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1. Existence with regular data in the linear case

Before stating and proving the existence theorem for linear elliptic
equations, we need some tools.

1.1. Minimization in Banach spaces. Let E be a Banach space,
and let J : E → R be a functional.

Definition 1.1. A functional J : E → R is said to be weakly lower
semicontinuous if

un ⇀ u ⇒ J(u) ≤ lim inf
n→+∞

J(un).

1
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Definition 1.2. A functional J : E → R is said to be coercive if

lim
‖u‖E→+∞

J(u) = +∞.

Example 1.3. If E = R, the function J(x) = x2 is an example of a
(weakly) lower semicontinuous and coercive functional. Another exam-
ple is J(u) = ‖u‖E.

Theorem 1.4. Let E be a reflexive Banach space, and let J : E → R
be a coercive and weakly lower semicontinuous functional (not identi-
cally equal to +∞). Then J has a minimum on E.

Proof. Let
m = inf

v∈E
J(v) < +∞,

and let {vn} in E be a minimizing sequence, i.e., vn is such that

lim
n→+∞

J(vn) = m.

We begin by proving that {vn} is bounded. Indeed, if it were not, there
would be a subsequence {vnk} such that

lim
k→+∞

‖vnk‖ = +∞.

Since J is coercive, we will have

m = lim
n→+∞

J(vn) = lim
k→+∞

J(vnk) = +∞,

which is false. Therefore, {vn} is bounded in E and so, being E re-
flexive, there exists a subsequence {vnk} and an element v of E such
that vnk weakly converges to v as k diverges. Since J is weakly lower
semicontinuous, we have

m ≤ J(v) ≤ lim inf
k→+∞

J(vnk) = lim
n→+∞

J(vn) = m,

so that v is a minimum of J . �

1.2. Hilbert spaces.

1.2.1. Linear forms and dual space. We recall that a Hilbert space
H is a vector space where a scalar product (·|·) is defined, which is
complete with respect to the distance induced by the scalar product
by the formula

d(x, y) =
√

(x− y|x− y).

Examples of Hilbert spaces are R (with (x|y) = x y), RN (with the
“standard” scalar product), `2, and L2(Ω) with

(f |g) =

∫
Ω

f g.
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Theorem 1.5 (Riesz). Let H be a separable Hilbert space, and let T
be an element of its dual H ′, i.e., a linear application T : H → R such
that there exists C ≥ 0 such that

(1.1) |〈T, x〉| ≤ C‖x‖, ∀x ∈ H.
Then there exists a unique y in H such that

〈T, x〉 = (y|x), ∀x ∈ H.

Proof. Denote by {eh} a complete orthonormal system in H, i.e. a
sequence of vectors of H such that (eh|ek) = δhk, and such that, for
every x in H, one has

x =
+∞∑
h=1

(x|eh)eh.

It is then well known that there exists a bijective isometry F from H
to `2, defined by F(x) = {(x|eh)}. We claim that {〈T, eh〉} belongs to
`2. Indeed, if

yn =
n∑
h=1

〈T, eh〉eh,

we have, by linearity and by (1.1),

n∑
h=1

(〈T, eh〉)2 = 〈T, yn〉 ≤ C‖yn‖ = C

(
n∑
h=1

(〈T, eh〉)2

) 1
2

,

so that
n∑
h=1

(〈T, eh〉)2 ≤ C2,

which yields (letting n tend to infinity) that {〈T, eh〉〉} belongs to `2.
Therefore, one has, again by linearity and by (1.1),

〈T, x〉 =
+∞∑
h=1

(x|eh)〈T, eh〉, ∀x ∈ H.

Let now y be the vector of H defined by

y =
+∞∑
h=1

〈T, eh〉eh.

Then, since 〈T, eh〉 = (y|eh), one has

〈T, x〉 =
+∞∑
h=1

(x|eh)(y|eh), ∀x ∈ H,
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and the right hand side is nothing but the scalar product in `2 of F(x)
and F(y). Since F is an isometry, we then have

〈T, x〉 = (y|x), ∀x ∈ H,

as desired. Uniqueness follows from the fact that (y|x) = (z|x) for
every x in H implies y = z (just take x = y − z). �

Corollary 1.6. The map T 7→ y is a bijective linear isometry between
H ′ and H.

