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1. Introduction

Let g = k ⊕ p be an infinitesimal symmetric space. The adjoint representation
gives a map k → so(p) and in turn we have a map between the corresponding
affinizations k̂ → ŝo(p). Therefore, given a ŝo(p)-module, it makes sense to ask
for its k̂-decomposition. Kac and Peterson [6] discovered that this decomposition
is finite for level 1 modules. Recall that a subalgebra a ⊂ g is called quadratic if
the restriction to a of a non-degenerate invariant form on g is still non-degenerate.
About 20 years ago there was much activity on the problem of classifying the qua-
dratic subalgebras a such that level 1 ŝo(p)-modules restrict finitely to â and on
that of finding actual decompositions. The first goal was achieved, and the above
subalgebras might be split into three classes: certain equal rank subalgebras, a
list of “exceptional” cases, and the symmetric subalgebras. Decompositions were
known for the first two classes and in some instances of the third. Recently, we
found a connection with the theory of abelian ideals in Borel subalgebras which
allowed us to solve completely the problem (cf. [1]). It turns out that an affine ana-
logue of Kostant’s theory of multiplets [9] is the natural framework for a conceptual
explanation of our formulas. This has been achieved by letting the Kac-Todorov
field [7] play the role of Kostant cubic Dirac operator. We also found an analogue
in affine setting of a theorem of Huang and Pandžić [2] which solves a conjecture
of Vogan on Dirac cohomology. This result (see Theorem 3.2) allows us to prove a
general multiplet theorem (see Theorem 3.1). We plan to investigate the applica-
tions of our methods in the context of finite and affine Lie superalgebras. Though
this project is still at early stage of development, the construction of the Dirac field
can be extended (with careful modifications) to the superalgebra case. We give a
concise outline of this construction in Section 2 and in Section 4 we point out some
of its consequences, notably a uniform proof of Freudenthal strange formula (4.1)
for Lie superalgebras. The main results in the affine setting appear in Section 3.

2. The Dirac field

Let g be a basic classical Lie superalgebra and σ an elliptic automorphism of
g (i.e., diagonalizable with modulus 1 eigenvalues). Let (·, ·) be a non-degenerate
invariant supersymmetric form and assume that it is σ-invariant. Set ḡ = Pg,
where P is the parity reversing functor. Consider the conformal algebra R =
(C[T ]⊗ g)⊕ (C[T ]⊗ ḡ)⊕ CK ⊕ CK ′ with λ-products

[aλb] = [a, b] + λ(a, b)K, [aλb̄] = [a, b], [āλb] = p(b)[a, b], [āλb̄] = (b, a)K ′,

K, K ′ being even central elements. Let V (R) be the corresponding universal vertex
algebra, and denote by V k,1(g) its quotient by the ideal generated by K − k|0〉
and K ′ − |0〉. The relations are the same used in [4] for even variables.
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Choose a homogeneous basis {xi} of g and let {xi} be its dual basis. We assume
that the Casimir operator of g acts on g as 2gIg. The element

Gg =
∑
i

: xixi : −1
3

∑
i,j

: [xi, xj ]xjxi :∈ V k+g,1(g)

is called the Kac-Todorov operator. To enlighten how Gg acts on representations,
recall from [4] that the vertex algebra V k+g,1(g) is isomorphic to V k(g) ⊗ F (g),
where the left factor is the universal affine vertex algebra of level k and the right
factor is the universal fermionic vertex algebra. There is a natural notion of (σ-
twisted) Spin-Weil module SWσ(g) for F (g), hence given a σ-twisted module for
V k(g) (i.e., a representation M of the twisted affine superalgebra L̂(g, σ)), we may
produce a σ ⊗ (−σ)-twisted representation

X(M) = M ⊗ SW−σ(g)

of V k+g,1(g). It turns out that (σ ⊗ (−σ))(Gg) = −Gg, so that Y X(M)(Gg, z) =∑
n∈Z G

X
n z
−n− 3

2 . Given a quadratic σ-stable subsuperalgebra a ⊂ g, we have an
embedding V k+1,g(a) ⊂ V k+1,g(g), so that we may consider the field Gg − Ga,
which turns out to act on M ⊗ SW−σ(p) where p = a⊥. We introduce the Kac-
Todorov operator as

Dg,a = (Gg −Ga)M⊗SW
−σ(p)

0 .

