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REVERSIBLE TURING MACHINES AND POLYNOMIAL TIME
REVERSIBLY COMPUTABLE FUNCTIONS®

G. JACOPIMIt, P. MENTRASTIF, anD G, SONTACCHIE

Abstract. The reversible Turing machine (i.e., r-machine ) was introduced initially by C. H. Bennett [ FBM
S Res. Develop., 6 (1973, pp. 523-532]. In the first part of the paper a convenient representation of r-machines
is introduced by means of diagrams, By using this method the following theorem can be proved: the invertible
partial functions are exactly those that can be computed without surplus information by r-machines. Therefore
the following problem is pointed out: are the invertible functions that can be computed in polynomial time
also r-computable in polynomial time? In the second part of the work this open question is connected with the
problem P = NP and with the problem of the existence of “one-way™ bijections,
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1. Introduction. The notion of reversible computation was initially developed with
motivations related to physics [1], [5], [6]. Reversible computation is considered a
process in which, given any instantaneous state, not only the future state but also the
past one 1s unambiguously defined.

In this paper we are interested in reversible computation only from a mathematical
point of view.

In 1973 Bennett [1] defined a reversible Turing machine and proved that any Turing
machine ( TM ) with one tape and some limitations on the input could be simulated by
a reversible Turing machine with three tapes. The alphabet of the three-tape Turing
machine 15 variable, as 1t depends on the number of the S-tuples of the simulated machine.
Generally the simulation produces surplus information. He then proved that the surplus
can be reduced to the simple reproduction of the input.

In our paper we use only a one-tape reversible Turing machine with fxed alphabet
{0, |} (r-machine). The first result is as follows: expressive diagrams are introduced,
which permits us to represent all and only the r-machines.

Then, we prove ( Theorem 5.5 that the class of computable functions without su-
perfluous information from an r-machine is identical with the class of invertible recursive
functions. To obtain this result we make use of simulations in which alphabet and cod-
ification are the same { unlike Bennett ) both in the simulating machine and the simulated
one. The lack of simple correspondence between the 3-tuples of the two machines is not
a problem. We do not represent the machines by means of S-tuples but by means of
diagrams.

Finally we prove that a polynomially honest hijection [3] is a two-way bijection if
and only if it is poly-time computable with an r-machine, and that the one-way polynomial
honest bijections (if they exist ) are those that are poly-time computable from an ordinary
Turing machine but not from one of our r-machines; their inverse would be computable
in polynomial time by a nondeterministic Turing machine, but not by an ordinary Turing
machine.
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2. Reversible Turing machine.

DEFINITION 2.1. A reversible Turing machine, r-machine, R is determined by a 5-
tuple

{Or. Zg, gor, Dg, T such that:

Or = {Go. g1, G2, . 4 | 15 8 finite set of states;

Zg = | %, 5, 52, ~- -, 5,/ is a finile alphabet { of the tape);

dog = go (€0 ) is the initial-final state;

Dy 15 a function that associates a direction of movement to each state different from

o le, Dp: Op —{gp} = =, =1
T’ is a set of transitions, i.e., a permutation on the set Kz = Qg ¥ Zg, 1.0,
Tg H KR — KR'

Let us give a short description of the behaviour of R. pointing out the differences
regarding the classical TM described with S-tuples.

A specific state is associated to the machine only in the moment in which it is
halfway between two symbols. Instead, when it observes a symbol (and is replacing the
symbol with another one) it does not have a specific state { but rather a pair of states:
past state-future state ).

Dg(g;) = = (== ) means that while the machine moves along the tape between one
symbol and another, being in the ¢; state, the direction of its movement is always from
left to right ( from right to left).

The generic 4-tuple {{q;, 5,3, {4n. 5y € T (i, i # 0) has the following meaning,
If the machine, as it moves along the tape in state g;, meets the symbol 8, it replaces s;
with 5, and moves away in state gy,.

The 4-tuple {{go. 5, { gu. 5c ) 3 € Ty has the following meaning. If the machine in
the initial configuration' observes the symbol 5;., it replaces s; with s; and moves away
in state gy.

The 4-tuple {{q;. 5. {qo. 5x ) € T has the following meaning. If the machine
moves in state g, and meets the symbol s, it replaces s; with 5, and stops, as the final
configuration has been reached.

The 4-tuple { (g, 5;+. { go. 5 3 > € T has the following meaning. If the machine in
the initial configuration observes the symbol s,, it replaces s with 5, and stops without
any movement done.

