Corso di Geometria

Docente: Guido Pezzini

a.a. 2018/2019

Soluzioni del foglio di esercizi n.12

Esercizio 1. Trovare la matrice 3×3 che corrisponde a un'isometria $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$f\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}, \qquad f\begin{pmatrix}-1\\-1\end{pmatrix}=\begin{pmatrix}2\\1\end{pmatrix}$$

Dire, giustificando la risposta, se ne esiste anche una tale che

$$f\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, \qquad f\begin{pmatrix}-1\\-1\end{pmatrix} = \begin{pmatrix}3\\1\end{pmatrix}$$

Soluzione esercizio 1. La matrice 3×3 che corrisponde ad f è della forma

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

Abbiamo visto che allora f è ottenuta facendo prima un'applicazione lineare ortogonale $f_1 : \mathbb{R}^2 \to \mathbb{R}^2$ di matrice canonica (ortogonale)

$$Q = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

e poi una traslazione $f_2 \colon \mathbb{R}^2 \to \mathbb{R}^2$ del vettore

$$v_0 = \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix}$$

In altre parole $f = f_2 \circ f_1$. Sappiamo che $f_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, perché f_1 è lineare. Quindi dovremo avere

$$f_2\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}$$

Questo ci dice che

$$v_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Rimane da trovare f_1 . Abbiamo

$$\begin{pmatrix} 2\\1 \end{pmatrix} = f \begin{pmatrix} -1\\-1 \end{pmatrix} = f_2 \left(f_1 \begin{pmatrix} -1\\-1 \end{pmatrix} \right) = f_1 \begin{pmatrix} -1\\-1 \end{pmatrix} + \begin{pmatrix} 1\\0 \end{pmatrix}$$

da cui segue

$$f_1 \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

È facile dare un'applicazione lineare ortogonale f_1 che manda $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ in $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Un metodo generale è questo: si completa $v_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ ad una base ortogonale (v_1, v_2) , poi si normalizza ottenendo $(\widetilde{v}_1, \widetilde{v}_2)$. Si fa lo stesso partendo da $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, ottenendo $(\widetilde{w}_1, \widetilde{w}_2)$. Poi si impone che f_1 soddisfi $f(\widetilde{v}_1) = \widetilde{w}_1$, $f(\widetilde{v}_2) = \widetilde{w}_2$.

Qui un modo ancora più semplice è prendere $f_1(v)=-v$ per ogni v. La matrice canonica di questa f_1 è

$$Q = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Concludiamo

$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Invece un'isometria $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$f\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, \qquad f\begin{pmatrix}-1\\-1\end{pmatrix} = \begin{pmatrix}3\\1\end{pmatrix}$$

non esiste. Infatti un'isometria deve rispettare la distanza fra punti, ma

$$d\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}-1\\-1\end{pmatrix}\right) = \left\|\begin{pmatrix}0\\0\end{pmatrix} - \begin{pmatrix}-1\\-1\end{pmatrix}\right\| = \sqrt{2}$$

mentre

$$d\left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}3\\1\end{pmatrix}\right) = \left\|\begin{pmatrix}1\\0\end{pmatrix} - \begin{pmatrix}3\\1\end{pmatrix}\right\| = \sqrt{5}$$

per cui f dovrebbe mandare due punti a distanza $\sqrt{2}$ l'uno dall'altro in due punti a distanza $\sqrt{5}$ l'uno dall'altro: impossibile.

Esercizio 2. Sia U il sottospazio vettoriale di \mathbb{R}^2 di equazione

$$2x + y = 0$$

Trovare la matrice canonica della riflessione attorno ad U, cioè dell'applicazione lineare ortogonale $f: \mathbb{R}^2 \to \mathbb{R}^2$ che lascia fissi i vettori di U, e tale che f(v) = -v per ogni vettore v ortogonale ad U.

Soluzione esercizio 2. Dobbiamo trovare una matrice ortogonale A tale che Au=u per ogni $u \in U$, e Av=-v per ogni $v \in U^{\perp}$.

Moltiplicare a sinistra un vettore per una matrice ortogonale manda basi ortonormali in basi ortonormali. Quindi troviamo una base ortonormale $\mathcal{B}' = (v_1, v_2)$ di \mathbb{R}^2 tale che $v_1 \in U$ e $v_2 \in U^{\perp}$. Poi imporremo che $f(v_1) = v_1$ ed $f(v_2) = -v_2$.

