Esercitazione del 16 aprile

Individuare le risposte corrette, che possono essere più di una.

- (1) Risulta $\binom{2n}{n} =$

 - n!• $\frac{2}{n!}$ $\frac{2n!}{2n(2n-1)\cdots(n+1)}$ $\frac{2^n}{n!}$
- (2) Sia $E = [0, 1] \cup \{3\} \cup (5, 8)$. Sia E' l'insieme dei punti di accumulazione di E.
 - $\{1, 3, 7\} \subset E'$.
 - \bullet E non è né aperto né chiuso.
 - E' è chiuso.
 - $(E \cup E') \setminus (E \cap E')$ è un insieme finito
- (3) Siano $b_n = \frac{\pi}{2} \frac{n^4}{n^4 + 1}, a_n = \sin b_n, A = \{a_n \mid n \in \mathbb{N}\}.$ Allora
 - b_n è decrescente
 - a_n è definitivamente decrescente
 - inf $A = \sqrt{2}/2$
 - A ha minimo
- (4) Sia a_n una successione tale che $\lim_{n\to\infty} a_n = 12$. Allora
 - $a_n > 11$ per ogni n
 - tutti i termini della successione sono positivi.
 - esiste in intorno limitato di 11 cui appartengono definitivamente tutti i termini della successione
 - ogni intorno di 12 contiene definitivamente tutti i termini della successione
- (5) Risulta $\lim_{x\to 1} \frac{\sin(x)}{x} =$
 - 0
 - 1
 - $\bullet \sin(1)$
- (6) Sia $f(x) = x^{2x}$. Allora
 - $\bullet \ \hat{f}'(x) = 2x \cdot x^{2x-1}$
 - $f'(x) = x^{2x}(2 + 2\text{Log}[x])$
 - Il dominio naturale di $f \in [0, +\infty)$.
 - $f(x) > 0 \ \forall x > 0$
- (7) Sia $f(x) = \frac{x^2}{x-1}$ f è limitata

 - f è continua ove è definita
 - La retta di equazione y + x = 0 è un asintoto per f.
- (8) Sia $f(x) = x^3 + x^2 + x + 1$
 - f ha massimo in [0, 2]
 - f ha uno zero in [-2, 2]
 - f ha minimo assoluto nel suo dominio naturale

(9) Sia
$$b \neq 0$$
 e $f(x) = \begin{cases} \frac{\sin(ax)}{bx} & x \neq 0 \\ 1 & x = 0 \end{cases}$

- \bullet fè continua in 1 per ogni valore di $a,b,b\neq 0$
- \bullet fha una discontinuità eliminabile in 0 per ogni valore di $a,b,b\neq 0$
- f è continua in 0 se e solo se a = b

(10) Sia
$$f(x) = \begin{cases} x^n \sin(x) & x \neq 0 \\ 1 & x = 0 \end{cases}$$

- f è continua in 0 per n > 0
- f è derivabile con derivata continua in 0 per n > 1
- f è derivabile con derivata continua in 0 se e solo se $n \geq 3$

Risolvere, fornendo soluzioni dettagliate, i seguenti esercizi

(a). Calcolare il limite della seguente successione:
$$a_n = \frac{2^n + n^3}{(1 + \frac{1}{n})^{n^2}}$$

(b). Calcolare quando esistono i seguenti limiti:

$$\lim_{x \to 0^+} x^2 e^{1/\sin x}$$

(2)
$$\lim_{x \to 0} \frac{\sqrt{1 + x^4} - \sqrt{1 - x^5}}{[1 - \cos(3x)]^2}$$

(c). Studiare il grafico della funzione

$$f(x) = \frac{x^3 + x^2 - 2x - 3}{x^2 - 3}$$