ADDENDUM TO "ON THE KERNEL OF THE AFFINE DIRAC OPERATOR"

VICTOR G. KAC
PIERLUIGI MÖSENEDER FRAJRIA
PAOLO PAPI

After the paper [3] was published, we realized that a key step in the proof of its main result, Theorem 1.1, could be achieved in a more direct way, which makes the proof independent from the results of [2].

We retain the same notation as in [3]. In [1, Ch. 10, § 5] it is shown that $(\cdot, \cdot)_{\left.\right|_{\mathfrak{h}_{0}} \times \mathfrak{h}_{0}}$ is nondegenerate, thus we can define dually a form (\cdot, \cdot) on \mathfrak{h}_{0}^{*}. Denote by Δ the set of \mathfrak{h}_{0}-weights of \mathfrak{g} and let $\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}$ be the real span of Δ. As proven in [1, Ch. 10, §5] one can always choose
 shall assume that the form (\cdot, \cdot) satisfies this condition. This is not restrictive, and it has been tacitly used in the proof of Theorem 1.1.

Observe that, since μ stabilizes \mathfrak{h}_{0}, it permutes the set Δ of $\mathfrak{h}_{0^{-}}$ weights of \mathfrak{g}, hence $\mu\left(\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}\right)=\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}$. In particular we have the orthogonal decomposition

$$
\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}=\left(\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*} \cap\left(\mathfrak{h}^{\mu}\right)^{*}\right) \oplus\left(\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*} \cap \mathfrak{h}_{\mathfrak{p}}^{*}\right) .
$$

Recall that a weight $\Lambda \in \widehat{\mathfrak{h}}^{*}$ is said to be dominant if $(\Lambda, \alpha) \in \mathbb{R}$ for any $\alpha \in \widehat{\Delta}$ and $(\Lambda, \alpha) \geq 0$ for $\alpha \in \widehat{\Delta}^{+}$. If we write $\Lambda=k \Lambda_{0}+\Lambda_{\mid \mathfrak{h}_{0}}+$ $\left(\Lambda_{0}, \Lambda\right) \delta$ then Λ dominant implies $k=(\Lambda, \delta) \geq 0$.
It is shown in $[1$, Ch. $10, \S 5]$ that Δ generates \mathfrak{h}_{0} over \mathbb{C}. This implies that $\lambda \in\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}$ if and only if $(\lambda, \alpha) \in \mathbb{R}$ for any $\alpha \in \Delta$. In particular if $\Lambda \in \widehat{\mathfrak{h}}^{*}$ is such that $(\Lambda, \alpha) \in \mathbb{R}$ for any $\alpha \in \widehat{\Delta}$, then $\Lambda_{\mid \mathfrak{h}_{0}} \in\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}$. Thus we have an orthogonal decomposition

$$
\Lambda_{\mid \mathfrak{h}_{0}}=\Lambda_{\mid \mathfrak{h}_{0}^{\mu}}+\Lambda_{\mid \mathfrak{h}_{\boldsymbol{p}}}
$$

with

$$
\Lambda_{\mid \mathfrak{h}_{0}^{\mu}} \in\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*} \cap\left(\mathfrak{h}_{0}^{\mu}\right)^{*} \quad \Lambda_{\mid \mathfrak{h}_{\mathfrak{p}}} \in\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*} \cap \mathfrak{h}_{\mathfrak{p}}^{*} .
$$

Recall that $\Lambda \in \widehat{\mathfrak{h}}^{*}$ is said to be integral if $2 \frac{(\Lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$ for any simple root α. We set for shortness $\|\lambda\|=\left\|\left(\varphi_{\mathfrak{a}}^{*}\right)^{-1}(\lambda)\right\|$ whenever $\lambda \in \varphi_{\mathfrak{a}}^{*}\left(\left(\widehat{\mathfrak{h}}^{\mu}\right)^{*}\right)$.
Proposition. Suppose that $\Lambda \in \widehat{\mathfrak{h}}^{*}$ is dominant integral. Let ν be a weight of $L(\Lambda) \otimes F^{\sigma}(\mathfrak{p})$ such that

$$
\left\|\nu+\widehat{\rho}_{\mathfrak{a} \sigma}\right\| \underset{1}{=}\left\|\Lambda+\widehat{\rho}_{\sigma}\right\| .
$$

Then there is $w \in \widehat{W}_{\sigma}$ such that

$$
\begin{equation*}
w\left(\Lambda+\widehat{\rho}_{\sigma}\right)=\left(\varphi_{\mathfrak{a}}^{*}\right)^{-1}\left(\nu+\widehat{\rho}_{\mathfrak{a} \sigma}\right) . \tag{1}
\end{equation*}
$$

Proof. Observe that $\left(\varphi_{\mathfrak{a}}^{*}\right)^{-1}\left(\nu+\widehat{\rho}_{\mathfrak{a} \sigma}\right)$ is a $\widehat{\mathfrak{h}}^{\mu}$-weight of $L(\Lambda) \otimes F^{\sigma}(\mathfrak{p}) \otimes$ $F^{\sigma}(\mathfrak{a})=L(\Lambda) \otimes F^{\sigma}(\mathfrak{g})$, thus

$$
\left(\varphi_{\mathfrak{a}}^{*}\right)^{-1}\left(\nu+\widehat{\rho}_{\mathfrak{a} \sigma}\right)=\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\widehat{\mathfrak{h}}^{\mu}}
$$

with λ a weight of $L(\Lambda)$ and $s \in \mathcal{S}$, where

$$
\mathcal{S}=\left\{\xi \in \widehat{\mathfrak{h}}^{*} \mid \xi=\sum_{\beta \in \widehat{\Delta}^{+}} n_{\beta} \beta, 0 \leq n_{\beta} \leq \operatorname{dim} \widehat{L}(\mathfrak{g}, \sigma)_{\beta}, n_{\beta}=0 \text { a.e. }\right\} .
$$