Conosciamo già un vettore ortogonale ad U: sono i coefficienti dell'equazione 2x + y = 0. Quindi possiamo prendere

 $v_2 = \frac{1}{\left\| \begin{pmatrix} 2\\1 \end{pmatrix} \right\|} \cdot \begin{pmatrix} 2\\1 \end{pmatrix}$

cioè

$$v_2 = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$

Scegliamo il vettore v_1 in modo che sia ortogonale a v_2 : basta scambiare le entrate e cambiare il segno ad una di esse:

$$v_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{pmatrix}$$

Dato che $\mathcal{B}' = (v_1, v_2)$ è una base, l'applicazione lineare f è univocamente determinata imponendo che $f(v_1) = v_1$ ed $f(v_2) = v_2$. Per trovare la matrice canonica, basta calcolare $f(e_1)$ ed $f(e_2)$, che si trovano come al solito facilmente se uno esprime e_1 ed e_2 come combinazioni lineari di v_1 e v_2 .

Altra possibilità, semplice in questo caso: usiamo la formula del cambiamento di base. La matrice di f nella base $\mathcal{B}' = (v_1, v_2)$ è

$$A' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Consideriamo allora \mathcal{B}' come la base **vecchia**, e la base canonica come la base **nuova**.

La matrice di passaggio N dalla base B' alla base canonica è quella in cui i nuovi vettori e_1, e_2 sono espressi in termini dei vecchi v_1, v_2 .

L'inversa di N è la matrice di passaggio (che spesso scriviamo come M) dalla base canonica a \mathcal{B}' , cioè la matrice in cui i vecchi vettori v_1, v_2 sono espressi in termini dei nuovi e_1, e_2 . Cioè abbiamo

$$N^{-1} = M = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Quindi

$$A = N^{-1}A'N$$

D'altronde qui le basi sono tutte ortonormali, per cui $N^{-1} = N^t$. Per cui

$$A = N^{t} \cdot A' \cdot N = \begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

Esercizio 3. Trovare le coordinate del punto

$$p = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

rispetto al sistema di riferimento affine $\mathcal{R} = (p_0, v_1, v_2)$ dove

$$p_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix},$$

e v_1, v_2 sono ottenuti dalla base canonica con una rotazione di $\frac{\pi}{4}$ in senso antiorario.

Soluzione esercizio 3. Troviamo prima di tutto v_1, v_2 . Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ la rotazione di $\varphi = \frac{\pi}{4}$ in senso antiorario. Allora f ha matrice canonica

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Sappiamo che $\cos \varphi = \sin \varphi = \frac{\sqrt{2}}{2}$, e che v_1 e v_2 sono ottenuti da e_1 ed e_2 applicando f. Quindi

$$v_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad v_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

Le coordinate di p rispetto ad \mathcal{R} sono le coordinate del vettore $p - p_0$ (che va da p_0 a p) nella base (v_1, v_2) . Quindi dobbiamo risolvere il sistema

$$xv_1 + yv_2 = p - p_0$$

nelle incognite x, y. La soluzione unica è

$$\left\{ \begin{array}{lcl} x & = & -2\sqrt{2} \\ y & = & -4\sqrt{2} \end{array} \right.$$

perciò queste sono le coordinate di p rispetto ad \mathcal{R} .

Esercizio 4. Trovare un'equazione della circonferenza in \mathbb{R}^2 passante per i punti

$$p_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad p_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad p_3 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

Soluzione esercizio 4. Sappiamo che una circonferenza in \mathbb{R}^2 ha equazione

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

dove $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ è il centro, ed r è il raggio. Esplicitando i quadrati, si ottiene un'quazione del tipo

$$x^2 + ax + y^2 + by + c = 0$$

Troviamo i coefficienti, imponendo che la circonferenza contenga i punti p_1, p_2, p_3 . Con p_1 otteniamo

$$0^2 + a \cdot 0 + 0^2 + b \cdot 0 + c = 0$$

cioè c=0. Rimangono da trovare a e b, imponendo il passaggio per p_2 e p_3 . Otteniamo le due equazioni

$$\left\{ \begin{array}{lll} 2^2 + 2a + 2^2 + 2b + 0 & = & 0 \\ 1^2 + a + (-3)^2 - 3b + 0 & = & 0 \end{array} \right.$$

che hanno soluzione

$$\begin{cases} a = -\frac{11}{2} \\ b = \frac{3}{2} \end{cases}$$

L'equazione cercata allora è

$$x^2 - \frac{11}{2}x + y^2 + \frac{3}{2}y = 0$$

Esercizio 5. Trovare l'equazione della sfera di centro

$$c = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

e che contiene il punto

$$p = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Soluzione esercizio 5. La sfera ha raggio r uguale alla distanza fra c e p, cioè

$$r = d(c, p) = \left\| \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\| = \sqrt{1 + 4 + 9} = \sqrt{14}$$

