Generation of on-line randomness
by cellular automata

Patrizia Mentrasti, Silvio Capobianco
Department of Mathematics, Universita di Roma “La Sapienza”
P.le Aldo Moro, 2 1I-00185 Roma (Italy)
email: p.mentrasti@caspur.it, capobian@mat.uniromal.it

29th September 2000

Abstract
We describe a cellular automaton expressly designed for random num-
ber generation and efficiently implemented on the CAM-8 engine. We
may think of this system as a local and parallel “oracle” which, at each
site and time ¢, returns random a bit with probability p which may be
assigned as an arbitrary function of the site.

Keywords: cellular automata, random sequences, oracle.

1 Introduction

We discuss a scheme of algorithms generating pseudorandom bit sequences, that
can be quickly used by complex dynamical systems.

Roughly speaking, a complex system [2] describes the interaction of several
moving individuals. The correct representation of a complex system is not a sim-
ple matter; in fact, several choices are needed: “how many are the variables?”,
“which is their meaning?”, “how many different states (i.e. external displace-
ments) can they assume?”, “how to describe the interactions with each other?”,
“how to consider the actions of unknown agents?”, “how to measure individuals
state changes with respect both to the space and to the time?”. So, the sim-
ulation of complex dynamic systems often requires “good” pseudorandom bits
sequences [13, 21].

These random variables will often be represented by suitable “dice rolls”.
From a philosophical point of view, dice rolls, or equivalent procedures, can
represent queries to an “oracle” [6], that is, they describe the fact of asking a
“Sibyl” (a diviner who answers whatever question) something about an interest-
ing but unknown thing; consequently, an individual, before making a decision,
takes into account the Sibyl’s response. QOur interpretation both of “random-
ness” and of “oracle” is only one of the possibilities; concerning the behaviour
under uncertainty conditions, we follow Chaitin’s definitions [8, 9].

The most used random generators have the following features. The genera-
tion process is iterative and off-line; that is, the devices that produce sequences
can be different from those requiring them; at least, even if all the algorithms
for the simulation of complex systems evolution and the generation of random
bits sequences do run on the same device, this is performed in different time
units. In fact, the machine could even have prepared the required bits when the
simulation starts. Then, each parallel processor possesses the same “random”
bits at the same time.

Here, we want to introduce a new approach. Our random generation is
parallel; still, it uses only a cellular automata machine both for the experiments
and the sequences; bits are produced on-line, that is, at the instant when they
are to be used; moreover, as the bits are produced locally, they can be different
from site to site; still, they can follow different probability distributions, that
may not necessarily be uniform; finally, the parameter of each distribution can
be chosen by the user when starting and also be different from site to site.

As to our knowledge, the idea of using the same cellular automata device for
complex system simulation and random sequence generation is already found in
Toffoli and Margolus [26] with the STIR rule, that in fact we do use in a revised
version. Felici and Mentrasti [11] proved the goodness of STIR as a genera-
tor for equidistributed sequences. On the contrary, the local and non uniform
approach previously described is new and, in our opinion, fruitful for several
applications. In particular, the authors yet used this idea in some applications,
mainly concerning traffic evolution simulations [3, 4, 10].

Here, we want to characterize from a theoretical point of view the idea of
“local oracle” and also give a practical demonstration of its feasibility. In fact,
we describe a simple way to “locally” generate random distributions having any
parameter. Then, we test the produced sequences of bits with the chi-square
method. As we shall see later, test results satisfy the required expected value.
We also make some considerations about the period.

The engine we used is the CAM-8 [17, 25, 16], an evolution of the older,
simpler CAM-6 model [26] based on the “programmable matter” technology. A
CAM-8 is made of several identical CA Mbozes, connected in a three-dimensional
structure, and driven by an external machine that hosts the control software;
each CAMbox contains eight modules, that contain the basic elements like
memory and processors, and operate in parallel. Once the space for the ex-
periment has been defined, the available memory is equally distributed through
all its points; the neighborhood and the rule of evolution are defined via soft-
ware. The device offers great versatility and has a lot of models already imple-
mented [24, 27].

Since the CAM-8 device can run several CA simultaneously, we can have
one or m ore of them working at the generation of the sequences. This leads to
a greater flexibility than that of the classical approach, and eliminates any need
of an external, sequence-generating device.

We effectively implemented two models, which slightly differ in the use of
STIR rule and both of them satisfy our initial requirements.

