Ph.D. course *Hecke algebras* Martina Lanini, Guido Pezzini 2023/2024

Exercises

Unless otherwise specified we denote by (W, S) a Coxeter system and by \mathcal{H} the corresponding Hecke algebra.

Exercise 1. Let G be a group and R be a commutative ring with 1. Recall the definition of the group algebra RG and the identification of RG as a subset of R^G , which is the set of all functions $G \to R$. Prove that the multiplication in RG corresponds in R^G to the convolution defined as

$$(f_1 * f_2)(g) = \sum_{x \in G} f_1(x) f_2(x^{-1}g)$$

with $f_i \in RG$ for all i.

is a bijection $B \times \mathbb{F} \to BsB$.

Exercise 2. Let \mathbb{F} be any field, let B be the set of upper triangular invertible 2×2 matrices with coefficients in \mathbb{F} , and set $\begin{pmatrix} 0 & 1 \end{pmatrix}$

$$s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
$$\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \beta \right) \mapsto \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot s \cdot \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$$

Prove that

Exercise 3. Let
$$(W, S)$$
 be a Coxeter system with graph of type A_{n-1} . Prove that W is isomorphic to the symmetric group S_n if $n \in \{2, 3\}$.

Exercise 4. Let n be a positive integer and choose two numbers $i < j \in \{1, ..., n\}$. Find an expression of the transposition $(i \ j)$ as a product of transpositions of the form $(k \ k+1)$ with exactly 2(j-i) - 1 factors.

Exercise 5. Prove that any dihedral group is a Coxeter group of rank 2 with generators $S = \{\sigma, \sigma\rho\}$ where σ is a reflection and ρ is a rotation.

Exercise 6. Prove the Proposition on page 16 of the handwritten notes.

Exercise 7. Consider a dihedral group presented as a Coxeter group of rank 2. Prove that the geometric representation can be defined in such a way that $V = \mathbb{R}^2$ and B is the standard scalar product.

Exercise 8. Prove that σ_s preserves B for any $s \in S$.

Exercise 9. Let (W, S) be a Coxeter system with graph of type A_{n-1} . Prove that W is isomorphic to the symmetric group S_n for any $n \in \mathbb{Z}_{\geq 1}$. (*Hint: use the geometric representation and identify* V with the hyperplane of \mathbb{R}^n where the sum of all coordinates vanishes.)

Exercise 10. Let $I \subseteq S$, and for any $w \in W_I$ define $\ell_I(w)$ to be the minimal length of an expression of w only involving generators in I.

- (1) Use the exchange property to prove that $\ell_I(w) = \ell(w)$ for all $w \in W_I$.
- (2) Prove that W_I is a normal subgroup if and only if st = ts for all $s \in I$ and all $t \in S \setminus I$.

Exercise 11. (1) Verify that the definition of the Bruhat order does define an order on W.

- (2) Give an alternative definition of the Bruhat order using tw (instead of wt) with $w \in W$ and $t \in T$. Prove that this defines the same order.
 - (3) Prove that $v \leq w$ if and only if $v^{-1} \leq w^{-1}$, for any $v, w \in W$.

Exercise 12. Draw the Hasse diagram of $I_2(m)$ for any m, and prove that in this case v < w if and only if $\ell(v) < \ell(w)$, for any $v, w \in W$.

Exercise 13. Let $v, w \in W$ with v < w, and suppose there is no x such that v < x < w. Prove that $\ell(v)$ and $\ell(w)$ do not have the same parity.

Exercise 14. Let W be an affine reflection group on the euclidean space E.

- (1) Prove that all W-orbits in E are discrete subsets.
- (2) Prove that

$$\bigcup_{H\in\Phi} H$$

is a closed subset of E.

Exercise 15. Let A be a commutative ring with 1 and let \mathcal{E} be the "generic" algebra defined by (W, S) and a choice of coefficients $a_s, b_s \in A$ for all $s \in S$. Prove that

$$T_w \mapsto T_{w^{-1}}$$

extends to a homomorphism $\mathcal{E} \to \mathcal{E}$ of A-modules that is an anti-automorphism of A-algebras.

Exercise 16. Prove that $T_s \mapsto -1$ extends to a homomorphism of $\mathbb{Z}[q, q^{-1}]$ -modules $\mathcal{H} \to \mathbb{Z}[q, q^{-1}]$ sending T_w to $(-1)^{\ell(w)}$.

Exercise 17. Compute $R_{x,w}$ for all $x \leq w$ in the case $W = S_3$ (with the usual presentation of type A_2).

Exercise 18. Define a ring homomorphism $\sigma: \mathcal{H} \to \mathcal{H}$ similarly as ι , by setting $\sigma(q) = q^{-1}$ and

$$\sigma(T_w) = \varepsilon(w)q^{-\ell(w)}T_w$$

Prove that this defines an involution $\sigma: \mathcal{H} \to \mathcal{H}$ that commutes with ι .

Exercise 19. Verify that C_e , C_s and $C_{st} = C_s C_t$ for all $s, t \in S$ satisfy the theorem about the existence and uniqueness of the elements C_w .

Exercise 20. Assuming $W = S_3$ with the usual presentation, prove that $P_{x,w} = 1$ for all $x \leq w$.

Exercise 21. With any W, prove that $R_{x,w} = q - 1$ and $P_{x,w} = 1$, assuming $x \leq w$ and $\ell(w) = \ell(x) + 1$.

Exercise 22. Using formula (*) of page 64 of the handwritten notes, prove that $P_{x,w}(0) = 1$ for all $x \leq w$, and that $P_{x,w}$ for all $x \leq w$ with $\ell(w) - \ell(x) \leq 2$.