Recap
(W, S) Coxtse rytrem
3
$H=H(W, S)$ Hecke elgebros

$$
\begin{aligned}
& =\bigoplus_{x \in W} \mathbb{Z}\left[q^{ \pm 1}\right] T_{x} \quad\left\{T_{x}\right\}_{x \in W} \text { "std besis" } \\
& =\bigoplus_{w \in W} \mathbb{Z}\left[q^{ \pm 1}\right] C_{w} M=\left(m_{x w}\right)_{x, w \in W} \\
& \}_{w}\left\{C_{w}\right\}_{w \in W} \text { "KL-basis" }(K L, 1979)
\end{aligned}
$$

M is the bese changa matrix (ofter extenohing scalors
$\mathbb{Z}\left[q^{+1 / 2}\right]$))
anol it is morally guen by $K L$ - prolynomials:

$$
m_{x w}=\varepsilon_{w} q_{w}^{1 / 2} \varepsilon_{x} q_{x}^{-1} p_{x w}\left(q^{-1}\right)
$$

Recall thet C_{w} is umiquely oletermined by
2) $L\left(C_{w}\right)=C_{w} \quad($ self-omehty $)$
b) $C_{w}=\sum_{x \in W} m_{x w} T_{x,}$
where $m_{a w}$ is guen as above and $p_{x w}(q) \in \mathbb{Z}[q]$

$$
\begin{aligned}
& \left.P_{x w w}(q)=1 \text { deg } \left.P_{x w} \leq \frac{1}{2} \right\rvert\, P(w)-P(x)-1\right) \\
& P_{x w}=0 \text { if } x \neq w
\end{aligned}
$$

Recall elsa that while proving existence Guido showed that

$$
P_{x w}=q^{1-c} P_{s x v}+q^{c} P_{x, v}-\sum_{z z v}^{s z<z} \mu(z, w) q_{z}^{-1 / 2} q_{w}^{1 / 2} P_{x, z}
$$

where: $v=s w$
$1 / 2(\rho(v)-l(z)-1)$

- $z\left\{v\right.$ means that $P_{z v}=\mu(z, v) q^{1 / 2}+\underset{\text { Smaller degree }}{ }$ terms
- $C= \begin{cases}0 & x<5 x \\ 1 & x>5 x\end{cases}$

Example computation $K L$-polys: Let $W=$ dihedral group $I_{2}(m)$
$\leadsto S=\{s, t\}$
relations: $s^{2}=t^{2}=(s t)^{m}=1$
Claim $P_{x w}=1 \quad \forall x \leqslant w$ in W
Observe that $W=\{e, s, t, s t, t_{s}, \ldots, \underbrace{s t s t}_{m-1} . ., \underbrace{t_{s} t s}_{m-1}, \underbrace{s t s t s}_{m} \ldots\}$ $~$ all elements but the longest one have only a rested ex passion and for any $w \in W$

$$
\{x \in W \mid x \leq w\}=\{x \in W \mid \ell(x)<e(w)\} \cup\{w\}
$$

We'll show ours claim by inoluction on $\ell(w)$
If $\ell(w)=0$, then $w=e$ and claim venfed.
Also if $x=\omega, P_{x, \omega}=1$, so that we can assume $w>x \geqslant e$.
Since $\ell(\omega)>0, Q \in\{s, t\}$ s.t. $s w<w$. $W L O G: a=s$
Denote $v:=s w$
Observe that if $z<v$ then $l(v)-l(z)<l(w)-l(x)$ and we conn assume by induction that $P_{z, v}=1$, so that $z\left\{v\right.$ iff $0=\frac{1}{2}(\rho(v)-\rho(t)-1) \Rightarrow \rho(z)=\rho(\omega)-2=\rho(v)-1$.

So that the summation hes in fact at most one term: the uni we $z<\omega$ st. $\ell(t)=f(w)-2$ and $s z<z$.

If $s x<x$, then by we have Lo incl.

$$
P_{x, w}=P_{s x, v}+q P_{x, v}-1 \cdot q^{\frac{e(\omega)-C(z)}{2}} P_{x z} \stackrel{b}{=} 1+q-q=1
$$

If $|5 x>x|$ we distinguish two ceres $\rightarrow x=v$
(Since $x \leq w, v=w s$ and sex>> $\Rightarrow x \leq v$)
$x=v$ then in this case $s x=w$ and $w \notin v, \int^{b y}$ ind
$x<v$ then two cases: $\rightarrow s x<v$
$\omega l / s x)=\rho(v)$ but $\left.s x \neq v \begin{array}{l}\text { (since } \\ s(s x)<s x \\ s(c)\end{array}\right)$ $\left(\begin{array}{l}\text { since } \\ s(s x)<s x \\ s v>v\end{array}\right)$
$\overline{S x<v \mid}$ Then $l(x) \leq l(v)-2$ enol we find the z

$$
P_{x \omega}=q \cdot 1+1-q<1
$$

$\ell(s x)=\ell(v) \mid$ Then $P_{s x, v}=0$ and $\nexists z$ between x and s sit. $C(z)=l(v)-1$.