2 Cellular automata with oracles

Imagine an infinite grid. Think of the nodes of that grid, which we will call

cells from now on, as entities (really, they are finite-state automata [19, 28]), all

of the same kind, capable to assume various states from a finite set. Suppose

that each of these cells watches some of the others, and modifies its own state

according to theirs. Lastly, think of the change of state to happen at the same

time for all cells. This can be a first idea of what a cellular automaton is.
More formally:

Definition 1 A cellular automaton is a quadruple < L, S, N, f > where:

e L is a d-dimensional regular lattice, called support of the automaton; its
nodes are called cells of the automaton;

e S is a finite, non-empty set called set of the states;

e N is a finite subset of L, called neighborhood index, containing the null
vector and such that, if ve N andr € L, thenv+r € L;

o f:SM 5 S is the transition function.

Given a cellular automaton < L, S, N, f > and a cell r € L, the set N(r) =
{v+r,r € N} is called the neighborhood of the cell r: the elements of the
neighborhood of a cell are called its neighbors. Each cell is neighbor of itself.

The previous definitions are intended for infinite cellular automata, but they
can be quickly adapted to finite ones, having the topology of a torus.

Since the device used realizes finite toroidal automata, and the tests can
be performed only on a finite number of finite sequence, from now on we will
always consider finite toroidal cellular automata.

Definition 2 We call oracle a device of any kind that answers in time O(1) to
a user-chosen problem.

We don’t require the answer to be favorable to us. The oracle can either
be “global”, giving the same response to each cell, or “local”, giving possibly
different responses to different cells. The classical definitions of an oracle are
in the sense of a global one. On the contrary, we chose the local kind, for the
following reasons:

e we want to be able to generate different probabilities in different places;

7

e we adhere to the “locality” idea of the machine;

e this way is closer to the reality evolutions.

Definition 3 A cellular automaton with oracle [18] is an automaton with an
additional device, acting as an oracle, and whose cells are given three special
states, called ask-oracle, oracle-yes, oracle-no.

Each time a cell enters the ask-oracle state, it examines the word, or re-
sponse, given by the oracle and then goes into the state oracle-yes or oracle-no,
according to the fact the word is or not in the oracle language.

Our goal is to construct a cellular automaton that can act as a local oracle:
more precisely, we want that it generates binary pseudorandom sequences. We
also want that each element of our sequences can be 1 with probability p or 0
with probability 1 —p; sequences generated at different places should be different
from each other. Moreover, we want that the parameter p can be chosen at will,
and that different regions of the automaton space can generate sequences with
different parameter. Finally, we want the generation of the sequence to be
performed with no use of external devices. In fact, we want to use the CAM-8
cellular automata machine.

All of these requests are effectively performed by our model.

3 The STIR cellular automata rule

A well known [26] unidimensional cellular automaton capable of producing
highly chaotic configurations has von Neumann’s neighborhood and follows the

local evolution rule:
Ct+1 = (Ct \Y Et) o W; (].)

where AV B is usual OR rule and A® B is XOR rule, i.e. the modulo 2 addition.

This rule can be easily extended to a two-dimensional space. One of the
most successful variants has been developed by Toffoli and Margolus [26]: it is
called STIR and has the following scheme:

Cir1 =Ce @ Nt @ W @ (St A Ey) (2)

where A A B is the usual AND rule.

Felici and Mentrasti [11] proved that this rule, and other two-dimensional
variants of (1), have properties which are considered suitable for pseudorandom
sequence generation:

1. they generate very chaotic sequences, both in time and in space;

2. with several initial configurations, they do quickly enough converge to
uniform distribution;

3. if the values of a cell and of its neighbors at time ¢ are independent and
uniformly distributed over {0,1}, then Cty; is uniform and independent
from C;.

The second feature of the STIR rule makes it very good if the sequence to
be generated should have p = 1/2, but also unsuitable for any other value of p:
so we cannot achieve our aim by simply using it, and need something more.

4 The BBM gas model

Being conceived and developed as a universal computational model, BBM (Bil-
liard Ball Model; see [26] for a complete description) derives from the classical
kinetic gas theory. The BBM model considers solid balls, having equal finite
size and mass, moving on straight lines and colliding with each other and with
mirrors: this not only simulates the motion of perfect gases, even preserving
reversibilities, but, by opportune interpretation of collisions and trajectories,
can reproduce any logical circuitry.

To implement this model on the CAM-6 (and then the CAM-8) device, Tof-
foli and Margolus developed a substructure, that can be interpreted as a gas of
particles that interact with each other only by collisions. However, these do not
always preserve momentum: that is, a particle colliding with a wall “bounces” in
the same direction whence it came, instead of performing a specular reflection.
To overcome this, they devised a clever trick that makes possible to construct
momentum-conserving balls.

This substructure, that will be referred to as “gas” from now on, has some
interesting properties. Firstly, it is possible to delimit regions of the support us-
ing only aggregates of gas particles: these “mirrors”, or “walls”, can be thought
of as pieces of frozen or crystalized gas. Still, the total number of particles is
a time constant and this should give a chance to control the distribution along
time. Finally, there is already a very good implementation of the BBM model
on the CAM-8.