Proof. Since 〈T + S, x〉 = 〈T, x〉 + 〈S, x〉, and 〈λT, x〉 = λ〈T, x〉, it is
clear that the map T 7→ y is linear. In order to prove that it is an
isometry, we have

|〈T, x〉| = |(y|x)| ≤ ‖y‖‖x‖,

which implies ‖T‖ ≤ ‖y‖. Furthermore

‖y‖2 = (y|y) = 〈T, y〉 ≤ ‖T‖‖y‖,

so that ‖y‖ ≤ ‖T‖. The map is clearly injective, and it is surjective
since the application x 7→ (y|x) is linear and continuous on H (by
Cauchy-Schwartz inequality). �

1.2.2. Bilinear forms. An application a : H ×H → R such that

a(λx+ µy, z) = λa(x, z) + µa(y, z),

and

a(z, λx+ µy) = λa(z, x) + µa(z, x),

for every x and y in H, and for every λ and µ in R, is called bilinear
form. A bilinear form is said to be continuous if there exists β ≥ 0
such that

|a(x, y)| ≤ β‖x‖‖y‖, ∀x, y ∈ H,
and is said to be coercive if there exists α > 0 such that

a(x, x) ≥ α‖x‖2, ∀x ∈ H.

An example of bilinear form on H is the scalar product, which is both
continuous (with β = 1, thanks to the Cauchy-Schwartz inequality),
and coercive (with α = 1, by definition of the norm in H).

Theorem 1.7. Let a : H × H → R be a continuous bilinear form.
Then there exists a linear and continuous map A : H → H such that

a(x, y) = (A(x)|y), ∀x, y ∈ H.
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Proof. Since a is linear in the second argument and continuous, for
every fixed x in H the map y 7→ a(x, y) is linear and continuous, so
that it belongs to H ′. By Riesz theorem, there exists a unique vector
A(x) in H such that

a(x, y) = (A(x)|y), ∀x, y ∈ H.

Since a is linear in the first argument, the map x 7→ A(x) is linear.
Furthermore, by the continuity of a,

‖A(x)‖2 = (A(x)|A(x)) = a(x,A(x)) ≤ β‖x‖‖A(x)‖,

so that ‖A(x)‖ ≤ β‖x‖, and the map is continuous. �

1.2.3. Banach-Caccioppoli and Lax-Milgram theorems.

Theorem 1.8 (Banach-Caccioppoli). Let (X, d) be a complete metric
space, and let S : X → X be a contraction mapping, i.e., a continuous
application such that there exists θ in [0, 1) such that

d(S(x), S(y)) ≤ θ d(x, y), ∀x, y ∈ X.

Then there exists a unique x in X such that S(x) = x.

Proof. Let x0 in X be fixed, and define x1 = S(x0), x2 = S(x1), and, in
general, xn = S(xn−1). We then have, since S is a contraction mapping,

d(xn+1, xn) = d(S(xn), S(xn−1)) ≤ θ d(xn, xn−1),

and iterating we obtain

d(xn+1, xn) ≤ θn d(x1, x0).

Therefore, by the triangular inequality,

d(xn, xm) ≤
n−1∑
h=m

d(xh+1, xh) ≤
n−1∑
h=m

θh d(x1, x0) =
θm − θn

1− θ
.

Since {θh} is a Cauchy sequence in R (being convergent to zero), it then
follows that {xn} is a Cauchy sequence in (X, d), which is complete.
Therefore, there exists x in X such that xn converges to x. Since S
is continuous, on one hand S(xn) converges to S(x), and on the other
hand S(xn) = xn+1 converges to x so that x is a fixed point for S. If
there exist x and y such that S(x) = x and S(y) = y, then, since S is
a contraction mapping,

d(x, y) = d(S(x), S(y)) ≤ θ d(x, y),

which implies (since θ < 1) d(x, y) = 0 and so x = y. �
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Theorem 1.9 (Lax-Milgram). Let a : H × H → R be a continuous
and coercive bilinear form, and let T be an element of H ′. Then there
exists a unique x in H such that

(1.2) a(x, z) = 〈T, z〉, ∀z ∈ H.

