~“UVJ

LAapril LU,

second-order cellular automata into lattice gases

Tommaso Toffoli (tt@bu.edu)

Electrical and Computer Engineering, Boston University, Boston, MA 02215

Silvio Capobianco (capobian@mat.uniromal.it)
Istituto Matematico, Universita di Roma “La Sapienza”
Patrizia Mentrasti (mentrasti@mat.uniromal.it)
Istituto Matematico, Universita di Roma “La Sapienza”

1 Introduction
To undo a reversible process, intuitively all one has to do is

Recipe 1

‘ Perform the inverse operations in the reverse order.

This is one of those fortunate cases in mathematics where
a concept is so simple and clear that a formal prescription
(see §3 for the systems of interest to us) has little to add to
the intuitive recipe.!

Unfortunately, the way certain dynamical systems are
customarily presented? makes it effectively impossible, even
if the system is presumed to be invertible, to use the above
recipe as means to automatically derive the system’s inverse
dynamics—and thus to “run the system in reverse”—or, if
the recipe turns out to be inapplicable, use this fact to con-
clude that the system is not, after all, invertible. What’s
worse, that way of presenting the system makes it diffi-
cult to see properties, such as conservation laws, that are
intimately tied to the invertible nature of the system and
that would become immediately manifest if the system were
given a more appropriate presentation.

This is specifically the case with second-order cellular
automatal[8]—of which one of the best known is the Ising
spin model of ferromagnetism (cf. [5]). Though certain sim-
ilarities of behavior between specific second-order cellular
automata and specific lattice gases had been noticed,® no
definite correspondence rules between the two classes of sys-
tems has yet been proposed. In this paper we give an ex-
plicit construction for transforming such cellular automata

ncidentally, my students always get a kick from seeing me go
directly from

_ 2a—1

Y=1r Y22

thus solving for z in a single pass. Of course I start with y and
undo one-by-one—beginning with the last—the operations that had
led from z to y.

2A presentation—of a group, an algebraic structure, a dynamics,
and so forth—is a definition of it by means of a structural description
(“how to put it together from parts”), as contrasted to an exhaustive
raw tabulation (“a photograph of the finished product”) or to a func-
tional description (“what it does or is supposed to do”). A group,
for example, may be presented—origami-like—by means of generators
and relations; a finite-state machine is usually presented as a sequen-
tial network—an assembly of “gates” and “flip-flops”—whose size, in
most practical cases, is much less that that of the full transition table.

3E.g., the Ising spin-glass dynamics [1].

to o==,/(1/5 7 —1)3 +4,

into lattice gases. In the latter, invertibility is a structurally
manifest feature; thus, either the inversion scheme of Recipe
1 is immediately applicable—with all the advantages that
that entails, or one can conclude that the cellular automa-
ton was not invertible.

Incidentally, for the purposes of this paper we had to
come up with the “right” definition of ‘lattice gases’ (which
as far as I know had never been formally defined). We
propose this definition as the canonical one.

2 Preliminaries

Computation is the exercise of function composition in a
context where the set of building blocks—interaction and
interconnection primitives—is specified once and for all, so
that the originality of the composition lies not in the intro-
duction of novel components but in obtaining the desired
behavior by using only the given primitives (though in as
large a number of occurences as desired). In brief, what is
constrained is not the number of elements to be used but
only their kind.

We shall deal with functions f : X — Y in which both
the domain X and the codomain Y are Cartesian products

of sets, namely, X = X;,X5,... and Y = ¥;,Y5,..., so
that the mapping x AN y takes the form
(mlaan"') }i) (y13y27"')7 (1)

or (y17y27“‘) =f(x1am27"‘)'

In other words, both argument and result of a function may
be ordered collections of variables rather than individual
variables.

It will be convenient to express the above mapping in
graphic form as

1 Y1
O e (2)

The mapping itself can be thought of as an equation relating
its input and output variables. A system of n simultane-
ous equations will be expressed by combining n diagrams
like (2) into a function composition graph, i.e., a directed
graph in which each arc represents a variable and each node

will be written as

Remark that

e There is no implicit time dependency in (3) or (4); the
variables represent single, timeless values—not time se-
quences. Specifically, diagram (4) does not represent a
sequential circuit.

e In (4) we found it convenient to use as identifiers for
the two nodes the two functions f and g respectively
associated with them. In general, however, the same
function may appear on more than one node, so that
some other identifier may have to be used for distin-
guishing nodes.