By only using BBM, we can delimit a region of the space and fill it with free
gas particles. Having chosen a cell in that region, we state that it generates the
digit “0” if there is no gas particle in it, and “1” otherwise; by doing this at
each step of the time evolution of the gas, we generate a sequence of bits. To
achieve the correct value for the parameter p, we properly choose the density of
the gas.

So we may think that, by suitable initialization, we can easily have a random
bit sequence generator with desired probability. But at this point, the BBM
model shows its limitations:

1. particles can aggregate into blocks, thus modifying the probability distri-
bution;

2. the model is totally (and easily) reversible, and so everyone can attack it.

Our new candidate is defective where STIR was good, and vice versa: neither
of them can do the job alone.

5 In unity is strength

At this point, we have at our disposal:

e a generator that has very good statistically measured properties, but is
able to realize only uniform distribution;

e a gas model that can be treated easily, but is not able by itself to pass the
standard statistical tests.

We merge the two models to obtain a controllable and stable random se-
quence generator. This is the idea:

1. We use at the same time many regions of BBM gas delimited by walls
and initialized with different densities of gas. We call the delimited region
cage. These cages will be our local oracles. We use also a STIR-like
generator, that acts as an “oracle for the oracle” and will never be seen
by the underlying simulation system.

2. The STIR-like generator evolves normally.

3. The BBM gas evolves normally, except for when it is forced to ask the
STIR-like generator, to know if it must alter its movement and, if it does,
how.

4. The oracle response is positive or negative, according to the presence or
absence of BBM gas particles in the appropriate region point.

We claim that this solution works.

6 The first model

Our first model uses BBM along with the following implementation of a 2-
dimensional rule similar to STIR:

Ct+1 = (Ct A Et) @ Wt) Nt ® St (3)

As we see below, the pair (Cy,Ci—1) can be read at time ¢ and used as an
oracle by the BBM automaton; if we want that the responses are independent,
then a cell that asks the oracle at time ¢ and uses the pair cannot ask it again
at time ¢t + 1: to do this, we simply state that each BBM cell asks the oracle
every third step.

Our rule is as that: if there are one or two particles, the pair (Cy, Cy—1)
determines an alteration of the normal evolution in the BBM cell, in one of the
following ways:

e no change;

e 90-degrees clockwise rotation;

e 90-degrees counter-clockwise rotation;
e reverse motion direction.

For slight problems deriving from the implementation, we state that there
is no change if there are three or four particles in the cell.

At the aim of performing the necessary tests of statistical compliance, we
created a statistically significative number of 2-dimensional configurations of
the following kind:

e a cage of 20 x 20 cells is placed at the center of BBM space;

e BBM space inside the cage is initialized by a distribution f (p) related to
the parameter p of the Bernoulli distribution we are willing to reproduce;
since presence or absence of balls in a cell is interpreted as 1 or 0 respec-
tively, and the CAM-8 implementation of the BBM model requires four
bits, we put f (p) = 1 — /1T — p for each of them;

e the STIR-like generator is initialized with random uniform distribution.

Having done that, we select a cell in the cage, most often near its center, and
collect a long sample by reading the presence (1) or absence (0) of particles in the
cell. Then, the sample undergoes the chi-square test [15], a standard procedure
of comparison with an expected distribution. To check if the distribution can
degenerate to a different one, we repeat the test for the first 10000, 20000,
30000, 40000 bits of the sequence, and then for its whole. As we want to verify
the improvement caused by the STIR-like rule, we repeat the same test to the
sequences obtained by using the same initial configurations, but without the
query to the STIR-like generator.

The chi-square test is very simple. Let’s suppose we have a random quantity
X that can take a finite number of values z1, T2, ..., 21, and let p; be the theo-
retical value of P(X = z;). If N; is the number of times that, out of n tosses,
X = x;, then

i=1 npi
is a random variable. We observe n tosses of X, and then compute V', obtaining
a real number v.

Now, we want to find the probability that V' < wv: it should not be too high,
because this would mean that X does not follow the expected distribution at
all; nor it should be too low, because this would suggest that we can easily guess
the behavior of X. For n large enough, then Pearson’s Theorem [15] states that:

that is,

Since the density function of a chi-square distribution is positive, we can
derive the response of our test simply by the value of v. In our case:

1. if v > 0.00393 and v < 3.841 the test succeeds;

2. if v < 0.00016 or v > 6.635 the test fails;

3. otherwise the result is considered ambiguous.

Table 1 shows outcomes from these tests. Each sample is shown with its
expected probability (Dist.), number of steps performed (Steps), and expected
number of 1s (Exp.). The variables: resulting number of 1s (Occ.), resulting
value for V' (V value), and response of the test (Res.: S stands for success, A for
ambiguous result, F for failure), are shown both without and with interrogation
of STIR-like rule.