Evample 2.2, (Reversible Turing machine). R1 = {Okri: Zr1: 80, Dris 'J'}“}where:

Ori = { G0, 91,82, 03 | 3

Zp={01};

Dpi(g) =<, Dpi(¢2) ==, Dri(g3) =+

Tr=1{{{q0,07.{@1)),{{q0. 1 ).{q1,0)),
(Ld1,0),a2,00, (. | ). (2.0},
(a0, (s | ). {{a | 3. {@. | ),
(C43:00, (0,07 ). (g5, | ). (0. 1))}

' By “configuration” we mean the content of the tape with indication of the observed cell { which will he
indicated by underlining ).
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if the initial configuration is

PR (VR |

the computation goes On as

| =0

and the final configuration is
I S

DEFINITION 2.3. For each r-machine & we define the r-machine

Ep-1=ZpiDg-(g;)=— = Dpl{g)= =
Hor-1 = Gor = o
Thei =Tt

Wecall R the reverse of B

PrOPOSITION 2.4, If R transforms a configuration v info another v2, then R
transiorms 2 into y1, always in the same amount of time. In fact R~ operates the
inverse compuiation moving backwardys through all the intermediate configurations.,

Example 2.5. The reverse machine of 81 of Example 2.2 is

BRI '={Qun-.EZm~.q0. Dp1-1. Try

where;

I‘:_.i'_.“ l {JRI GosGr.F2. T3¢ 5

:,l']I._. :If.-lj.]: | | :-lr}J.'||I|'-]:~.'. {23
-IU.'-:. I:I'.J'|:|—_"'..Ir-}_.'.:| [{]’_"'L "‘--‘I"Jfl"‘:r_l';l""‘.

Tpi-it=1¢ .__|','||.|:|f,_ 3,0 4 o

243,
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3. R-graphs.

3.1, It is well known that a deterministic Turing machine on the binarv alphabet
Z=1{0.]} can also be described by a connected H-graph (Hermes graph) with the
following nodes:

0—— (START) in cne and only one copy,

—0 (STOP) in one and anly one copy,

(IF THEN ELSE)

:’— (CONFLUENCE)

{(where for each IF THEN ELSE there is one CONFLUENCE ) and the following nodes
{ representing elementary machines ):

——— (ASTEP TORIGHT)

—-=—— (A STEP TOLEFT)

—0— (WRITE 0}
—|— (WRITE |).
Noie 3.1.1. In this notation the strictly nonreversible components are: “b— (it is

not known from where the computation originates after a confluence) and —0—,
— | — (the previous symbaol is not restorable ).

It is our intention to give a notation in the form of a graph also for the r-machine
on the binary alphabet £ = {0, |}.

DEFINITION 3.2, We define a class of connected graphs which we call r-graphs and
which have the following nodes:

0—— (START) in one and only cne copy,
——0 ([STOP) in one and only one copy,
——»=— (A STEP TO RIGHT]),

— 4—— (A STEP TO LEFT),

and furthermore the new nodes

—A—  (ALTER)

}{ (SPIDERETTE).

3.2.1. “A7 represents the elementary reversible machine which exchanges the ob-
served symbol and the “SPIDERETTE™ means:

X if the observed symbol is O
X if the observed symbol is |.
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Note 3.2.2. Each component of the r-graphs is reversible. In particular, with regard
to the “SPIDERETTE" we would point out that, once the symbol is known, the output
edge determines in an unambiguous manner the input edge and vice versa.

THEOREM 3.3. Each r-graph represents a r-machine on the alphabet £ = {0, |}
and (vice versa) each r-machine on the alphabet £ = {0, |} has an r-graph which repre-
senis i,

FProof. Let & be an r-graph with m movement nodes (i.e., =, <). To construct
the r-machine R represented by & first at all we label 0— and —{ with g, and each
movement node with a distinct ; (i = 1, 2, -+ -, m).

Wedefine Qr = {qu} U {g:(i=1.2,---,m)}.

We define Dg(g;) equal to the symbol of the node labelled with g, (i =1, 2,
et Y

MNow we define T as follows.

33.1. ({q, 55, {qu, 5> € Tg if and only if there is a path on G from g to g,
{directed to —0 and from 00— that satisfies the following requests:

{a} just out of the node labelled g;, the symbol observed is 5

{b) when an A node is passed, the symbol changes;

(c) when a SPIDERETTE node is passed. the path to be followed is established in
agreement with § 3.2.1;

(d) just before passing the node labelled g, the observed symbol is 5.

