Corso di Geometria

a.a. 2018/2019

Esame scritto del 17.9.2019

Per le prime due domande bisogna scrivere <u>solo il risultato</u> negli spazi appositi. Per le ultime due domande è richiesto anche il procedimento, da scrivere in bella copia. **Attenzione:** le risposte non sufficientemente motivate, o quelle che contengono solo conti senza spiegazioni, non saranno valutate. La brutta copia non è da consegnare. Segnare in basso sul retro del foglio eventuali date nelle quali per VALIDI MOTIVI non si disponibili per sostenere l'esame orale.

Esercizio 1. (scrivere solo i risultati) Sia data la conica γ di equazione $x^2 - 6xy - 7y^2 + 3x - y - \frac{3}{4} = 0$. (1) Si trovi l'equazione canonica di γ .

(2) Si scriva il cambiamento di coordinate corrispondente, esprimendo in termini di x, y le coordinate del riferimento affine in cui γ ha equazione canonica. (4 punti)

Esercizio 2. (scrivere solo i risultati) Data la forma bilineare simmetrica $b: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

$$b(\underline{x}, y) = x_1 y_1 + 2x_2 y_2 - x_2 y_3 - x_3 y_2 + 2x_3 y_3$$

(1) Si scriva la matrice di *B* rispetto alla base canonica e si mostri che si tratta di una forma definita positiva, quindi di un prodotto scalare. (4 punti)

(2) Partendo dai vettori della base canonica, trovare una base ortonormale del piano $L[\underline{e}_2,\underline{e}_3]$ rispetto a questo prodotto. (Suggerimento: abbiamo visto l'algoritmo di Gram-Schmidt per il prodotto scalare standard, ma funziona allo stesso modo per qualsiasi prodotto scalare. Però c'è anche un metodo più semplice...) (3 punti)

Esercizio 3. (scrivere lo svolgimento in bella copia) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la seguente applicazione

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + 3z \\ 2x + y \\ -x + y - 3z \end{pmatrix}$$

e sia U il sottospazio di \mathbb{R}^3 definito dal sistema lineare seguente:

$$\left\{ \begin{array}{lcl} x + 2y - 3z & = & 0 \\ y - 2z & = & 0 \end{array} \right.$$

(1) Si dimostri che U è contenuto nel nucleo di f.

- (2 punti)
- (2) Si trovi una base della somma U + Im(f). Si tratta di una somma diretta?
- (3 punti)
- (3) Si trovi una descrizione parametrica dell'insieme dei vettori v di \mathbb{R}^3 tali che $v f(v) \in U$. (3 punti)

Esercizio 4. (scrivere lo svolgimento in bella copia) Siano dati i tre punti dello spazio A = (1, 2, 1), B = (2, 1, 2), C = (-1, 2, -3).

- (1) Determinare l'equazione cartesiana del piano che li contiene. (2 punti)
- (2) Si scriva un'equazione parametrica del luogo dei punti equidistanti da A, B, C. (3 punti)
- (3) Esiste una sfera di raggio 5 passante per A, B e C? Se sì, dire quante ce ne sono e determinare le coordinate dei loro centri, altrimenti dimostrare che una tale sfera non esiste. (3 punti)