By observing the table, we can see that while using BBM together with
STIR-like rule the agreement with expected probability greatly improves, espe-
cially when p is not too big.

On the contrary, when p is near 1, probably because of molecule aggregation
phenomenon, rejects are too many. Actually, this is not a real problem, since it
is always possible to choose p < 1/2, simply negating the response.

Anyway, we want to explore another way, as we are going to see in § 7.
Before discussing it, we want to make some considerations about the period
length.

6.1 The period length

We are now going to discuss about the period length, that is, we want to limit the
estimated number of different random bits we can generate. Roughly speaking,
the period length describes how many not repeated bits occur before having a
cycle.

Let we have a cage of size 4 x h x k, initialized with parameter p; we can
have at most

fe= (i M=)) ®

distinct feasible configurations, over a total of possible 24"*. If the rule is
deterministic, then formula (5) gives also the greatest possible period.
The Stirling’s rule gives an upper bound for Ly, , that is, Ly, ; has an asymp-
totic behavior
Lh,k =0 (n_Qap4hk) (6)

for an appropriate constant o, > 1.

On the other side, STIR uses a space of 512 x 512 = 2!8 cells. Not all
global configurations are possible, but each of the possible ones can affect “gas”
behavior, even if the cage only sees a “mask” of its own size.

Actually, we use only two generated bits among three; but this is equivalent
to extract a subsequence in a “random” one and this, as it is known, is equally
random.

7 A second attempt

Our second model is obtained by replacing the previous STIR-like generator (3)
with the actual STIR rule (2) and also increasing time between interrogations
to 7 steps.

To test the new model, we ran it with many of the old configurations and
also with new ones. At the aim of examining if even the position in the cage
could affect the behavior of the sequence, some of them were different only in
the choice of the cell from which the sample was collected.

Our second rule not only succeeds in improving the performance, but also
works when p is high: this also comes from adequate use of STIR rule.

Table 2 shows outcomes from performed tests. Variables are displaced as in
Table 1.

8 Further developments

One possible improvement is a change in the number of steps between two
interrogations.

Another possibility could be a change of gas model: for instance, FHP [28§],
a very good model of perfect gas, could be used in place of BBM. In this case,
it would be necessary to revise the rules of collision, and possibly the shape of
cages.

9 Conclusions

We designed a flexible, local, parallel, inside-located, independent random bit
sequences generator which is easy both to use and to implement. In fact, our
system shows the following properties:

1. paying careful attention while using all the devices, we produce a pseudo-
random bit generator with desired expectation and endowed with the just
described properties;

2. it is possible to place as many generators as we want, with different, user-
chosen probability distributions, on the same cellular automata support.
10 Acknowledgements
We want to thank Fabio Spizzichino and Tommaso Toffoli for helping discussions
and encouragements.
References

[1] T. Baker, J. Gill, R. Solovay, Relativization of the P Z NP question, STAM
J. Computing 4 (1975) 431-442

[2] Y. Bar-Yam, Dynamics of Complex System (Addison-Wesley, Reading,
Mass. 1997)

[3] A. Benigni, Simulazione di una dinamica di traffico urbano mediante
Pautoma, cellulare CAM-8, Tesi di laurea, Dipartimento di Matematica
“Guido Castelnuovo”, Universita degli Studi di Roma “La Sapienza”, Anno
Accademico 1999-2000

[4] A. Benigni, P. Mentrasti, T. Toffoli, A Model of Urban Transport Simula-
tion Using the Cellular Machine CAMS8, in M. Delorme et J. Mazoyer eds.
Procs. of Automata 99, Workshop on Cellular Automata, 4th IFIP WG 1.5
Meeting, Ecole Normale Supérieure, Lyon 1999

[5] C. H. Bennett, Quantum information and Computation, Physics Today
(1985) 24-30

[6] C.H. Bennett, J. Gill, Relative to a random oracle A P4 # NP4 # coNP4
with probability 1, STAM J. Comp., 10 (1981) 96-113

[7] A. Bertoni, M. C. Bollina, G. Mauri, N. Sabadini, On characterizing classes
of efficiently parallelizable problems, in Procs. of VLSI: algorithms and
architectures, Amalfi 1984 (North-Holland, Amsterdam-New York 1985)

[8] G. J. Chaitin, Information, Randomness and Incompleteness, World Scien-
tific Series in Computer Science 8 (World Scientific Publishing Co., River
Edge 1990)

[9] G. J. Chaitin, Randomness and Mathematical Proof, Scientific American,
932 (1975) 47-52

[10] F. M. D’Amore, P. Mentrasti, Simulazione con Automi Cellulari delle Di-
namiche di Strutture di Stazionamento, in S. Bandini, R. Casati and G.
Mauri eds., Procs. of ACRI 96, Milano 1996