To verify that Ty is a permutation of Oy ¥ Zj, the following must be verified:

(1) for each {g;, 5, € Qg X Zg there is one and only one { g, 5;) € Qg X Zg such
that § 3.3.1 holds, and

(ii) for each { g, 5 » € O ¥ Zp there is one and only one { g, 5 € Qg ¥ Zg such
that § 3.3.1 holds.

The uniqueness of (i) derives from the fact that, starting from any labelled node of
the graph, the observed symbol determines unambiguously the future path until another
labelled node has been reached:; the unigqueness of (i) 15 verified in a similar manner,
observing that the backward path is determined svmmetrically with the same rules.

The existence of (1) (and similarly for (i1)) 15 guaranteed by the fact that in the path
from g; to g (from gy to g;) the same edge can be covered at the most two times (the
symbols of the alphabet being two).

3.3.2. Vice versa, given an r-machine, to have an r-graph which represents it, we
draw for each state g; # gy the following:

Dxla:)

and for gq,

0 0

Therefore the free edges must be connected as follows:

For each element {{g;, 5, {gs. 5 ) » € Tr an output edge of the figure F; of the r-
graph corresponding to g is connected with an input edge of the figure F), of the r-graph
corresponding to g, in the following manner:

(a"} if 5, = 0 and 5, = 0 we connect directly the upper output of F; with the upper

input of F;
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(b) if 5; = 0 and 5, = | we connect the upper output of F; with the lower input of
F, placing on the path an A;

(¢') if5; = | and 5, = () we connect the lower output of F; with the upper input of
F, placing on the path an A;

(d') if 5; = | and 5 = | we connect directly the lower output of F; with the lower
input of F.

Note 3.3.3. The r-graph, which represents an r-machine, is not unique. 1f the fol-
lowing transformations r-graph = r-machine and r-machine — r-graph are operated
one after the other generally we do not return to the initial r-graph but to a new r-graph
which represents the same r-machine. Furthermore the r-graph that represents the r-
machine R, obtained through the translation described in § 3.3.2, can result nonconnected,
but in such a case R has inaccessible states ( for any initial configuration ) and it is equivalent
to a machine that has fewer states, of which its translation in r-graph is the connected
component of the first graph ( necessarily unigque ) which contains 0— and —{0.

Example 3.4. The translation into r-graph of R1 of Example 2.2 is the following:

\—Kﬂ 0 A —
F, ﬁ A F,

but the following r-graph also represents R1.

0—A -— —x - —0
- Wit s

3.5. Given an r-graph as G, we consider the r-graph, which we call ¢!, obtained
from & with a specular symmetry (right <+ left). G’ represents an r-machine which is
the reverse machine of the one represented by (7.

3.6. It is known that a nondeterministic Turing machine on the binary alphabet
{0, |} can be described by a connected H-graph which has the same nodes as the
H-graph (3.1) with the addition of the node —[ , its meaning being nondeterministic
choice of the next operation to perform. We designate with 0—{ —0 the nondetermin-
istic Turing machine, its computlation consisting in the nondeterministic choice of writing
0 or | in the observed cell. We designate with 0—4—0 the deterministic Turing machine
that does not provide any output for any input configuration.

DEANITION 3.7. We define Fgraph as a connected graph, its nodes being the same
as those of r-graphs, with the addition of —{— and —f—.

3.8. All the deterministic reversible Turing machines can be represented by r-graphs
{ Definition 3.2), all the ordinary Turing machines can be represented by H-graphs
{§ 3.1) {but not by r-graphs ). Vice versa, the nondeterministic Turing machines can be
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represented by H-graphs or, as well, { only in a manner formally reversible ) by an i~graph
{ substantially for nondeterministic machines there is no difference between reversible
and nonreversible ). In fact it yields the following proposition.
PROPOSITION 3.9. H-graphs and i-graphs describe the same class of machines.
Proof. To translate an Fgraph into an H-graph we substitute the nodes on the left
with the figures on the right in (*) and to translate an H-graph into an Fgraph we
substitute the nodes on the left with the figures on the right in (™):?

m}_ﬁ_ E oL m_ml_ _,r?—&_
g & %’Z S
s s i
£ Y | s

Note 3,10, Ifwe represent the nondeterministic Turing machine M with an r-graph,
its specular copy is still an r-graph that represents the machine M ™', the reverse of M.
We can extend what was said in Proposition 2.4 to the nondeterministic machine M,
That is, if there is a computation of M that transforms an initial configuration 1 into
a final configuration 2, then there is a computation of M ™' that operates the inverse
transformation from 42 to v 1 and the two computations take the same amount of time,
For each nondeterministic Turing machine M there is a reverse machine M ~': if M is
reversible, M ! is reversible also. Vice versa, a deterministic Turing machine has a reverse
machine that is generally nondeterministic.

