettori di $V \otimes W$ in termini degli h-autovettori di V e W, e si trovino anche i relativi h-autovalori.
- (2) Si calcolino le dimensioni degli h-autospazi di $V \otimes W$.
- (3) Sappiamo che $V \otimes W$ è somma diretta di $\mathfrak{sl}(2)$ -moduli irriducibili: si trovi il numero di addendi, e il peso più alto di ciascun addendo.

Esercizio 7. Siano $L = \mathfrak{sl}(2)$ e $V = k^2$ con struttura naturale di L-modulo data dall'inclusione $\mathfrak{sl}(2) \subseteq \mathfrak{gl}(2)$. Si dimostri che V e V^* sono L-moduli isomorfi.

Esercizio 8. Si consideri la sottoalgebra L di $\mathfrak{sl}(3)$ formata dalle matrici in cui l'ultima riga e l'ultima colonna sono nulle.

- (1) Si dimostri che $L \cong \mathfrak{sl}(2)$.
- (2) Si consideri $\mathfrak{sl}(3)$ come L-modulo tramite la rappresentazione aggiunta, cioè $x \in L$ agisce su $y \in \mathfrak{sl}(3)$ come x.y = [x, y]. Si decomponga $\mathfrak{sl}(3)$ in somma diretta di L-moduli irriducibili, trovando il peso più alto di ciascun addendo.