[11] M. Felici, P. Mentrasti, A Secret Key Scheme with Cellular Automata, in
S. Di Gregorio and G. Spezzano eds., Procs. of ACRI ’94, Rende di Cosenza
1994, 209-219

[12] B. Hayes, The Wheel of Fortune, American Scientist, 81 (1993), 114-118

[13] B. Jansson, Random Number Generators (Almqvist & Wiksell, Stockholm
1966)

[14] W. Kirchherr, M. Li, P. Vitdnyi, The Miraculous Universal Distribution,
preprint

[15] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms (Addison Wesley Longman, Reading, MA 1998)

[16] N. Margolus, Crystalline Computation, in A. Hey ed., Feynman and Com-
putation: Exploring the Limits of Computers, Reading, MA 1999

[17] N. Margolus, T. Toffoli, STEP Technical Reference (The MIT Press, Cam-
bridge 1993)

10

[18] P. Mentrasti, S. Capobianco, Cellular Automata with Local Oracles, in M.
Delorme et J. Mazoyer eds. Procs. of Automata 99, Workshop on Cellu-
lar Automata Open problems session, 4th IFIP WG 1.5 Meeting, Ecole
Normale Supérieure, Lyon 1999

[19] P. Mentrasti, A. Clementi, P. Pierini, L’automa cellulare: un modello di cal-
colo e di simulazione, Dipartimento di Matematica, Universita degli Studi
di Roma “La Sapienza”, 1991

[20] P. Mentrasti, O. Tempestini, L’automa cellulare CAM-8: caratteristiche
fisiche e dinamiche, Dipartimento di Matematica, Universita degli Studi di
Roma “La Sapienza”, 37/99, 1999

[21] S. Micali, “Perfect” pseudorandom number generation, invited paper, In-
formation Processing 89, IFIP, 1989

[22] R. Morris, Counting Large Numbers of Events in Small Registers, Commu-
nications of the ACM, 21 (1978) 841-842

[23] C. Papadimitriou, Computational Complexity (Addison-Wesley Publishing
Company, Reading, MA)

[24] P. Pierini, Space-Time Structures for cellular Automata, in S. Di Gregorio
and G. Spezzano eds., Procs. of ACRI '94, Rende di Cosenza 1994, 27-37

[25] T. Toffoli, Programmable Matter Methods, in D. Talia and P. Sloot eds.
Future Generation Computer Systems, 1998

[26] T. Toffoli, N. Margolus, Cellular Automata Machine: A New Environment
for Modeling (The MIT Press, Cambridge 1988)

[27] T. Toffoli, N. Margolus, Programmable Matter: Concepts and Realization,
Physica D 47 (1991) 263-272

[28] J. R. Weimar, Simulation with Cellular Automata (Logos Verlag, Berlin
1997)

[29] S. Wolfram, Computation Theory of Cellular Automata, Comm. Math.
Ph., 96 (1984) 15-57

[30] S. Wolfram, Origins of Randomness in Physical Systems, Physical Review
Letters, 55 (1985) 449-452

11

Table 1

Without STIR-like

With STIR-like

Dist. Steps | Exp. | Occ. | V value | Res. | Occ. | V value | Res.
10% 10000 | 1000 | 1045 1.6044 | S 1038 | 2.2500 | S
20000 | 2000 | 2003 0.0050 | S 2049 | 13339 | S
30000 | 3000 | 2937 1.4700 | S 3056 | 1.1615 | S
40000 | 4000 | 3957 0.5136 | S 4041 | 0.4669 | S
50000 | 5000 | 4919 14580 | S 5044 | 0.4302 | S
25% 10000 | 2500 | 2587 4.0368 | A 2492 | 0.0341 | S
20000 | 5000 | 5241 | 15.4883 | F 5086 | 1.9723 | S
30000 | 7500 | 7756 | 11.6508 | F 7515 | 0.0400 | S
40000 | 10000 | 10355 | 16.8033 | F 9959 | 0.2241 | S
50000 | 12500 | 12895 | 16.6427 | F | 12427 | 0.5684 | S
47.8% | 10000 | 4780 | 4891 49380 | A 4824 | 0.7759 | S
20000 | 9560 | 9711 45690 | A 9512 | 0.4616 | S
30000 | 14340 | 14607 9.5236 | F | 14304 | 0.1731| S
40000 | 19120 | 19418 88976 | F | 19058 | 0.3851 | S
50000 | 23900 | 24221 82593 | F | 23758 | 1.6162 | S
50% 10000 | 5000 | 5177 | 12.5316 | F 5060 | 1.4400 | S
20000 | 10000 | 10185 6.8450 | F | 10144 | 4.1472 | A
30000 | 15000 | 15253 85345 | F | 15170 | 3.8533 | A
40000 | 20000 | 20224 50176 | A | 19943 | 0.3249 | S
50000 | 25000 | 25333 88711 | F | 24990 | 0.0080 | S
50% 10000 | 5000 | 5113 5.1076 | A 4978 | 0.1936 | S
20000 | 10000 | 10096 1.8432 | S 9985 | 0.0450 | S
30000 | 15000 | 15041 0.2241 | S 14878 | 1.9845 | S
40000 | 20000 | 19923 0.5929 | S 19834 | 2.7556 | S
50000 | 25000 | 24871 1.3313 | S | 24741 | 5.3664 | A
75% 10000 | 7500 | 7140 | 69.1200 | F 7519 | 0.1925 | S
20000 | 15000 | 14295 | 132.5400 | F | 14914 | 19723 | S
30000 | 22500 | 21536 | 165.2082 | F | 22374 | 2.8224 | S
40000 | 30000 | 28663 | 238.3425 | F | 20873 | 2.1505 | S
50000 | 37500 | 35834 | 296.0593 | F | 37421 | 0.6657 | S
90% 10000 | 9000 | 8804 | 42.6844 | F 8892 | 12.9600 | F
20000 | 18000 | 17652 | 67.2800 | F | 17866 | 9.9756 | F
30000 | 27000 | 26427 | 121.6033 | F | 26825 | 11.3426 | F
40000 | 36000 | 35160 | 196.0000 | F | 35799 | 11.2225 | F
50000 | 45000 | 43786 | 327.5102 | F | 44797 | 9.1576 | F

