Corso di Istituzioni di Algebra Superiore

Docente: Guido Pezzini a.a. 2022/2023 Foglio di esercizi n.7 17.11.2022

Se non specificato diversamente, tutti gli spazi vettoriali (e quindi tutte le algebre di Lie) sono definiti su un campo k algebricamente chiuso di caratteristica 0.

Esercizio 1. Sia L un'algebra di Lie risolubile, e sia V un L-modulo irriducibile. Si dimostri che $\dim(V)=1$.

Esercizio 2. Sia L un'algebra di Lie e V un L-modulo irriducibile. Si dimostri¹ che ogni elemento di Rad(L) agisce su V come la moltiplicazione per uno scalare.

Esercizio 3. Sia $L \subseteq \mathfrak{gl}(V)$ un'algebra di Lie tale che Rad(L) non è contenuto in Z(L). Si usi l'esercizio precedente per dimostrare che esiste un L-modulo non completamente riducibile.

Esercizio 4. Per questo esercizio sia k un campo di caratteristica p dove p è un numero primo², sia $L=\mathfrak{sl}(2,k)$ e $V=k[X,Y]_p$ lo spazio vettoriale dei polinomi in due variabili, omogenei di grado p. Si consideri V come L-modulo, usando le stesse formule dell'azione di e, h, f viste³ in caratteristica 0, ma si dimostri che qui V non è un L-modulo irriducibile. Si dimostri per p=2 che V non è neppure completamente riducibile.

Esercizio 5. Si calcoli il determinante della forma di Killing di $\mathfrak{sl}(3)$.

Esercizio 6. Si consideri la base usuale (e, h, f) di $\mathfrak{sl}(2)$, e si calcoli la base duale rispetto alla forma di Killing.

Esercizio 7. Sia (e, h, f) la base usuale di $\mathfrak{sl}(2)$, e sia (e', h', f') la base duale rispetto alla forma di Killing. Si calcoli l'elemento

$$ad(e) ad(e') + ad(h) ad(h') + ad(f) ad(f').$$

Esercizio 8. Sia V uno spazio vettoriale e $T: V \to V$ un endomorfismo semisemplice. Si dimostri che $\text{Ker}(T) \cap \text{Im}(T) = \{0\}.$

Esercizio 9. Siano $S_i \colon V \to V$ degli endomorfismi semisemplici di uno spazio vettoriale V indicizzati da i che varia in un insieme I qualsiasi, e si supponga $[T_i, T_j] = 0$ per ogni $i, j \in I$. Si dimostri che questi endomorfismi si diagonalizzano simultaneamente, cioè esiste una base di V fatta di autovettori di T_i per ogni i.

1

 $^{^{1}}$ Questo esercizio è difficile, suggerisco di risolverlo usando le stesse tecniche della dimostrazione del secondo teorema di "punto fisso".

²Questo esercizio è al di fuori del contesto in cui stiamo svolgendo questa parte del corso, e non è essenziale per la comprensione del corso stesso. Consiglio di tentare di rispondere se si vuole avere una prima idea di fenomeni tipici delle algebre di Lie in caratteristica positiva.

³Si tratta delle formule di $d\varphi(e)$, $d\varphi(h)$, $d\varphi(f)$ delle soluzioni dell'esercizio 9 del foglio 3.