Proof. Using the Riesz theorem and Theorem 1.7, solving the equation
(1.2) is equivalent to find x such that

a(x, z) = (A(x)|z) = (y|z) = 〈T, z〉, ∀z ∈ H,

i.e., to solve the equation A(x) = y. Given λ > 0, this equation is
equivalent to x = x − λA(x) + λy, which is a fixed point problem for
the function S(x) = x− λA(x) + λy. Since, being A linear, one has

S(x1)− S(x2) = x1 − x2 − λA(x1) + λA(x2) = x1 − x2 − λA(x1 − x2),

in order to prove that S is a contraction mapping, it is enough to prove
that there exists λ > 0 such that

‖x− λA(x)‖ ≤ θ‖x‖,

for some θ < 1 and for every x in H. We have

‖x− λA(x)‖2 = ‖x‖2 + λ2‖A(x)‖2 − 2λ(A(x)|x).

Recalling Theorem 1.7 and the definition of A, we have

‖A(x)‖2 ≤ β2‖x‖2, (A(x)|x) = a(x, x) ≥ α‖x‖2,

so that

‖x− λA(x)‖2 ≤ (1 + λ2β2 − 2λα)‖x‖2.

If 0 < λ < 2α
β2 , we have θ2 = 1 + λ2β2 − 2λα < 1, so that S is a

contraction mapping. �

Remark 1.10. Not every function which has a fixed point is a con-
traction; for example, the identity map (which has infinitely many fixed
points), and the function f : [0, 1] → [0, 1] defined by f(x) = x2 (so
that f(0) = 0, and f(1) = 1), are not contractions. It is therefore
useful to have other fixed point theorems, under different assumptions
on the map S. This is the case of Schauder’s theorem.

Theorem 1.11 (Schauder). LetK be a convex, closed, bounded subset
of a Banach space, and let S : K → K be a continuous function such
that S(K) is compact. Then S has at least a fixed point.
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1.3. Sobolev spaces. The Banach spaces where we will look for so-
lutions are space of functions in Lebesgue spaces “with derivatives in
Lebesgue spaces” (whatever this means).

Warning: This section is a short summary of the results contained
in Chapter IX of the book by H. Brezis (see [2]): we refer to it for
further results and proofs.

1.3.1. Definition of Sobolev spaces. Let Ω be a bounded, open subset
of RN , N ≥ 1, and let u be a function in L1(Ω). We say that u has a
weak (or distributional) derivative in the direction xi if there exists a
function v in L1(Ω) such that∫

Ω

u
∂ϕ

∂xi
= −

∫
Ω

v ϕ, ∀ϕ ∈ C1
0(Ω).

In this case we define the weak derivative ∂u
∂xi

as the function v. If u

has weak derivatives in every direction, we define its (weak, or distri-
butional) gradient as the vector

∇u =

(
∂u

∂x1

, . . . ,
∂u

∂xN

)
.

If p ≥ 1, we define the Sobolev space W 1,p(Ω) as

W 1,p(Ω) =
{
u ∈ Lp(Ω) : ∇u ∈ (Lp(Ω))N

}
.

The Sobolev space W 1,p(Ω) becomes a Banach space under the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖(Lp(Ω))N ,

and W 1,2(Ω) is a Hilbert space under the scalar product

(u|v)W 1,2(Ω) =

∫
Ω

u v +

∫
Ω

∇u · ∇v.

For historical reasons the space W 1,2(Ω) is usually denoted by H1(Ω):
we will use this notation from now on.

Since we will be dealing with elliptic problems with zero boundary
conditions, we need to define functions which somehow are “zero” on
the boundary of Ω. Since ∂Ω has zero Lebesgue measure, and functions
in W 1,p(Ω) are only defined up to almost everywhere equivalence, there
is no “direct” way of defining the boundary value a function u in some
Sobolev space. We then give the following definition.

Definition 1.12. We define W 1,p
0 (Ω) as the closure of C1

0(Ω) in the
norm of W 1,p(Ω). If p = 2, we will denote W 1,2

0 (Ω) by H1
0 (Ω), which is

a Hilbert space.

From now on we will mainly deal with W 1,p
0 (Ω).
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1.3.2. Properties of Sobolev spaces. Since a function in W 1,p
0 (Ω) is

“zero at the boundary” it is possible to control the norm of u in Lp(Ω)
with the norm of its gradient in the same space. This is known as
Poincaré inequality.

