Corso di Istituzioni di Algebra Superiore

Docente: Guido Pezzini a.a. 2022/2023 Foglio di esercizi n.5 3.11.2022

Se non specificato diversamente, tutti gli spazi vettoriali (e quindi tutte le algebre di Lie) sono definiti su un campo k qualsiasi.

- Esercizio 1. (1) Sia L algebra di Lie di dimensione 2. Dimostrare che L è risolubile.
 - (2) Si trovi un esempio di un'algebra di Lie di dimensione 2 non nilpotente.

Esercizio 2. Sia L algebra di Lie non risolubile. Dimostrare che Rad(L) ha codimensione almeno 3 in L.

Esercizio 3. Dimostrare che un'algebra di Lie semisemplice non nulla ha dimensione almeno 3.

Esercizio 4. Sia k un campo di caratteristica diversa da 2, e $L = \mathfrak{sl}(2)$. Dimostrare che in questo caso ad: $L \to \text{Der}(L)$ è un isomorfismo.

Esercizio 5. Sia L un'algebra di Lie di dimensione finita, e sia $I \subseteq L$ un ideale non nullo. Si dimostri che se L è nilpotente, allora $\dim([L,I]) < \dim(I)$.

Esercizio 6. Sia $L = \mathfrak{gl}(n)$. Si dimostri che entrambe le sottoalgebre $\mathfrak{b}(n)$ e $\mathfrak{h}(n)$ sono uguali ai loro normalizzatori in L, e che $N_L(\mathfrak{b}^u(n)) = \mathfrak{b}(n)$.

Esercizio 7. Sia L un'algebra di Lie di dimensione 3.

- (1) Si dimostri che, se L = [L, L], allora L è semplice.
- (2) Si dimostri che, se [L, L] ha dimensione 2, allora L è risolubile.
- (3) Si trovi un esempio di L che soddisfa la condizione del punto 2.

Esercizio 8. Sia L un'algebra di Lie nilpotente, e K una sottoalgebra propria. Si dimostri che $N_L(K)$ contiene K strettamente.

Esercizio 9. Sia L un'algebra di Lie, e sia $M \subseteq L$ un sottospazio vettoriale tale che $M \supseteq [L, L]$. Dimostrare che M è un ideale di L.

Esercizio 10. Sia L un'algebra di Lie, e $I \subseteq L$ un ideale. Dimostrare che $I^{(m)}$ e I^m sono ideali anche di L, per ogni $m \in \mathbb{Z}_{>0}$.