Quindi un'equazione è

$$(x-1)^2 + (y+2)^2 + (z-4)^2 = 14$$

cioè

$$x^2 + y^2 + z^2 - 2x + 4y - 8z + 7 = 0$$

Esercizio 6. Scrivere le coniche seguenti in forma canonica:

$$C_1$$
: $x^2 + 3xy - y^2 + 2x + 1 = 0$

$$C_2$$
: $4x^2 - 4xy + y^2 + x - y = 0$

Soluzione esercizio 6. La prima conica ha matrici

$$A_1 = \begin{pmatrix} 1 & \frac{3}{2} & 1\\ \frac{3}{2} & -1 & 0\\ 1 & 0 & 1 \end{pmatrix}, \qquad Q_1 = \begin{pmatrix} 1 & \frac{3}{2}\\ \frac{3}{2} & -1 \end{pmatrix}$$

e abbiamo

$$\det(Q_1) = -\frac{13}{4}, \quad \operatorname{tr}(Q_1) = 0, \quad \det(A_1) = -\frac{9}{4}$$

Siano λ_1, λ_2 gli autovalori di Q_1 (non necessariamente distinti). Sappiamo che sono uno negativo e uno positivo, perché il loro prodotto è $-\frac{13}{4}$, cioè negativo. La loro somma è 0, per cui sono uno l'opposto dell'altro. Allora, chiamando λ_1 quello positivo, abbiamo

$$\lambda_1 = -\lambda_2 = \frac{\sqrt{13}}{2}$$

Quindi, nelle nuove coordinate X,Y, la conica C_1 avrà forma canonica

$$\frac{\sqrt{13}}{2}X^2 - \frac{\sqrt{13}}{2}Y^2 + (\text{grado } 1) + (\text{grado } 0) = 0$$

Completando i quadrati, nella procedura spiegata a lezione, abbiamo allora potuto eliminare la parte di grado 1 sia in X, sia in Y. Per cui la forma canonica in effetti sarà

$$\frac{\sqrt{13}}{2}X^2 - \frac{\sqrt{13}}{2}Y^2 + c = 0$$

per qualche termine noto c. La matrice 3×3 nelle nuove variabili sarà

$$A_1' = \begin{pmatrix} \frac{\sqrt{13}}{2} & 0 & 0\\ 0 & -\frac{\sqrt{13}}{2} & 0\\ 0 & 0 & c \end{pmatrix}$$

e dato che il determinante di A'_1 è uguale al determinante di A_1 , deduciamo che

$$\det(A_1') = -\frac{13}{4}c = -\frac{9}{4} = \det(A_1)$$

da cui otteniamo

$$c = \frac{9}{13}$$

Deduciamo la forma canonica di C_1 :

$$\frac{\sqrt{13}}{2}X^2 - \frac{\sqrt{13}}{2}Y^2 + \frac{9}{13} = 0$$

La seconda conica ha matrici

$$A_2 = \begin{pmatrix} 4 & -2 & \frac{1}{2} \\ -2 & 1 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}, \qquad Q_2 = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}$$

e abbiamo

$$\det(Q_2) = 0, \quad \operatorname{tr}(Q_2) = 5, \quad \det(A_2) = -\frac{1}{4}$$

Dal fatto che $\det(Q_2)$ è 0 deduciamo che uno degli autovalori di Q_2 è $\lambda_1=0$. L'altro, diciamo λ_2 , lo troviamo osservando che la loro somma è la traccia di Q_2 : otteniamo $\lambda_2=5$.

Per cui otterremo una forma canonica del tipo

$$5Y^2 + (\operatorname{grado} 1) + (\operatorname{grado} 0) = 0$$

Il grado 1 non contiene la Y, perché abbiamo potuto completare il quadrato usando Y^2 ed eliminare la parte di grado 1 in Y. Allora la forma canonica sarà del tipo

$$5Y^2 + aX + b = 0$$

per qualche $a, b \in \mathbb{R}$.

La matrice, nelle nuove coordinate, sarà

$$A_2' = \begin{pmatrix} 0 & 0 & \frac{a}{2} \\ 0 & 5 & 0 \\ \frac{a}{2} & 0 & b \end{pmatrix}$$

Il suo determinante è uguale a $det(A_2)$, in altre parole

$$-\frac{5}{4}a^2 = \det(A_2') = \det(A_2) = -\frac{1}{4}$$

Segue $a^2=\frac{1}{5}$, cioè $a=\frac{1}{\sqrt{5}}$ oppure $a=-\frac{1}{\sqrt{5}}$. Sappiamo che entrambi i valori vanno bene: corrisponderanno a due scelte diverse di coordinate. Prendiamo $a=\frac{1}{\sqrt{5}}$, quindi l'equazione nelle nuove variabili X,Y è

$$5Y^2 + \frac{1}{\sqrt{5}}X + b = 0$$

A questo punto sappiamo anche che, con uno dei cambiamenti delle coordinate visti per le coniche, si poteva eliminare il termine noto. Per cui b = 0, e otteniamo la forma canonica per C_2 :

$$5Y^2 + \frac{1}{\sqrt{5}}X = 0$$