12

Table 2

Without STIR With STIR
Dist. | Steps | Exp. | Occ. | V value | Res. | Occ. | V value | Res.
10% | 10000 | 1000 | 1045 1.6044 | S 1016 0.2844 | S
20000 | 2000 | 2003 0.0050 | S 2050 1.3889 | S
30000 | 3000 | 2937 1.4700 | S 3071 1.8670 | S
40000 | 4000 | 3957 0.5136 | S 4027 0.2025 | S
50000 | 5000 | 4919 1.4580 | S 4956 04302 | S
25% | 10000 | 2500 | 2288 | 23.9701 | F 2270 | 28.2133 | F
20000 | 5000 | 4580 | 47.0400 | F 4506 | 65.0763 | F
30000 | 7500 | 6810 | 84.6400 | F 6705 | 112.3600 | F
40000 | 10000 | 9102 | 107.5205 | F 8951 | 146.7201 | F
50000 | 12500 | 11318 | 149.0266 | F | 11342 | 143.0362 | F
25% | 10000 | 2500 | 2587 4.0368 | A 2544 1.0325 | S
20000 | 5000 | 5241 | 154883 | F 4955 0.5400 | S
30000 | 7500 | 7756 | 11.6508 | F 7513 0.0300 | S
40000 | 10000 | 10355 | 16.8033 | F | 10026 0.0901 | S
50000 | 12500 | 12895 16.6427 F 12512 0.0154 S
33% | 10000 | 3300 | 3393 39118 | A 3247 1.2704 | S
20000 | 6600 | 6830 | 11.9629 | F 6505 2.0409 | S
30000 | 9900 | 10220 | 154380 | F 9901 0.0001 | F
40000 | 13200 | 13564 | 14.9815 | F | 13277 0.6704 | S
50000 | 16500 | 16930 | 16.7255 | F | 16538 0.1306 | S
33% | 10000 | 3300 | 3294 0.0163 | S 3342 0.7978 | S
20000 | 6600 | 6495 24932 | S 6672 1.1723 | S
30000 | 9900 | 9909 0.0122 | S 9980 0.9649 | S
40000 | 13200 | 13286 0.8364 | S 13251 0.2941 | S
50000 | 16500 | 16694 3.4044 | S 16511 0.0109 | S
33% | 10000 | 3300 | 3464 | 12.1646 | F 3355 1.3682 | S
20000 | 6600 | 7000 | 36.1827 | F 6793 84236 | F
30000 | 9900 | 10386 | 35.6092 | F | 10128 78372 | F
40000 | 13200 | 13879 | 52.1304 | F | 13433 6.1385 | A
50000 | 16500 | 17375 | 69.2600 | F | 16731 4.8268 | A
40% | 10000 | 4000 | 3929 2.1004 | S 4079 2.6004 | S
20000 | 8000 | 8036 0.2700 | S 8225 | 10.5469 | F
30000 | 12000 | 11976 0.0800 | S 12216 6.4800 | A
40000 | 16000 | 16231 55584 | A | 16133 1.8426 | S
50000 | 20000 | 20290 7.0083 | F | 20191 3.0401 | S

13

Table 2 (more)

