Corso di Geometria 2

Docenti: Guido Pezzini, Francesco Meazzini

a.a. 2023/2024

Foglio di esercizi n.9

9.5.2023

Nota: gli esercizi 4, 5, e le parti (7), (8) dell'esercizio 3 richiedono il Teorema di Seifert-Van Kampen, che vedemo venerdì 10. maggio.

Esercizi sulla sezione **Proprietà funtoriali**:

Esercizio 1. Sia $D^n = \{ p \in \mathbb{R}^n \mid ||p|| \le 1 \}$. Dimostrare che

$$X = D^n \setminus \{0\}$$

 \mathbf{e}

$$Y = \mathbb{R}^n \setminus B_1(0)$$

hanno gruppo fondamentale isomorfo.

Esercizio 2. Siano $f, g: X \to Y$ applicazioni continue e omotope fra spazi topologici, e sia $a \in X$. Supponiamo f(a) = g(a). Dimostrare che allora i sottogruppi $H = f_*(\pi_1(X, a))$ e $K = g_*(\pi_1(X, a))$ sono sottogruppi di $G = \pi_1(Y, f(a))$ fra loro coniugati.

Esercizi sulla sezione **Teorema di Seifert-Van Kampen**:

Esercizio 3. (da sapere) Sia n un intero positivo, consideriamo $\mathbb{P}_{\mathbb{R}}^n$, e dato $i \in \{0, \dots, n\}$ sia A_i il sottoinsieme dei punti $p = [x_0, \dots, x_n]$ tali che la coordinata omogenea x_i è diversa da 0. Sia inoltre $H_i = \mathbb{P}^n_{\mathbb{R}} \setminus A_i$ il sottoinsieme dei punti la cui coordinata x_i è uguale a 0, e sia $B_i =$ $\mathbb{P}^n_{\mathbb{R}} \setminus \{[0,\ldots,0,1,0,\ldots,0]\}$, dove la coordinata uguale a 1 è x_i . Svolgere i seguenti punti per qualsiasi $i \in \{0,\ldots,n\}.$

- (1) Dimostrare che A_i è aperto in $\mathbb{P}^n_{\mathbb{R}}$ e omeomorfo a \mathbb{R}^n .
- (2) Dimostrare che H_i è chiuso in Pⁿ_ℝ e omeomorfo a Pⁿ⁻¹_ℝ.
 (3) Dimostrare che B_i è aperto in Pⁿ_ℝ e che Pⁿ_ℝ = A_i ∪ B_i.
- (4) Dimostrare che $A_i \cap B_i$ è omeomorfo a $\mathbb{R}^n \setminus \{0\}$.
- (5) Dimostrare che H_i è retratto per deformazione di B_i .
- (6) Svolgere i punti precedenti con $\mathbb{P}^n_{\mathbb{C}}$ al posto di $\mathbb{P}^n_{\mathbb{R}}$ (e dapertutto \mathbb{C} al posto di \mathbb{R}).
- (7) Dedurre dal punto precedente (e per induzione su n) che $\mathbb{P}^n_{\mathbb{C}}$ è semplicemente connesso per ogni $n \geq 0$.
- (8) Perché non si può dedurre allo stesso modo che $\mathbb{P}^n_{\mathbb{R}}$ è semplicemente connesso per ogni n?

Esercizio 4. Sia $Y \subseteq \mathbb{R}^n$ un sottoinsieme finito, con $n \geq 3$. Dimostrare che $\mathbb{R}^n \setminus Y$ è semplicemente connesso.

Esercizio 5. Calcolare il gruppo fondamentale del seguente sottoinsieme di \mathbb{R}^3 :

$$\{(x, y, z) \in \mathbb{R}^3 \mid xyz(x^2 + y^2 + z^2 - 1) = 0\}.$$

Altri esercizi:

Esercizio 6. Sia $p: \mathbb{R} \to S^1$ la solita applicazione $t \mapsto (\cos(2\pi t), \sin(2\pi t))$. Sia I =]a, b[un intervallo con $a < b \in \mathbb{R}$ e b - a < 1. Dimostrare che $p|_I : I \to p(I)$ è un omeomorfismo fra I e la sua immagine $p(I) \subseteq S^1$. (Suggerimento: se I fosse compatto, che trucco useremmo?)