Theorem 1.13 (Poincaré inequality). Let p ≥ 1; then there exists a
constant C, only depending on Ω, N and p, such that

(1.3) ‖u‖Lp(Ω) ≤ C ‖∇u‖(Lp(Ω))N , ∀u ∈ W 1,p
0 (Ω).

Proof. We only give an idea of the proof in dimension 1. Let u belong
to C1

0((0, 1)). Then

u(x) = u(0) +

∫ x

0

u′(t) dt =

∫ x

0

u′(t) dt, ∀x ∈ (0, 1).

Thus, by Hölder inequality

|u(x)|p =

∣∣∣∣∫ x

0

u′(t) dt

∣∣∣∣p ≤ x
p
p′

∫ x

0

|u′(t)|p ≤
∫ 1

0

|u′(t)|p.

Integrating this inequality yields the result for C1
0((0, 1)) functions. The

result for functions in W 1,p
0 (Ω) then follows by a density argument. �

As a consequence of Poincaré inequality, we can define on W 1,p
0 (Ω)

the equivalent norm built after the norm of ∇u in (Lp(Ω))N . From now
on, we define

‖u‖W 1,p
0 (Ω) = ‖∇u‖(Lp(Ω))N .

Even though functions in W 1,p
0 (Ω) should only belong to Lp(Ω), the

assumptions made on the gradient allow to improve the summability
of functions belonging to Sobolev spaces. This is what is stated in the
following “embedding” theorem.

Theorem 1.14. Let 1 ≤ p < N , and let p∗ = Np
N−p (p∗ is called

the Sobolev embedding exponent). Then there exists a constant Sp
(depending only on N and p) such that

(1.4) ‖u‖Lp∗ (Ω) ≤ Sp ‖u‖W 1,p
0 (Ω) , ∀u ∈ W 1,p

0 (Ω).

Remark 1.15. The fact that p∗ is the correct exponent can be easily
recovered by a scaling argument. Indeed, if u belongs to W 1,p

0 (RN),
then u(λx) belongs to the same space. But then∫

RN
|u(λx)|q dx =

1

λN

∫
RN
|u(y)|q dy,

and ∫
RN
|∇u(λx)|p dx =

1

λN−p

∫
RN
|∇u(y)|p dy.
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Therefore, if (1.4) holds for some constant C (independent on λ) and
some exponent q, one should have

N

q
=
N − p
p

,

which implies q = Np
N−p = p∗.

By (1.4), the embedding of W 1,p
0 (Ω) in Lp

∗
(Ω) is continuous. We

recall that a map T : X → Y (with X and Y Banach spaces) is said to
be compact if the closure of T (B) is compact in Y for every bounded
set B in X. To obtain compactness of the embedding of W 1,p

0 (Ω) in
Lebesgue spaces, we cannot consider exponents up to p∗.

Theorem 1.16. Let 1 ≤ p < N , and let 1 ≤ q < p∗. Then the
embedding of W 1,p

0 (Ω) into Lq(Ω) is compact.

Remark 1.17. The fact that the embedding of W 1,p
0 (Ω) into Lp

∗
(Ω) is

not compact is at the basis for several nonexistence results for equations
like −∆u = uq if q is “too large”. But this is another story. . .

An important role will be played by the dual of a Sobolev space. We
have the following representation theorem.

Theorem 1.18. Let p > 1, and let T be an element of (W 1,p
0 (Ω))

′
.

Then there exists F in (Lp
′
(Ω))N such that

〈T, u〉 =

∫
Ω

F · ∇u, ∀u ∈ W 1,p
0 (Ω).

The dual of W 1,p
0 (Ω) will be denoted by W−1,p′(Ω), while the dual of

H1
0 (Ω) is H−1(Ω).

Remark 1.19. The space H1
0 (Ω) is a Hilbert space. Therefore, by

Theorem 1.5, it is isometrically equivalent to its dual H−1(Ω). Further-
more, by Poincaré inequality, H1

0 (Ω) is embedded into L2(Ω), which is
itself a Hilbert space. Since the embedding is continuous and dense,
we also have that the the dual of L2(Ω) (which is L2(Ω)) is embedded
into H−1(Ω). We therefore have

H1
0 (Ω) ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ (H1

0 (Ω))′ = H−1(Ω).