Since $\left(\lambda+\widehat{\rho}_{\sigma}-s\right)(K)=k+g>0$, we can find $v \in \widehat{W}_{\sigma}$ such that $v\left(\lambda+\widehat{\rho}_{\sigma}-s\right)$ is dominant. The set of weights of $L(\Lambda)$ is \widehat{W}_{σ}-invariant and the same holds for $\widehat{\rho}_{\sigma}-\mathcal{S}$, hence we can write $v\left(\lambda+\widehat{\rho}_{\sigma}-s\right)=\lambda^{\prime}+\widehat{\rho}_{\sigma}-s^{\prime}$. It follows that $\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\|=\left\|\lambda^{\prime}+\widehat{\rho}_{\sigma}-s^{\prime}\right\|$, so we have

$$
\left\|\Lambda+\widehat{\rho}_{\sigma}\right\|^{2}-\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\|^{2}=\left(\Lambda+\widehat{\rho}_{\sigma}+\lambda^{\prime}+\widehat{\rho}_{\sigma}-s^{\prime}, \Lambda-\lambda^{\prime}+s^{\prime}\right) .
$$

Since $\Lambda-\lambda^{\prime}+s^{\prime}$ is a sum of positive roots and $\Lambda+\widehat{\rho}_{\sigma}, \lambda^{\prime}+\widehat{\rho}_{\sigma}-s^{\prime}$ are both dominant, we obtain that

$$
\left\|\Lambda+\widehat{\rho}_{\sigma}\right\| \geq\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\| .
$$

On the other hand

$$
\left\|\nu+\widehat{\rho}_{\mathbf{a} \sigma}\right\|=\left\|\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\mid \widehat{h}^{\mu}}\right\| \leq\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\| \leq\left\|\Lambda+\widehat{\rho}_{\sigma}\right\|
$$

so, since $\left\|\nu+\widehat{\rho}_{\mathbf{a} \sigma}\right\|=\left\|\Lambda+\widehat{\rho}_{\sigma}\right\|$, we obtain equalities. Since $\Lambda+\widehat{\rho}_{\sigma}$ is regular we find that

$$
0=\left\|\Lambda+\widehat{\rho}_{\sigma}\right\|^{2}-\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\|^{2}=\left(\Lambda+\widehat{\rho}_{\sigma}+\lambda^{\prime}+\widehat{\rho}_{\sigma}-s^{\prime}, \Lambda-\lambda^{\prime}+s^{\prime}\right)
$$

implies $\Lambda=\lambda^{\prime}$ and $s^{\prime}=0$, so $\Lambda+\widehat{\rho}_{\sigma}=v\left(\lambda+\widehat{\rho}_{\sigma}-s\right)$. Moreover $\left\|\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\mid \widehat{h}^{\mu}}\right\|=\left\|\lambda+\widehat{\rho}_{\sigma}-s\right\|$ implies $\left\|\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\mid \mathfrak{h}_{\mathrm{p}}}\right\|=0$. Since $\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\mid \mathfrak{h}_{0}} \in\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}$ and the form (\cdot, \cdot) is positive definite on $\left(\mathfrak{h}_{0}\right)_{\mathbb{R}}^{*}$ we obtain that $\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\mid \mathfrak{h}_{\mathfrak{p}}}=0$ and $\left(\lambda+\widehat{\rho}_{\sigma}-s\right)_{\widehat{\mathfrak{h}}^{\mu}}=\lambda+\widehat{\rho}_{\sigma}-s$. Thus

$$
\left(\varphi_{\mathfrak{a}}^{*}\right)^{-1}\left(\nu+\widehat{\rho}_{\mathfrak{a} \sigma}\right)=v^{-1}\left(\Lambda+\widehat{\rho}_{\sigma}\right)
$$

Taking $w=v^{-1}$ we obtain (2), as wished.
Using this Proposition, there is no need to invoke the affine version of the Vogan conjecture to start the proof of Theorem 1.1 (after Lemma 5.1).

References

[1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.
[2] V. G. Kac, P. Möseneder Frajria and P. Papi, Multiplets of representations, twisted Dirac operators and Vogan's conjecture in affine setting, Adv. Math. (2008), 217 n.6, 2485-2562.
[3] V. G. Kac, P. Möseneder Frajria and P. Papi, On the Kernel of the affine Dirac operator, Moscow Math. J. (2008) 8 n.4, 759-788.
[4] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002.
V.K.: Department of Mathematics, Rm 2-178, MIT, 77 Mass. Ave, Cambridge, MA 02139;
kac@math.mit.edu
P.MF.: Politecnico di Milano, Polo regionale di Como, Via Valleggio 11, 22100 Como, ITALY;
pierluigi.moseneder@polimi.it
P.P.: Dipartimento di Matematica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, ITALY;
papi@mat.uniroma1.it