e In (3), the variable x that appears as an output in
the second equation g occurs as an input of both f
and g. This circumstance is indicated in (4) by the
ancillary “fanout” node (represented by a simple dot)
which inputs z and outputs two copies of that variable.
A more explicit (and physically more realistic) way of
representing this situation is to treat the branches of
the fanout node as two new variables, u and v, and add
to (3) a third equation relating u and v to z, as follows,

(u,9)

Lz
(vzr)|i>

((3)
(

z,8)

u,v)

I;

where I, is the n-fanout function X i) X" defined
by
(5)

I,
z 2 (

By using convention (3’) for (3) and the corresponding

graph (4)—where the fanout node thus becomes *%;ﬂ
to reflect the third equation of (3’)—one obtains a one-
to-one function composition scheme (cf. [6]), in which
at most one input variable is identified with any given
output variable; intuitively, any branching of signals
can only take place at a node. Whether such a conven-
tion is used tacitly or explicitly, it is clear that, without
loss of generality, any function composition scheme can
be assumed to be one-to-one. A consistent reminder of

4In graph-theoretical terms, one would say that this is a colored
and labeled graph. The “color” of an arc is the set associated with
it (e.g., the set X in f : X — Y); note that by ‘variable’ one simply
means a symbol whose possible values range over that set. The “label”
of a node is the function associated with it, which must have as domain
the Cartesian product of the sets associated with its input arcs and
as codomain the product of the sets associated with its output arcs.

one for each variable.?

Borrowing terms from relativity, let’s call signals the arcs
of a function composition graph and events its nodes. We
say that event g follows event f if the two events coincide or
if there is a sequence of signals that form a directed path (in
terms of arcs’ orientation) from f to g. (In (4), for example,
event g follows f because signal z points from f to g, and
conversely f follows g as per signal z.) The relation ‘follows’
is clearly reflexive and transitive.

A function composition graph is causal if the ‘follows’ re-
lation is anti-symmetric, and thus induces a partial order
between events. The graph is then acyclic (Fig. 1); intu-
itively, it admits of no “time loops.” We shall call such a
graph a computational network.

Even though a computational network may extend in-
definititely over space and time—like a cellular automaton
or a lattice gas—to model effective (in Turing’s sense) com-
putation one usually requires the network to be locally fi-
nite.%

For special classes of computation, the network may be
required to obey additional constraints of topological or
group-theoretical nature—such as locality of interconnec-
tion, number of dimensions, regularity, invertibility.

An arbitrary assignment of values to all the signals of a
computing network is called a history on that network. A
history is a computation if the values flowing in and out of
each event satisfy the functional relationship specified by
the event itself. In other words, a computation is a solution
of the system of simultaneous equations that specifies the
network.

Figure 1: (a) A computational network. The function associ-
ated with each node is indicated; while the set of possible values
associated with each arc is not explicitly indicated, it is implied
by the functions of which that arc is an output or input. (b) A
history on that network. The letters on the arcs denote specific
constants. If the constants around every node satisfy the equa-
tion at that node (cf. (1)), than the history is a computation.
(c) Another history on the same network. This is certainly not
a computation, as the fanout equation (5) is not satisfied at the
fanout node.

5For example, in (4) there are three arrowheads around the fanout
node, indicating three distinct variables—even though their values are
asked to coincide by the third equation of (3’).

STypically, (a) Events are chosen from a given, finite repertoire of
functions each having a finite number of input and output variables;
and (b) Sets over which variables can range are chosen from a given,
finite, repertoire of finite sets.

invertible functions. If that is the case, the inverse network,
S, is that obtained by

e reversing the orientation of all signals, i.e., exchanging
the role of input and output variables, and

e replacing the function at each event by the inverse
function—thus transforming an equation like (1) to

(6)

If H is a history on network S (Fig. 2a), a history on the
inverse network S~ is the inverse history, H !, if values on
homologous signals in the two networks coincide (Fig. 2b).

1
(y1,¥2,--.) IL> (z1,22,...).

Figure 2: (a).

We conclude these preliminaries with a lemma that is
but the precise expression of Recipe 1 when ‘order’ means
partial order—thus showing that this recipe can be applied
to concurrent” as well to sequential computation.

Lemma 1 Let S be an invertible computational network. If
a history H on S is a computation, then the inverse history
H~! on the inverse network S—! is itself a computation—
naturally called the inverse computation.

Intuitively, given the schematics for an invertible com-
puter, this can be turned into the schematics for the inverse
computer by a simple, strictly local transliteration.?