If we identify both L2(Ω) and its dual, and H1
0 (Ω) and its dual, we

obtain a contradiction (since H1
0 (Ω) and L2(Ω) are different spaces).

Therefore, we have to choose which identification to make: which will
be that L2(Ω) is equivalent to its dual.
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Remark 1.20. Since, by Sobolev embedding, W 1,p
0 (Ω) is continuously

embedded in Lp
∗
(Ω), we have by duality that (Lp

∗
(Ω))′ is continuously

embedded in W−1,p′(Ω). If we define

p∗ = (p∗)′ =
Np

Np−N + p
,

we then have

Lp∗(Ω) ⊂ W−1,p′(Ω).

If p = 2, we have 2∗ = 2N
N+2

, and the embedding of L2∗(Ω) into H−1(Ω).

The final result on Sobolev spaces will be about composition with
regular functions.

Theorem 1.21 (Stampacchia). Let G : R→ R be a lipschitz continu-
ous functions such that G(0) = 0. If u belongs to W 1,p

0 (Ω), then G(u)
belongs to W 1,p

0 (Ω) as well, and

(1.5) ∇G(u) = G′(u)∇u, almost everywhere in Ω.

Remark 1.22. Recall that a lipschitz continuous function is only al-
most everywhere differentiable, so that the right-hand side of (1.5) may
not be defined. We have however two possible cases: if k is a value such
that G′(k) does not exist, either the set {u = k} has zero measure (and
so, since identity (1.5) only holds almost everywhere, this value does
not give any problems), or the set {u = k} has positive measure. In
this latter case, however, we have both ∇u = 0 and ∇G(u) = 0 almost
everywhere, so that (1.5) still holds.

Let k > 0; in what follows, we will often use composition of functions
in Sobolev spaces with the lipschitz continuous functions

(1.6) Tk(s) = max(−k,min(s, k)),

k

k

−k

−k

and

(1.7) Gk(s) = s− Tk(s) = (|s| − k)+sgn(s).
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k

−k

By Theorem 1.21, we have

∇Tk(u) = ∇uχ{|u|≤k}, ∇Gk(u) = ∇uχ{|u|≥k},

almost everywhere in Ω.

1.4. Weak solutions for elliptic equations. We have now all the
tools needed to deal with elliptic equations.

1.4.1. Definition of weak solution. LetA : Ω→ RN2
be a matrix-valued

measurable function such that there exist 0 < α ≤ β such that

(1.8) A(x)ξ · ξ ≥ α|ξ|2, |A(x)| ≤ β,

for almost every x in Ω, and for every ξ in RN . We will consider the fol-
lowing uniformly elliptic equation with Dirichlet boundary conditions

(1.9)

{
−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,

where f is a function defined on Ω which satisfies suitable assumptions.
If the matrix A is the identity matrix, problem (1.9) becomes{

−∆u = f in Ω,

u = 0 on ∂Ω,

i.e., the Dirichlet problem for the laplacian operator.

1.4.2. Classical solutions and weak solutions. Suppose that the matrix
A and the functions u and f are sufficiently smooth so that one can
“classically” compute −div(A(x)∇u). If ϕ is a function in C1

0(Ω), we
can then multiply the equation in (1.9) by ϕ and integrate on Ω. Since

−div(A(x)∇u)ϕ = −div(A(x)∇uϕ) + A(x)∇u · ∇ϕ,

we get ∫
Ω

A(x)∇u · ∇ϕ−
∫

Ω

div(A(x)∇uϕ) =

∫
Ω

f ϕ.

By Gauss-Green formula, we have (if ν is the exterior normal to Ω)∫
Ω

div(A(x)∇uϕ) =

∫
∂Ω

A(x)∇u · ν ϕ = 0,
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since ϕ has compact support in Ω. Therefore, if u is a classical solution
of (1.9), we have∫

Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ C1
0(Ω).

We now remark that there is no need for A, u, ϕ and f to be smooth
in order for the above identity to be well defined. It is indeed enough
that A is a bounded matrix, that u and ϕ belong to H1

0 (Ω), and that
f is in L2(Ω) (or in L2∗(Ω), thanks to Sobolev embedding, see Remark
1.20).

