Corso di Geometria 2

Docenti: Guido Pezzini, Francesco Meazzini

a.a. 2023/2024 Foglio di esercizi n.1

1.3.2024

Esercizi sulla sezione **Introduzione**¹:

Esercizio 1. Dimostrare che il disco chiuso

$$D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

è omeomorfo al "quadrato pieno chiuso"

$$Q = \{(x, y) \in \mathbb{R}^2 \mid x \in [0, 1], \ y \in [0, 1]\} = [0, 1] \times [0, 1].$$

Esercizio 2. Dimostrare che $X = [0,1] \cup]2,3]$ e Y = [0,2] non sono omeomorfi, anche se abbiamo visto a lezione che esiste un'applicazione continua e biiettiva $f: X \to Y$. (Suggerimento: dimostrare che una qualsiasi applicazione $g: Y \to X$ suriettiva non può essere continua, ad esempio usando risultati noti di analisi.)

Esercizio 3. Usando la definizione usuale di sottoinsieme aperto di \mathbb{R}^n , dimostrare che un qualsiasi $A \subseteq \mathbb{R}^n$ è aperto se e solo se il complementare $\mathbb{R}^n \setminus A$ è chiuso. Si usi qui la definizione per cui un sottinsieme $C \subseteq \mathbb{R}^n$ si dice chiuso se contiene tutti i punti aderenti a C.

Esercizi sulla sezione Spazi topologici e basi:

Esercizio 4. Elencare tutte le topologie possibili su un insieme di cardinalità 2. Definire una topologia non banale e non discreta su un insieme di cardinalià 5.

Esercizio 5. (da sapere) Consideriamo le due famiglie seguenti di sottoinsiemi di \mathbb{R}^2 :

$$\mathcal{B}_1 = \left\{ B_{\varepsilon}(p) \mid p \in \mathbb{R}^2, \varepsilon \in \mathbb{R}_{>0} \right\},$$

$$\mathcal{B}_2 = \left\{ |a, b[\times]c, d[\mid a, b, c, d \in \mathbb{R}, a < b, c < d] \right\}.$$

Cioè \mathcal{B}_1 è la famiglia dei dischi aperti nel piano, con qualsiasi raggio e qualsiasi centro, e \mathcal{B}_2 è la famiglia dei "rettangoli aperti", dove per rettangolo intendiamo un rettangolo "pieno", non solo i 4 lati. Dimostrare che sono entrambe basi della topologia euclidea di \mathbb{R}^2 .

Esercizio 6. Poniamo

$$Z = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_{>0} \right\},\,$$

e definiamo la famiglia $\mathcal{B} \subseteq \mathscr{P}(\mathbb{R})$ nel modo seguente: $A \in \mathcal{B}$ se e solo se A è un intervallo aperto, oppure esiste un intervallo aperto $B \subseteq \mathbb{R}$ tale che $A = B \setminus Z$. Dimostrare che \mathcal{B} è base di una topologia \mathcal{T} su \mathbb{R} , e trovare un aperto di \mathcal{T} che non è aperto in topologia euclidea.

Esercizio 7. (da sapere) Sia X un insieme qualsiasi, e consideriamo la famiglia $\mathcal{T} \subseteq \mathscr{P}(X)$ definita nel modo seguente: un sottoinsieme $A \subseteq X$ è in \mathcal{T} se e solo se $A = \emptyset$ oppure $X \setminus A$ è un insieme finito. Dimostrare che \mathcal{T} è una topologia, è detta topologia *cofinita*. Per quali insiemi X la topologia \mathcal{T} coincide con la topologia discreta?

Esercizio 8. Consideriamo la topologia cofinita su \mathbb{R} .

1

¹Per questi 3 esercizi si usino le definizioni usuali di applicazione continua fra sottoinsiemi di \mathbb{R}^n , e di sottoinsieme aperto di \mathbb{R}^n .

- (1) Dato $A \subseteq X$ aperto in questa topologia, dimostrare che A è aperto anche in topologia euclidea.
- (2) Dati $p,q \in \mathbb{R}$ qualsiasi con $p \neq q$, dimostrare che non esistono due aperti (in topologia cofinita) disgiunti A, B tali che $p \in A$ e $q \in B$.
- (3) Dimostrare che invece in topologia euclidea due aperti del genere esistono per qualsiasi scelta di $p \in q$.

Esercizio 9. Sia X un insieme dotato della topologia discreta, e sia \mathcal{B} una base della topologia. Dimostrare che $\{x\} \in \mathcal{B}$ per ogni $x \in X$.

Esercizio 10. Sia K un campo.

- (1) Dimostrare che la topologia di Zariski su $K=K^1$ è la topologia cofinita.
- (2) Sia $n \in \mathbb{Z}_{\geq 1}$, e consideriamo la topologia di Zariski su $X = K^n$. Dato un polinomio $f \in K[x_1, \ldots, x_n]$, poniamo

$$V(f) = \{ p \in K^n \mid f(p) = 0 \}$$

e dato un sottoinsieme $S \subseteq K[x_1, \ldots, x_n]$ poniamo

$$V(S) = \{ p \in K^n \mid f(p) = 0 \ \forall f \in S \}.$$

Dimostrare che $C \subseteq K^n$ è chiuso se e solo se esiste un sottoinsieme $S \subseteq K[x_1, \dots, x_n]$ tale che C = V(S).

(3) Sia $S \subseteq K[x_1, \ldots, x_n]$ un sottoinsieme qualsiasi, e sia I = (S) l'ideale di $K[x_1, \ldots, x_n]$ generato da S. Dimostrare che²

$$V(I) = V(S)$$
.

Esercizio 11. (da sapere) Sia $X = \mathbb{R}$ e consideriamo

$$\mathcal{B} = \{ [a, b[\mid a, b \in \mathbb{R}, \ a < b \}.$$

- (1) Dimostrare che \mathcal{B} è base di una topologia su \mathbb{R} , detta topologia di Sorgenfrey.
- (2) Dimostrare che un qualsiasi intervallo aperto]a, b[con a < b (entrambi numeri reali) è aperto anche in topologia di Sorgenfrey.
- (3) Dimostrare che la topologia di Sorgenfrey è strettamente più fine della topologia euclidea.
- (4) Dimostrare che per ogni $a, b \in \mathbb{R}$ con a < b, l'intervallo [a, b[è aperto e anche chiuso in topologia di Sorgenfrey.

Esercizio 12. Sia (X, \leq) un insieme ordinato, e per ogni $a \in X$ si consideri

$$M_a = \{ x \in X \mid a \le x \}.$$

Dimostrare che la famiglia di sottoinsiemi

$$\{M_a \mid a \in X\}$$

è base di una topologia.

²Se sapete cos'è il radicale \sqrt{I} di I, vi esorto a dimostrare anche che $V(I) = V\left(\sqrt{I}\right)$.