The proof is immediate if one considers that, if f is in-
vertible, any assignement of values that turns (1) into an
identity also turns (6) into an identity; consequently, any
solution of the system of equations underlying an invertible
computational network like Fig. 2a is also a solution of the
system underlying Fig. 2b.

3 Nature of the problem

We shall now state the nature of the problem tackled by the
present paper, first in the simplest possible setting—where
the solution is, as we shall see, elementary—and then in
the intended setting, i.e., invertible second-order cellular
automata.

In essence, the issue will be one of structure vs function.
For example, the two networks

DD w1 DD O

7Sometimes also called “distributed” or “parallel.”
8Each element—arc or node—is converted to a new element in-
dipendently of the rest of the network.

same function of z,y, z—have a different structure; in fact,
they represent two distinct algorithms or “mechanisms” for
computing x +y + z: in the first algorithm, x is added first;
in the second, last.

The concept of invertibility defined in the previous sec-
tion and captured by Recipe 1 is based on structure, and
is stronger than one based on function. We will sometimes
emphasize this by saying that a network A which is the in-
verse (in that sense) of network B is the structural inverse
of B. A functional inverse of a system, on the other hand,
will be a system that displays the reverse partial order for
the values that make up a history, regardless of its internal
structure.

Let transformations fi, fo, ..., fi be successively applied
to a system, whereby starting from state xzy we obtain a
final state x;. Explicitly,

T T T Tt— Tt— T
O O O
If f1, f2,..., ft happen to be invertible, then we go back

from z; to xo by applying the inverse transformations in
the reverse order as per Recipe 1:

FHE@E - OEDE @

An even simpler picture is provided by the time-

independent dynamics x; »i> T;it+1, where all events are
occurrences of the same function f,

Xo /f\ x1 /Jh T2 xt—2mxt—1m Tt
=D =D

(10)
-1
whose inverse ;1 +f—) x; yields
(11)

Let us now consider the case of a second-order dynamical
system, defined by the second-order recurrence relation
(.Z'ifl,{Ei) ri) Tit1, x; € X, (12)
or, equivalently, by the following indefinitely-extended com-
putational network N:

Tt—1 Tt Tt41

(13)

Whatever the function f, this network cannot possibly
be an invertible computational network (as defined in §2).
In fact, event f is of the form X2 S x ; since its domain
and codomain have different number of elements, f cannot
be invertible. A similar argument applies to the fanout
nodes, since the 2-fanout function is of the form X L2y x2,

9We exclude from consideration, of course, the degenerate cases
where X is the empty set or a singleton; in both cases the only candi-
date for f is trivial and trivially invertible, and similarly for the fanout
function.

values into the two right-going signals z;—1 and z;, the re-
currence relation (12) would uniquely specify successive val-
ues for the entire forward sequence yy1,Z¢42,.... On the
other hand, if one tried to extend backwards the sequence
-e-y T, Tyg1,- - - Dy traveling along arcs in the reverse direc-
tion and trying to solve (12) or (5) for the inputs in terms
of the outputs whenever encountering a node, one would
in general meet ambiguity (underspecified outcomes) when
traversing backwards an f node, and conflict (overspecified
outcomes) when traversing backwards a fanout junctions.!?

Yet, in spite of the the above disclaimers, the dynamical
system (12) may still be “reversible” in some obvious sense.
This happens when there exists a function g such that the
sequence items

Lty Lt —13Lt—25+0+5L1y L0,
successively generated by the recurrence relation
($i+1,$i) i} i1, x; € X, (14)
from the initial values x;,x; 1, are the same as the items

LOyL1lyereyLt—25Tt—15L¢

generated by (12) from initial values zg,z;, but in the re-
verse sequential order.

For such a g, the computational network N corresponding
to recurrence relation (14), namely,

96;1 /g\ >< ﬂ;s /!']\ ><$t‘+1
LS NS

, (15)

is clearly a functional inverse of (13)—even though the lat-
ter is not structurally invertible.

What properties must f and g satisfy in order to make
up such a complementary pair? And, assuming that f and
g are indeed such a pair, is there any way that we can
somewhat restructure the corresponding networks (13) and
(15) so as to obtain a pair of networks that, while retain-
ing their original functional behavior, are strict structural
inverses of one another? In sum, can we after all still man-
age to “explain” in terms of Recipe 1 the special functional
relationship between systems (12) and (14)?

The following construction achieves that goal.