Example 3.11. The reverse machine of 0—|—0 is

0 l’r_\_u'

? The dotted edges are not used and can be connected to each other (we point out that they are equal in
number).
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4. Simulation of Turing machine with r-machine. We will now introduce a few
notations which we will use further on.
Notation 4.1. Let M be any r-machine; we put

M
0 M

The computation of [M]°([M]') consists in the search of the first 0 ( | ) that is encountered
repeating the transformation induced by M. If the observed symbol is initially | (0) the
computation does not change the configuration.
Note 4.2, In the above higures the symbol M obviously stands for the graph repre-
senting the r-machine M without 0— and —{0. This holds for all the pictures that follow.
Notation 4.3, We put

M M-
IMJ“"’J_E{ 3{ e
M ﬁM_'ﬁL—\>

If M performs a movement. [M]™, in what follows, is used to represent the exchange
between the content of the observed cell and the content of the cell reachable with the
movement performed by M, with return to the initially observed cell.

Notation 4.4. We put

(M) =0 0
MAM -1

[M]" is used later on to alter the content of the cell reachable by means of M only if the
content of the initial cell { which is also the final one) is |.

Newation 4.5, We indicate with SYM({M ) the r-graph that is obtained from an r-
graph representing M by substituting cach = with = and vice versa (SYM(M ) and
M ! must not be confused ).

Naotation 4.6, —" (= ") stands for — (=) repeated » consecutive times.

DeFMITION 4.7, We call a semitape Turing machine a Turing machine such that
the final cell is the initial one and each cell to the lefi of the initial-final cell 15 never
observed during the computation.

THEOREM 4.8. Let M be a semi-tape Turing machine on the alphabet £ = {0, |}
that transforms the initial generic configuration

T
in the final one
gy Wy Tt
Pl yy f3, 03, =50 L wg, w0y, we, @y, <+, € {0, |}, the underlined symbols (g, wy) indicate the observed

cell (in this case the same one).
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Then there exists an r-machine M on the alphabet £ = {0, |} that transforms the
initial confignrarion

-+ 00,0004000:;00040---

in the final one
=+ 00w?0!w, 701w 70 w3701 - - -,

where the content af the cells marked =7 or “I" denotes unspecified suitable bits. Moreover,
during the compuiaiion, M can visit to the lefi of the initial-final cell two cells at most.
Proof. The graph of MY can be obtained from the graph of M by substituting the

nodes in the following manner:

e — i —
o f— — —q—"—
—o— B P

e — [+ =0 A~

Where
O=o0—+«*A—=*H[H']"=?A—=?H'+*A+"—0

H =0_4-—4[q—4]| —:-[—3-4]”-:—2_0

O has the effect of printing a 0 in the observed cell. This cannot be done “sic et simpliciter”
{the information cannot be destroved ), but such a result can be obtained by exchanging
the content (7) of the observed cell with that of another cell which surely contains 0 and
of which the new content, which we call garbage. will no longer be used; H (the initial
observed cell is the same as that of O) searches for the first useful cell to store the garbage.
The three intercalated cells (0 0 0) with the “i’s” of the input of M“ and with the “w’s”
of the output (7 0 1) are used by O in the following manner: the first ones of each set of
three cells are used, in sequence, for storing the garbage; the central ones always contain
0 (they are only temporarily altered by O for operative needs of H); the third ones are
altered in sequence by O which assigns them the content |. Therefore with each inter-
vention of O a new set of three 00 0 0 is transformed in ? 0 12 in the final configuration
the *!"s™ in the third position (of each set of the three) will be | for some left segment
and then 0. To the right of the last | also the bits indicated with 7 will naturally be 0,
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PROPOSITION 4.9, The « OFIPUIALION Fie r:'."' M"Y when the ingnit changes, is af mosi
proportional to the square of the compuitation time of M.