Without STIR With STIR
Dist. Steps | Exp. Occ. | V value | Res. Occ. | V value | Res.
40% 10000 | 4000 | 4079 | 2.6604 | S 3893 | 4.7704 | A
20000 | 8000 | 8116 | 2.8033 | S 7941 | 0.7252 | S
30000 | 12000 | 12126 | 2.2050 | S 11869 | 2.3835 | S
40000 | 16000 | 16129 | 1.7334 | S 15841 | 2.6334 | S
50000 | 20000 | 20233 | 4.5241 | A | 19856 | 1.7280 | S
40% 10000 | 4000 | 4065 | 1.7604 | S 4024 | 0.2400 | S
20000 | 8000 | 8195 | 79219 | F 8097 | 1.9602 | S
30000 | 12000 | 12280 | 10.8889 | F 12104 | 1.5022 | S
40000 | 16000 | 16325 | 11.0026 | F 16182 | 3.4504 | S
50000 | 20000 | 20418 | 14.5603 | F | 20206 | 3.5363 | S
47.8% | 10000 | 4780 | 4891 | 4.9380 | A 4807 | 0.2921 S
20000 | 9560 | 9711 | 4.5690 | A 9592 | 0.2052 | S
30000 | 14340 | 14607 | 9.5236 | F 14404 | 0.5472 | S
40000 | 19120 | 19418 | 8.8976 | F 19114 | 0.0036 | A
50000 | 23900 | 24221 | 8.2593 | F | 23846 | 0.2337 | S
50% 10000 | 5000 | 5177 | 12.5316 | F 4943 | 1.2996 | S
20000 | 10000 | 10185 | 6.8450 | F 9789 | 8.9042 | F
30000 | 15000 | 15253 | 8.5345 | F 14754 | 8.0688 | F
40000 | 20000 | 20224 | 5.0176 | A | 19758 | 5.8564 | A
50000 | 25000 | 25333 | 88711 | F | 24716 | 6.4525 | A
50% 10000 | 5000 | 5113 | 5.0176 | A 5046 | 0.8464 | S
20000 | 10000 | 10096 | 1.8432 | S 10005 | 0.0050 | S
30000 | 15000 | 15041 | 0.2241 S 14923 | 0.7905 | S
40000 | 20000 | 19923 | 0.5929 | S 19807 | 3.7249 | S
50000 | 25000 | 24871 | 1.3313 | S 24809 | 2.9185 | S
50% 10000 | 5000 | 4969 | 0.3844 | S 5026 | 0.2704 | S
20000 | 10000 | 9969 | 0.1922 | S 10182 | 6.6248 | A
30000 | 15000 | 15071 | 0.6721 S 15175 | 4.0833 | A
40000 | 20000 | 20001 | 0.0001 | F | 20326 | 10.6276 | F
50000 | 25000 | 24955 | 0.1620 | S 25236 | 4.4557 | A
50% 10000 | 5000 | 4956 | 0.7744 | S 5021 | 0.1764 | S
20000 | 10000 | 9951 | 0.4802 | S 10030 | 0.1800 | S
30000 | 15000 | 14961 | 0.2028 | S 15042 | 0.2352 | S
40000 | 20000 | 19992 | 0.0064 | S 19983 | 0.0289 | S
50000 | 25000 | 24964 | 0.1037 | S 24997 | 0.0007 | A

14

Table 2 (more)