The first step of the construction is merely cosmetic
preparation. In Fig. 3, where we show networks N and
N (from diagrams (13) and (15)) side-by-side, the fanout
junctions have been drawn closer to the nodes that follow
them and a box has been drawn around each pair of nodes

(remember that fanout is a node).

The second step involves a change in notation. Provided
that networks N and N are functional inverses of one an-
other, we shall rewrite the contents of the f node, which is
presently a function of the form f: X2 — X, as a function

10This lack of invertibility of the nodes of network (13) at a logic
level has a well-understood counterpart at the physical level[6].

210
(b) network N

Tt

Tt Tt T Tt
(a) network N

Figure 3: The networks N and N shown side-by-side. The fanout
junctions have been drawn closer to the nodes that follow them,
but without altering the network structure. Also, a box has been
drawn around each pair of nodes.

of the form F; : X — X—in other words, one of the two
arguments will be replaced by a parameter (the latter, of
course, is really an argument in a different form). To this
purpose, let us consider a collection {F;} of invertible func-
tions of the form F; : X — X, where the index i as well
ranges over X. If we define f and ¢ in terms of the F; as

follows
g(ZJJ) = Fiil(j)a

we can formally rewrite N; and N; as in of Fig. 4.

(16)

oo AerSlers

Tt1 L1
(a) network N (b) network N

Figure 4: If networks N and N are functional inverses of one
another, then the functions f and g can be replaced respectively
by function families {F;} and {F;'}, where the index i is a
parameter that takes the place of the first argument. Now the
variable represented by the vertical arrow sets this parameter
(and thus determines which of the F; is used for F) instead of
being submitted to f as an ordinary argument as in Fig. 3. In the
diagram, this is suggested by having the vertical arrow “reach
into” the node so as to affect F' itself. In spite of the different
notation, the boxes in this figure and those in Fig. 3, if viewed
as “black boxes,” have identical behavior.

Proof. If f and g are defined as above in terms of {F;},
then

(.'Et_l,.'lft) li) Tiy1 (IL't_|_1,.’L‘t) Ii) Ti—1 (17)

and thus N and N are functional inverses of one another In
fact we can set up the following chain of equivalences

fxe1,2) = 21 = Fp, (T41) = 2411
= L1 = in_l ($t+1)
<~ g(wt+1, Z't) =T¢—1-

(18)

The converse is also true; that is, if N and N are functional
inverses, then there must exist a collection {F;} having the
above properties.

Proof. Put F;(z) = f(i,z).

For each i, F; is a function. In fact, let ; = x5. Then,
f(i,z1) = f(i,x2) since f is a function; so F;(z1) = F;(x2).
Since x; and z» are arbitrary, F; is a function.

For each i, F; is invertible. Indeed, put G;(z) = g(i, z).
G; is a function for the same reason F; is a function.

Fix a time t.

Fix . Consider a history H such that ;1 = x, z; = .
Then z;41 = f(i,z) = y. Let K be the history inverse of

9(¢,y) = x. Since z is arbitrary, G;F; is the identity.

Now, fix y. Consider a history K that is the inverse of a
history H where z;1; =y, ; = . Then z;_1 = g(i,y) = z.
But y = f(i,z) since H is a history. Then, F;(G;(y)) =
fG,g(i,y)) = f(i,z) = y. Since y is arbitrary, F;G; is the
identity.

As a final step, we shall replace the contents of each box
in Fig. 3a by a single, invertible node, ®, defined below, and
each box in Fig. 3b by its inverse &' thus obtaining new
networks N and its inverse N~' as in Flg 5.

. . - @ .
Ti+1 -1
) network N) network N1

Figure 5: The networks N and N~!. The latter is the structural
inverse of N as well as a functional inverse.

(19)

involves a transformation from a one-variable, second-
order recurrence scheme to a two-variable, first-order
scheme; this transformation is close in spirit to the Leg-
endre transform used in classical mechanics to go from the
Lagrangian formalism (second-order differential equation in
one variable) to the Hamiltonian formalism (first-order dif-
ferential equation in two variables).

4 Scrap

But Recipe 1 applies equally well to the most general
function-composition scheme, consisting, as explained in §2,
of an acyclic directed graph (Fig. 1).

In this case the concepts of global time and “syn-
chronous” global state are no longer applicable. However,
a local state can still be defined on any spacelike surface,
and the graph specifies the functional dependency between
any two such states (z and y in Fig. 1).

