Ph.D. course Hecke algebras

Martina Lanini, Guido Pezzini

2023/2024
Exercises

Unless otherwise specified we denote by (W, S) a Coxeter system and by \mathcal{H} the corresponding Hecke algebra.

Exercise 1. Let G be a group and R be a commutative ring with 1 . Recall the definition of the group algebra $R G$ and the identification of $R G$ as a subset of R^{G}, which is the set of all functions $G \rightarrow R$. Prove that the multiplication in $R G$ corresponds in R^{G} to the convolution defined as

$$
\left(f_{1} * f_{2}\right)(g)=\sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1} g\right)
$$

with $f_{i} \in R G$ for all i.
Exercise 2. Let \mathbb{F} be any field, let B be the set of upper triangular invertible 2×2 matrices with coefficients in \mathbb{F}, and set

$$
s=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Prove that

$$
\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), \beta\right) \mapsto\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot s \cdot\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)
$$

is a bijection $B \times \mathbb{F} \rightarrow B s B$.
Exercise 3. Let (W, S) be a Coxeter system with graph of type A_{n-1}. Prove that W is isomorphic to the symmetric group S_{n} if $n \in\{2,3\}$.

Exercise 4. Let n be a positive integer and choose two numbers $i<j \in\{1, \ldots, n\}$. Find an expression of the transposition $\left(\begin{array}{ll}i & j\end{array}\right)$ as a product of transpositions of the form $(k \quad k+1)$ with exactly $2(j-i)-1$ factors.
Exercise 5. Prove that any dihedral group is a Coxeter group of rank 2 with generators $S=\{\sigma, \sigma \rho\}$ where σ is a reflection and ρ is a rotation.

Exercise 6. Prove the Proposition on page 16 of the handwritten notes.
Exercise 7. Consider a dihedral group presented as a Coxeter group of rank 2. Prove that the geometric representation can be defined in such a way that $V=\mathbb{R}^{2}$ and B is the standard scalar product.

Exercise 8. Prove that σ_{s} preserves B for any $s \in S$.
Exercise 9. Let (W, S) be a Coxeter system with graph of type A_{n-1}. Prove that W is isomorphic to the symmetric group S_{n} for any $n \in \mathbb{Z}_{\geq 1}$. (Hint: use the geometric representation and identify V with the hyperplane of \mathbb{R}^{n} where the sum of all coordinates vanishes.)
Exercise 10. Let $I \subseteq S$, and for any $w \in W_{I}$ define $\ell_{I}(w)$ to be the minimal length of an expression of w only involving generators in I.
(1) Use the exchange property to prove that $\ell_{I}(w)=\ell(w)$ for all $w \in W_{I}$.
(2) Prove that W_{I} is a normal subgroup if and only if $s t=t s$ for all $s \in I$ and all $t \in S \backslash I$.

Exercise 11. (1) Verify that the definition of the Bruhat order does define an order on W.
(2) Give an alternative definition of the Bruhat order using $t w$ (instead of $w t$) with $w \in W$ and $t \in T$. Prove that this defines the same order.
(3) Prove that $v \leq w$ if and only if $v^{-1} \leq w^{-1}$, for any $v, w \in W$.

Exercise 12. Draw the Hasse diagram of $I_{2}(m)$ for any m, and prove that in this case $v<w$ if and only if $\ell(v)<\ell(w)$, for any $v, w \in W$.

Exercise 13. Let $v, w \in W$ with $v<w$, and suppose there is no x such that $v<x<w$. Prove that $\ell(v)$ and $\ell(w)$ do not have the same parity.
Exercise 14. Let W be an affine reflection group on the euclidean space E.
(1) Prove that all W-orbits in E are discrete subsets.
(2) Prove that

$$
\bigcup_{H \in \Phi} H
$$

is a closed subset of E.
Exercise 15. Let A be a commutative ring with 1 and let \mathcal{E} be the "generic" algebra defined by (W, S) and a choice of coefficients $a_{s}, b_{s} \in A$ for all $s \in S$. Prove that

$$
T_{w} \mapsto T_{w^{-1}}
$$

extends to a homomorphism $\mathcal{E} \rightarrow \mathcal{E}$ of A-modules that is an anti-automorphism of A-algebras.
Exercise 16. Prove that $T_{s} \mapsto-1$ extends to a homomorphism of $\mathbb{Z}\left[q, q^{-1}\right]$-modules $\mathcal{H} \rightarrow \mathbb{Z}\left[q, q^{-1}\right]$ sending T_{w} to $(-1)^{\ell(w)}$.

Exercise 17. Compute $R_{x, w}$ for all $x \leq w$ in the case $W=S_{3}$ (with the usual presentation of type A_{2}).
Exercise 18. Define a ring homomorphism $\sigma: \mathcal{H} \rightarrow \mathcal{H}$ similarly as ι, by setting $\sigma(q)=q^{-1}$ and

$$
\sigma\left(T_{w}\right)=\varepsilon(w) q^{-\ell(w)} T_{w}
$$

Prove that this defines an involution $\sigma: \mathcal{H} \rightarrow \mathcal{H}$ that commutes with ι.
Exercise 19. Verify that C_{e}, C_{s} and $C_{s t}=C_{s} C_{t}$ for all $s, t \in S$ satisfy the theorem about the existence and uniqueness of the elements C_{w}.

Exercise 20. Assuming $W=S_{3}$ with the usual presentation, prove that $P_{x, w}=1$ for all $x \leq w$.
Exercise 21. With any W, prove that $R_{x, w}=q-1$ and $P_{x, w}=1$, assuming $x \leq w$ and $\ell(w)=$ $\ell(x)+1$.
Exercise 22. Using formula $\left(^{*}\right)$ of page 64 of the handwritten notes, prove that $P_{x, w}(0)=1$ for all $x \leq w$, and that $P_{x, w}$ for all $x \leq w$ with $\ell(w)-\ell(x) \leq 2$.