Proof. In fact, O requires a time at most proportional to the length of that part of
tape observed up to then, which in turn is at most proportional to the computation time
spent by M until then. The number of operations of O during the simulation corresponds
to the number of nodes —0—, — | —, J— that are crossed during the simulated com-
putation and it is at the most proportional to the computation time of M. The constant
of proportionality can depend on M, but not on the particular computation. In fact. it
is true that the crossing of a node J— does not correspond to a computation step, 1.e.,
it does not involve a change of state of the simulated machine. At the beginning or at
the end of a path that crosses only J— nodes in fixed number,

=

there must be nodes of another kind (the length of the path will only influence the
constant of proportionality ). Otherwise a loop made up entirely of 7— would correspond
necessarily to a divergent computation

5. R-computable functions.
DEFINITION 5.1. Let X and ¥ be two sets. The function [ : X — Y is invertible if
and only 1f

x,0EX, fla)=flxa)=x =x,

Note 5.2, It 15 known that if f is invertible there exists /™' : ¥ — X such that:
(5.2.1) xeX=f"Yf(x))=x.
: YEY =1y =y.
(323 ()" = F

DEFINITION 5.3. f € Iif and only if f is a recursive partial invertible function of

one variable,

Note 5.3.1. It is known that if /€I then /' € L.

DEFINITION 54. Let neN and #n= bbby - b, _, be its binary notation,
b, €10, ]} (bo= | ifand only if n > 0, by = 0 and |n| = 1 if and only if n = 0). Further
on we will say that the following tape configuration

--[]l:ll:__:llnllII _|'-I: bl ---h Hi—1 Q0 ---,

which we indicate with { { 1%, represents .

Let ¥ = Nand Y= N, we say that {/ : X — Y is r-computable if and only if there
1s an r-machine R, (that computes /) such that for each n € X transforms the initial
conhguration representing # in the final one representing f(n) ( without superfluous in-
formation ).
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L]

Note 5.4.1. We point out that the “*|’s” that intercalate the b;’s are necessary to
indicate the end of the number represented. They would not be necessary if the alphabet
of the tape contained three symbols, for example, {0, |, #].

5.5. Main theorem. Ler X s Nand YN, f: X = 7,
Sele {isr-computable.

Proof. (+) The r-machines are Turing machines, therefore [ is recursive. If for
X, # X, [(x) = f(x2) then (see § 2.4) the machine R, starting from { ()" would have
two distinct final configurations. : :

(=) Consider (see §§ 5.3.1 and 4.8) the r-machines M;T'. Mfr'- 1. To define R, we
need to define two suitable r-machines. i.e., EXPANDED and MIRROR. EXPANDED
transforms the initial configuration

17000008y | By | B2 ) -+ B, | OO0 - -
into the final
2 77700008,000 0008000 |0008,000] ---000h,000]000---

without ever visiting the cells containing ?.

MIRROR. writes on the left semi-tape, which is initially empty, a specular copy of
the right semi-tape only with regard to every fourth cell. the others remaining 0. More
precisely MIRROR transforms the initial configuration

- 00000701 5,701 | 201 5,701 | 201 - - -
into the final
=== | 0005,000]0008,00000000701 5,701 | 2015,701 | 201 -
EXPANDED = 0— [ ?]°[[=?]" = A [ *]°[ [ ¢]~ «*
1" A= " <[+ ]" <"+ —0
and
MIRROR =0— « A «*A=+FfA > [A =24 «FA =[Ol 9] [« 4] 2] " =6
[« [ *1'A<f A2 [ 4] [+ 4] >SA]A =5 A>*
[+<*I'A«"[=]'A<b[+ >4 221y,
Suppose
(5.5.1) M, =0—M}; MIRROR (M) '—0.
We can define
(5.5.2) R, =0—EXPANDED M~ *SYM(M, 1) 'SYM(MIRROR ) —*
MIRROR 'EXPANDED '—0.
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We can represent 'L'.l'.. and Ry in the following manner:

f/___

=
_.A-_
I
I
I

000

EXPANDED x

M7

ooo

EXPANDED f(x) + garbage

MIRROR

((%)}) GIAMAGXT

oo

EXPANDED f(x) + garbage

I'Ff"

({x)1) A30MA9X3

oo

EXPANDED(x)

X

EXPANDED

EXPANDED{x)

¥ 4
M, -

((x)t) O3aMAGX3

EXPANDED(x)

SYM{M, )"

{0} Q3TUATKI

SYM{MIRROR)

(%)%} O3OMATXI

EXPANDED (f(x))

d

—

((x}%) a3aMAgX3

EXPANDED (f{x))

MIRROR -

o000

EXPANDED (f{x))

EXPANDED-'

ooo

flx)
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Note 5.6. If we construct the reversible machine that computes [ as suggested in
(5.5.1) and (5.5.2) the computation time of Ry is about two times the computation time
of M_}‘ and M ,E-‘-l { plus the computation time of EXPANDED and MIEROR. at the most
proportional 1o | x|% or |f{ x)]%).