If the network of Fig. 1 prescribes that y = f(z), then the
inverse relationship, z = f~!(y), is prescribed by the same
network, provided that the order of evaluation is reversed
(the arrows are followed backwards) and the functions at
the nodes are replaced by their inverses. In other words,
functional inversion is automatically obtained by perform-
ing a trivial structural inversion.

As a matter of fact, the difficulty we address in this paper
arises with any second-order recurrence relation, such as the
central-difference or “leapfrog” scheme

a1 = flay) +ar—1

(cf. [2]). A recurrence like the latter, however, involves only
the time dimension, and can immediately be transformed
into a first-order recurrence (where inversion & la 1 is im-
mediate). Things are no longer so simple if besides time we
also have spatial dimensions, as in cellular automata, and
thus a recurrence over multiple indices.

Remark 1 Given an arbitrary two-argument function
f:XXY — Z, for each y € Y consider the one-argument
function fy : X — Z defined by

fy(x) = f(=2,y).

The collection f, indexed by y € Y is equivalent to f it-
self; in fact, given z, y, and f,(z), (20) immediately yields
f(z,y). Intuitively, we have taken the table that defines f
and broken it down into a collection of subtables, one for
each possible value of the argument y.

(20)

Lemma 2 The function F : X xY — ZxY defined by

(fy(2),y)

is invertible iff each of the f, is invertible.

F(z,y) =

Moreover, the above recipe applies just as well to com-
posite, distributed systems, even indefinitely extended ones.
If the overall evolution of a system is the result of local in-
teractions, the history of such a system need no longer be
thought of as a linear sequence of global states, connected
by synchronous updating steps and totally ordered along a
global time. Rather, updating of local states is carried out
concurrently, by a lattice of partially-ordered local opera-
tions, as indicated in Fig. 6.

Figure 6: The spacetime history of a distributed system is gen-
erated by a partially ordered network of local interactions.

A dynamical process such as a digital computation or
the assembly of a toaster can be thought of as applying a
specified sequence of transformations 71,73, ... to a system,
starting from a specified initial state xq:

T1 T2 73
To—>T1 —> Ty —>

Note that this process only needs one instance of the sys-
tem to operate: the system in state x; disappears into the
transformation engine, and re-emerges in state ;1. If we
anticipate needing state x; at a later time—for instance, to
compare it with z;;;—we must make a copy of it ourselves;
that is, we must produce another instance of the system
and set it to state z;.

Having reached a state x,, it is sometimes desirable (for
instance, for debugging the program or the assembly pro-
cess) to backtrack from that state, that is, to reconstruct
the previous states in the order

Tpn—1,Tn—2,Tn—-3,---

until some halting condition is met (or, possibly, all the way
back to zp).

Through what “communication channels” does one part
of an extended system system make itself “felt” by the ad-
jacent parts? This kind of question is routinely (though
tacitly) dealt with when one models a system by a partial

grapher’s equation[10] for a distribution of charges
P _ 0%

o = oo 1)

we essentially ask the charge density p at each place to
“sense” the charge densities at certain neighboring places
and neighboring instants of time and to “update” itself ac-
cording to a specific prescription involving the values thus
sensed. That this is what we are in fact doing in (21)
becomes even more evident when, for the sake of numer-
ical integration, we replace the differential equation by a
finite-difference scheme. Note that a number of alternative
schemes may be available for this purpose, offering different
tradeoffs both in computational terms (rate of convergence,
stability, amount of intermediate storage) and in terms of
physical realism (is charge represented as granular or con-
tinuous? does charge show up in places that are inconsistent
with the speed-of-light limit?!!)

In this paper we explore an issue of this nature involv-
ing two alternative computational schemes, namely, cellular
automata and lattice gases.

Cellular automata and lattice gases are two well-knowm
paradigms for discrete, fine-grained, space- and time-
uniform dynamics—in essence, for computation on a regular
mesh or, in Margolus’s words[4], “crystalline computation.”

The difference between these two schemes is captured in
essence by Fig. 7, which shows side-by-side a three-neighbor
cellular automaton and a three-signal lattice gas, both one-
dimensional and shown evolving through time. We defer a
discussion to §77.

AN /

Figure 7: .