$$
P_{x w}=q \cdot 0+1=1 .
$$

Looking at the dihedral example

$$
\left.\left.+G \text { ido's exercises }\left(P_{x \omega}=1 \forall x \leq x s \text { st. } l(\omega)-2 \leq\left. l\right|_{\alpha}\right) \leq l \mid \omega\right)\right)
$$

we are tempted to conjecture that KL-polys ere always 1.
Th's is false and thanks to the failure of our conjecture we here interesting stuff in representecton theory and geometry!
In fact, if you've patent enough you can compute
Exercise $W=S_{4} S=\{(12),(23),(34)\}$. Then $P_{s_{2}, s_{2} s_{1} s_{3} s_{2}}=1+q$ $\begin{array}{lll}s_{1}^{\prime 1} & s_{2}^{\prime \prime} & s_{3}^{\prime \prime}\end{array}$

In fact, we here this sur prising result
Theorem (Polo 1999, CoselL' 2004)
geometry elf. comb.
Let $P \in \mathbb{Z} \geqslant 0[q]$ be such that $P(0)=1$.
Then $\exists N \geqslant 2, x, y \in S_{N}$ s.t. $P=P_{x, y}$
\sim Every poly with non-negative coefficients and constant term $=1$ is a KL-polyl.

Relevence of $K L$-polys
Since their birth KL-polys turned aut to be relevent in severel arees.

In jerticular, alreedy in [KL79] connections to regresentetion theory (of Weyl gomps, of is cpla lie egis) to geometry (of fleg varieties) to alfebraic combinatomics Were (sometimes congecturally) discussed.
REP. THEORY: Repn's of thecke olg's can be contructenl by using KL-plys

- If of is a se cylx Lie elg, W its Weyl gp S simple reflections (\leftrightarrow simple roots) then KL-polys "contral" multiplicities of simple modules in Jorolan-Hóldes fitretion of Vermer [Coyectwed in 1979, wes faven shortly ofter by geometric methools by Bolinnon. Beenstain
a Brylinsti-Kestmiware. Pligebceic proof is consequence of a more secent (2014) repe by
Ehies Wilhienson)

From [KL79]" Ow polynomides Pyw ofsee to be vely closely related with the structire of sing elemties of Schubent verieties. More pecisely Pyw can be rgouded as à mesure for the feringe of boal Poineare point in Bu B" Schinvent venety $\bar{\sigma}_{w}$ in a nth os a point in By"

- GEOMETRY: KL-polyuomials are Poinceé prdyuomals for gueded rings coming from geometry. Mare juecixly, they compute the locel intascation cohomology of Scmbert verieties of a flez veriety G / B, whe G is a reductive group whase Weyl group is W (and B Borel)
- COMBINATORICS: many interesting combinatomiel features!! I'll state here toos conjectures:
(1) $P_{x \omega} \in \mathbb{Z}_{\geq 10}[q] \quad \forall x, \omega \in W$ (for any)
[stated aloedy by KL in 1979, wes known to bolol for Whel gromps given the geometric interzutation. Proven for any Coxeter sp by Ghies-Wiliernson]
(2) $P_{2, w}$ only depends on Branat interel $[8, w]$
[STILL OPEN! F. Brenti a culabonetors worked a lat on it. Next Fridey: talk at ARTS on related stuff]

Grephicelly: $\begin{gathered}\text { "pinapel } \\ \text { bolock of } \\ \downarrow \text { cot. }\end{gathered}$

$$
\operatorname{rep}_{c}\left(\operatorname{cog}_{2}\right)>0_{0}
$$

\square
cotryory of senisiiple y-enx sheves \downarrow on G / B

$$
\operatorname{Sim}_{\operatorname{mo}}\left(G_{B}\right) \subset D^{b}(G / B)
$$

"olecatego "faction" get thecke of

$$
w o r l o l
$$

(1) Gothenolicek gomp of \bigcup_{0} hes two beses: $\left\{M_{x}\right\}_{x \in W}$ "Verme

$$
\left\{L_{w}\right\}_{w \in W} \text { "simple } \operatorname{mods"}
$$

$\left[\right.$ where $\left.M_{x}=M(x \cdot 0), x \cdot 0=x(\rho)-\rho, \quad \rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}}^{\alpha}\right]$
$K L$-intuition: $M_{2} \cdots T_{x}$

$$
L_{w} \cdots C_{w}
$$

~ $\left[M_{x}: L_{w}\right]=P_{x w}(1)$
In fect, ne an refine this gaveng to any coeff of $P_{x w}$ a ryusentation thoretical meaming.
(2) We'll need to know a lutte muse to be able to even state whet's hesseming.

Vague roke of old pf of KL -con. on mult. of simples in Vermes:
on G1B"
\sim olg. diff. equ's on G / B
pering thrugh f-abic penvese shears ()아

Soergel 1990: New joof using "nodules over cinvonianto"
\sim Functor $V: O_{0} \rightarrow \bmod -C \quad C=\operatorname{End}\left(P_{\omega 0}\right)$
Thm (Sorgel) $V\left(P_{x}\right)=1 H^{\circ}\left(\overline{\left.B^{2} x B^{v} / B^{v}\right)}\right.$
Good featwes: - $V\left(P_{x}\right)$ has "elementery" definition

- KL-ony. can be reformulateol aljebrarically
O. $\operatorname{Ser}(G / B)$ mad- C