6. Existence of one-way bijections. We will first define the HB set of the polyvnomially
honest bijections,
DeANimioN 6.1, f € HB == f 1, [ is total and there is a polynomial p such that

(6.1.1.) A =pl|x1).p{l x])= |f{x)| foreachxeN,
Notation 6.1.2. If X = HB, with X ' we indicate the set of inverse bijections:
fleX™ls feXx.

We now define three subsets of HB: HBP, HERP, HBNP.

DEFINITION 6.2. One bijection f € HB belongs also to HBP [HBRP, HBNP] if
there is an ordinary [ reversible, nondeterministic ] Turing machine M; and a polynomial
p such that;

(1) foreach {x, y» € N” there is a computation C of M, that transforms the input
{{x ) in the output {{ v} if and only if y = f( x);

{2) the computation time is less than or equal to p(|x|) for at least a computa-
tion C.

Note 6.2.1. ({x}} is to be understood as defined in 5.4. The “if and only if ™ at
point (1} indicates that M, (even if nondeterministic ) must not compute two distinct
values starting from the same x. The condition “for at least one computation™ at point
(2) 15 necessary ( meaningful ) only if M, is nondeterministic.

Obviously we have

(6.3.1) HBRP = HBP,
(6.3.2) HBP=HBNP,
and furthermore

(6.3.3) HBRF=HBRP'.
{6.3.4) HBNP=HBNP ™'

(in fact My = M ;' if M, is a reversible or nondeterministic machine. see Proposition
2.4, and for Definition 6.1 there is no difference between polynomiality in regard to the
range and the value of [7)

Om the other hand, we do not know whether

{6.3.5) HRP=HRBRP 7

The set B2V = HBP M HBP ' is known as the class of the two-way bijections, i.e..
computable in two directions in polynomial time.

BIV = HBP — HBP ' is known as the class of one-way bijections, i.e., computable
in polynomial time in one direction butl not in the other.

THEOREM 6.4. B2V = HBRP.

The two-way bijections are all and only those computable in polynomial time by a
reversible Turing machine,

Proof. if { € HBRP for 6.3.1 and 6.3.3 then / € HBP N HBP % if f€ HBP N
HBP ' = B2V, for § 5.5, Note 5.6, and Proposition 4.9 then f € HERP.

The problem of the existence of one-way bijections ( BI1V # @7) is still open (it is
also connected to the problem P = NP). For us it is not solved, but can be reduced to



[l

254 G. JACOPINI, P. MENTRASTI, AND G. SONTACCHI

the following: “HBP # HBRP?" (Are there polvnomially honest bijections polytime
computable by an ordinary Turing machine but not by a reversible Turing machine?),
which in turn is equivalent to the problem (6.3.5).

The practical meaning of Theorem 6.4 can be illustrated as follows: let us suppose
that f is a bijection easy to compute in one direction, obviously /' € HBP, but difficult
to compute { at least intuitively ) in the other direction, so that one doubts its bipolynomi-
ality: /' € HBP? We therefore do not know whether f € B2V or / € BIV. To try to
establish it, 1t is not necessary to deal with the difficult inverse problem, i.e., to establish
whether /71 € HBP or /7! € HBNFP — HBP. In fact 1o try to prove that / € B2V all that
is necessary is to try to program the direct problem by means of the construction® of a
reversible Turing machine that computes it in polynomial time. If one succeeds in this,
apart from having resolved such a problem, it is possible to obtain with only the aid of
a mirror a polynomial procedure for the inverse problem. Obviously to prove the contrary
(€ BIV) it will be necessary to establish that a function f, computable in polynomial
time by a deterministic Turing machine, is not computable, always in polynomial time,
by any reversible Turing machine. This would no doubt be more difficult, but if it were
done the result would be striking. In fact if it resulted

fEHBP-HBRP  (feBIV#@),*
furthermore for problems 6.3.2 and 6.3.4 and Theorem 6.4, one would have
f~'e HBNP - HBP.
Let I be the predicate so defined

! true i _ [odd
II[{2x +1)2*] = = (x)/2y]15
false even

It would result II € NP M CoNP — P (result even stronger than I NP — P, ie.,
P # NP). In fact, it is easy to prove

J- TeHBNP = I[1e NPM{oNP
I[IeP=/""'HRBP.
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