Even though there is much in common between the
two paradigms, there are also nontrivial differences of
substance—and these are of course reinforced by different
usage patterns. Overall, cellular automata are preferred
for phenomenological models of dissipative systems, where
much of the microscopic detail is either poorly known or
irrelevant (or both) and the emphasis is on emergent be-
havior. On the other hand, lattice gases are the models of
choice when one is interested in strict accounting of physi-
cal resources (e.g., energy, momentum, particle species) or,
more generally, strict accounting of information. As we
shall see in a moment, the latter goes hand-in-hand with an
invertible dynamics.

1171t is well known, for example, that if the evolution of a distribu-
tion of particles undergoing a random walk is modeled by the “heat
equation,” one obtains a finite probability for a particle to be found
farther than ct from its origin.

6

of their conservative nature, conceptually belong to the sec-
ond class—and thus would be expected to be modeled as
lattice gases—are instead routinely formulated as cellular
automata, albeit of a special kind—namely, second-order
cellular automata. There are practical as well as historical
reasons for that. Nonetheless, there are occasions where it
would be desirable, perhaps for convenience of analysis or
computational efficiency, to see those system formulated, if
at all possible, in terms of lattice gases.

Though a similarity of behavior between certain second-
order cellular automata and certain lattice gases had been
noticed,'? no definite correspondence rules between the two
classes of systems has yet been proposed.

Of course, since they are computation universal systems,
any cellular automaton can be simulated by an appropriate
lattice gas and, conversely, any lattice gas can be simulated
by a cellular automaton. Hovever, these simulations are
in general non-isomorphic, in the sense that the simulat-
ing system is in some sense “larger,” than the simulated
one, uses “more machinery,” or consumes “expendable re-
sources.” In general, to run a faithful simulation one must
use a dissipative system (which embodies the informational
equivalent of a free-energy source and a heat sink) even if
the simulated system is nondissipative. At the very least,
one must allow, in addition to the simulated system’s state
variables, the use of ancillary variables that are “borrowed”
as a temporary scratchpad at a certain stage of the com-
putation and then restored to the original state for later
reuse—thus “recycled'® rather than “consumed.”

In physical modeling, perhaps the most jealously guarded
property is the invertibility of the dynamics,'* In fact, all
of the usual conservation laws of physics are but aspects,
each one corresponding to a particular set of symmetries of
the system under consideration, of the invertibility of the
underlying dynamics.'®

List of references

[1] BENNETT, Charles H., and Norman MARGOLUS and Tom-
maso TOFFOLI, “Bond-energy variables for Ising spin-glass
dynamics,” Phys. Rev. B 37 (1988) 2254

[2] GREENSPAN, Donald, “Digital studies and perspectives for
N-body modelling in physics,” Int. J. Theor. Phys. 00
(2003), in press.

[3] Jacopini, Giuseppe, and Patrizia MENTRASTI and Gio-

vanna SONTACCHI, “Reversible Turing machines and poly-

12F.g., the Ising spin-glass dynamics [1].

13See, for example, [3].

MTistorically, reversibility appeared in the natural sciences in the
context of near-equilibrium thermodynamical transformations. As the
connections between thermodynamics and mechanics were clarified it
became important to distinguish between this thermodynamical re-
versibility, which always refers to macrostates, and the reversibility
of the mechanical laws; the latter was then called ‘microscopic re-
versibility’. To avoid confusion, it is now customary to use the wholly
unambiguous mathematical term ‘invertible’ for a ‘microscopically re-
versible’ system.

159pecified by a group of symplectic transformations in classical
mechanics and of unitary transformations in quantum mechanics.

[4]

Disc. Math. 3 (1990), 241-254.

MARGOLUS, Norman, “Crystalline computation,” Chapter
18 of Feynman and Computation (A. Hey, ed.), Perseus
Books (1999).

POMEAU, Yves, “Invariant in cellular automata,” Journal
of Physics A 17 (1984), L415.

FREDKIN, Edward, and Tommaso TOFFOLI, “Conservative
logic,” Int. J. Theor. Phys. 21 (1982), 219-253.

TorroLI, Tommaso, and Norman MARGOLUS, Cellular Au-
tomat Machines: A new environemnt for modeling, MIT
Press 1987.

TorroLl, Tommaso, and Norman MARGOLUS, “Invertible
cellular automata: A review,” Physica D 45 (1990) 229-253.

TorroLl, Tommaso, “Cellular automata mechanics,” Ph.D.
thesis, The University of Michigan 1976.

ViLADIMIROV, V. S., Equations of Mathematical Physics,
Mir 1984.

VON NEUMANN, John, Theory of Self-Reproducing Au-
tomata, edited and completed by A. Burks, University of
Illinois Press 1966.