3. Main Theorems

Throughout this Section, g is a Lie algebra, σ an elliptic automorphism of g
preserving the form and a a quadratic subalgebra.

Write g = ⊕j∈R/Zgj , a = ⊕j∈R/Zaj , aj = a ∩ gj .
Assumption.We assume that there exists an elliptic automorphism of g preserv-
ing the form, commuting with σ, and such that a Cartan subalgebra t of the joint

fixed points of σ and µ is a Cartan subalgebra of a0.

Denote by h0 the Cartan subalgebra Centg0(t) of g0 and decompose it as h0 =

t ⊕ hp. Let Ŵσ be the Weyl group of L̂(g, σ) and ĥ = h0 ⊕ CK ⊕ Cd the Cartan
subalgebra. Set taff = t⊕ CK ⊕ Cd. We prove that the subgroup Ŵ (µ) = {w ∈
Ŵσ | wµ = µw} is isomorphic to the group generated by the reflections sβ in the
vectors β = α|taff (where we stipulate that sβ = Id if α|taff is isotropic). We
prove that the latter group is a Coxeter group which contains the Weyl group of
L̂(a, σ) as a reflection subgroup. Let Ŵ ′ be the corresponding set of minimal right
coset representatives. Let ρ̂σ, ρ̂a,σ be ρ-vectors for L̂(g, σ), L̂(a, σ) respectively.

Theorem 3.1. [5, Theorem 1.1] In the above setup, assume furthermore that
(Λ + ρ̂σ)|hp

= 0. Then the following decomposition into a direct sum of irreducible
L̂(a, σ)-modules holds:

Ker (D) = 2b
rank(g0))−rank(a0)+1

2 c
∑
w∈cW ′

V (w(Λ + ρ̂σ)− ρ̂aσ).
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By taking Λ = 0 and considering a symmetric subalgebra we recover via a
multiplet approach the results obtained in previous papers for both the equal and
non-equal rank cases. The proof proceeds along the lines of the finite-dimensional
case, up to the fact that Parthasarathy’s Dirac inequality is replaced by the follow-
ing theorem, which can be viewed as an affine analogue of the “Vogan conjecture”.

Theorem 3.2. [4, Theorem 8.1] Let g be a semisimple Lie algebra, σ an elliptic
automorphism of g and a a reductive quadratic subalgebra. Assume that the cen-
tralizer in g0 of Cartan subalgebra of a is a Cartan subalgebra h0 of g0. Fix Λ ∈ ĥ∗

such that Λ+ ρ̂σ is in the Tits cone of L̂(g, σ) and let M be a highest weight module
for L̂(g, σ) with highest weight Λ. Let f be a holomorphic Ŵσ-invariant function
on the Tits cone. Suppose that a twisted highest weight L̂(a, σ)-module of highest
weight µ occurs in the Dirac cohomology of M . Then f(Λ + ρ̂σ) = f(µ+ ρ̂a,σ).

4. Perspectives on the Lie superalgebra case

One of the key properties of the classical Dirac operator is the existence of a
nice formula for its square. The replacement of the latter formula in our case is a
nice expression for [GgλGg]. Let now g be a basic classical superalgebra, σ = Ig
and M = L(Λ) be a highest module w.r.t. some positive system. If v is an highest
weight vector in M , we compute that GX0 (v ⊗ 1) = v ⊗ (hΛ+ρ) · 1 (here Λ = Λ|h0

and hµ is defined by µ(h) = (h, hµ) for µ ∈ h∗0). By the above nice expression, v⊗1
is an eigenvector for (GX0 )2, so taking Λ such that Λ = −ρ, we get the Freudenthal
“strange” formula

(4.1) (ρ, ρ) =
g

12
sdimg.

For other (non-uniform) proofs of (4.1) see [8]. We also have a twisted version
of this formula, which is an analogue of the “very strange formula”. By applying
the Zhu functor πZhu to our Dirac operator Dg,a, we obtain a “finite-dimensional”
Dirac operator in superalgebra setting which we are going to study in more detail.
We have verified that πZhu(Dg,g0) is the Dirac operator defined in [3].
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[2] J.-S. Huang and P. Pandžić, J. Amer. Math. Soc. 15 (2002), no. 1, 185–202.
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