Without STIR With STIR
Dist. | Steps | Exp. | Occ. V value | Res. | Occ. | V value | Res.
50% | 10000 | 5000 | 4826 12.1104 | F 5138 | 7.6176 | F
20000 | 10000 | 9626 279752 | F | 10210 | 8.8200| F
30000 | 15000 | 14365 53.7633 | F | 15158 | 3.3285 | S
40000 | 20000 | 19106 79.9236 | F | 20148 | 2.1904 | S
50000 | 25000 | 24061 70.5377 | F | 25161 | 2.0737 | S
50% | 10000 | 5000 | 5024 0.2304 | S 5073 | 2.1316 | S
20000 | 10000 | 9996 0.0032 | A | 10077 | 1.1858 | S
30000 | 15000 | 14905 1.2033 | S 15114 | 1.7328 | S
40000 | 20000 | 19811 3.5721 S | 20218 | 4.7524 | A
50000 | 25000 | 24771 4.1953 | A | 25266 | 5.6605 | A
50% | 10000 | 5000 | 5618 | 152.7696 | F 5110 | 4.8400 | A
20000 | 10000 | 11311 | 343.7442 | F | 10385 | 29.6450 | F
30000 | 15000 | 17108 | 592.4885 | F | 15610 | 49.6133 | F
40000 | 20000 | 22290 | 892.6400 | F | 20681 | 46.3761 | F
50000 | 25000 | 28836 | 1177.1917 | F | 25875 | 61.2500 | F
75% | 10000 | 7500 | 7278 26.2848 | F 7403 | 5.0181 | A
20000 | 15000 | 14638 34.9451 | F | 14892 | 3.1104 | S
30000 | 22500 | 22061 342615 | F | 22309 | 6.4855 | A
40000 | 30000 | 29491 34.5441 | F | 29701 | 11.9201 | F
50000 | 37500 | 36899 38.5281 | F | 37225 | 8.0667 | F
75% | 10000 | 7500 | 10000 | 3333.3333 | F 7545 | 1.0800 | S
20000 | 15000 | 20000 | 6666.6667 | F | 15131 | 4.5763 | A
30000 | 22500 | 30000 10000 | F | 22683 | 5.9536 | A
40000 | 30000 | 40000 | 13333.333 | F | 30217 | 6.2785 | A
50000 | 37500 | 50000 | 16666.667 | F | 37769 | 7.7185 | F
75% | 10000 | 7500 | 6911 | 185.0245 | F 7497 | 0.0048 | S
20000 | 15000 | 13788 | 391.7184 | F | 14969 | 0.2563 | S
30000 | 22500 | 20735 | 553.8178 | F | 22471 | 0.1495| S
40000 | 30000 | 27769 | 663.6481 | F | 29998 | 0.0005 | A
50000 | 37500 | 34798 | 7787524 | F | 37457 | 0.1972 | S
75% | 10000 | 7500 | 7359 10.6032 | F 7560 | 1.9200 | S
20000 | 15000 | 14741 17.8883 | F | 15067 | 1.1971 | S
30000 | 22500 | 22152 215296 | F | 22658 | 4.4380 | A
40000 | 30000 | 29469 375948 | F | 30236 | 7.4261 | F
50000 | 37500 | 36980 28.8427 | F | 37771 | 78337 | F

15

Table 2 (more)

Without STIR With STIR
Dist. | Steps | Exp. | Occ. | V value | Res. | Occ. | V value | Res.
75% | 10000 | 7500 | 7713 | 24.1968 | F 7528 | 0.4181 | S
20000 | 15000 | 15201 | 10.7736 | F | 15032 | 0.2731 | S
30000 | 22500 | 22737 9.9856 | F | 22527 | 0.1296 | S
40000 | 30000 | 30328 | 14.3445 | F | 30049 | 0.3201| S
50000 | 37500 | 37942 | 20.8388 | F | 37617 | 1.4601 | S
90% | 10000 | 9000 | 8821 | 35.6011 | F 9106 | 12.4844 | F
20000 | 18000 | 17564 | 105.6089 | F | 18034 | 0.6422 | S
30000 | 27000 | 26307 | 177.8700 | F | 27022 | 0.1793 | S
40000 | 36000 | 34968 | 295.8400 | F | 36004 | 0.0044 | S
50000 | 45000 | 43725 | 361.2500 | F | 44909 | 1.8402 | S
90% | 10000 | 9000 | 8863 | 20.8544 | F 9129 | 18.4900 | F
20000 | 18000 | 17742 | 36.9800 | F | 18110 | 6.7222 | F
30000 | 27000 | 26623 | 52.6404 | F | 27083 | 2.5515| S
40000 | 36000 | 35390 | 103.3611 | F | 36196 | 10.6711 | F
50000 | 45000 | 43852 | 292.8676 | F | 45267 | 15.8420 | F
90% | 10000 | 9000 | 8719 | 87.7344 | F 8997 | 0.0100 | S
20000 | 18000 | 17361 | 226.8450 | F | 18003 | 0.0050 | S
30000 | 27000 | 26167 | 256.9959 | F | 26982 | 0.1200 | S
40000 | 36000 | 35054 | 248.5878 | F | 35965 | 0.3403 | S
50000 | 45000 | 43790 | 325.3556 | F | 45040 | 0.3556 | S
90% | 10000 | 9000 | 8775 | 56.2500 | F 8956 | 2.1511 | S
20000 | 18000 | 17520 | 128.0000 | F | 17909 | 4.6006 | A
30000 | 27000 | 26354 | 154.5615 | F | 26862 | 7.0633 | F
40000 | 36000 | 35230 | 164.6944 | F | 35899 | 2.8336 | S
50000 | 45000 | 44149 | 160.9336 | F | 44987 | 0.0376 | S
90% | 10000 | 9000 | 8862 | 21.1600 | F 8946 | 3.2400 | S
20000 | 18000 | 17691 | 53.0450 | F | 17880 | 8.0000 | F
30000 | 27000 | 26635 | 49.3426 | F | 26847 | 8.6700 | F
40000 | 36000 | 35456 | 82.2044 | F | 35833 | 7.7469 | F
50000 | 45000 | 44437 | 70.4376 | F | 44908 | 1.8809 | S

16