We therefore give the following definition.

Definition 1.23. Let f be a function in L2∗(Ω). A function u in H1
0 (Ω)

is a weak solution of (1.9) if

(1.10)

∫
Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ H1
0 (Ω).

If u is a weak solution of (1.9), and u is sufficiently smooth in order
to perform the same calculations as above “going backwards”, then it
can be proved that u is a “classical” solution of (1.9). The study of the
assumptions on f and A such that a weak solution is also a classical
solution goes beyond the purpose of this text.

1.4.3. Existence of solutions (using Lax-Milgram).

Theorem 1.24. Let f be a function in L2∗(Ω). Then there exists a
unique solution u of (1.9) in the sense of (1.10).

Proof. We will use Lax-Milgram theorem. Indeed, if we define the
bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R by

a(u, v) =

∫
Ω

A(x)∇u · ∇v,

and the linear and continuos (thanks to Sobolev embedding) functional
T : H1

0 (Ω)→ R by

〈T, v〉 =

∫
Ω

f v,

solving problem (1.9) in the sense of (1.10) amounts to finding u in
H1

0 (Ω) such that

a(u, v) = 〈T, v〉, ∀v ∈ H1
0 (Ω),

which is exactly the result given by Lax-Milgram theorem. In order to
apply the theorem, we have to check that a is continuous and coercive
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(the fact that it is bilinear being evident). We have, by (1.8), and by
Hölder inequality,

|a(u, v)| ≤
∫

Ω

|A(x)||∇u||∇v| ≤ β ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω) ,

so that a is continuous. Furthermore, again by (1.8), we have

a(u, u) =

∫
Ω

A(x)∇u · ∇u ≥ α

∫
Ω

|∇u|2 = α ‖u‖2
H1

0 (Ω) ,

so that a is also coercive. �

1.4.4. Existence of solutions (using minimization). If the matrix A sat-
isfies (1.8) and is symmetrical, existence and uniqueness of solutions
for (1.9) can be proved using minimization of a suitable functional.

Theorem 1.25. Let f be a function in L2∗(Ω), and let J : H1
0 (Ω)→ R

be defined by

J(v) =
1

2

∫
Ω

A(x)∇v · ∇v −
∫

Ω

f v, ∀v ∈ H1
0 (Ω).

Then J has a unique minimum u in H1
0 (Ω), which is the solution of

(1.9) in the sense of (1.10).

Proof. We begin by proving that J is coercive and weakly lower semi-
continuous on H1

0 (Ω), so that a minimum will exist by Theorem 1.4.
Recalling (1.8) and using Hölder and Sobolev inequalities, we have

J(v)≥ α
2

∫
Ω

|∇v|2 − ‖f‖L2∗ (Ω) ‖v‖L2∗ (Ω)

≥ α
2
‖v‖2

H1
0 (Ω) − S2 ‖f‖L2∗ (Ω) ‖v‖H1

0 (Ω) ,

and the right hand side diverges as the norm of u in H1
0 (Ω) diverges,

so that J is coercive. Let now {vn} be a sequence of functions which
is weakly convergent to some v in H1

0 (Ω). Since f belongs to L2∗(Ω),
and vn converges weakly to v in L2∗(Ω), we have

lim
n→+∞

∫
Ω

f vn =

∫
Ω

f v,

so that the weak lower semicontinuity of J is equivalent to the weak
lower semicontinuity of

K(v) =

∫
Ω

A(x)∇v · ∇v.
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By (1.8) we have

K(v − vn) =

∫
Ω

A(x)∇(v − vn) · ∇(v − vn) ≥ 0,

which, together with the symmetry of A, implies

(1.11) 2

∫
Ω

A(x)∇v · ∇vn −
∫

Ω

A(x)∇v · ∇v ≤
∫

Ω

A(x)∇vn · ∇vn.

Since ∇vn converges weakly to ∇v in (L2(Ω))N , and since A(x)∇v is
fixed in the same space, we have

lim
n→+∞

∫
Ω

A(x)∇v · ∇vn =

∫
Ω

A(x)∇v · ∇v,

so that taking the inferior limit in both sides of (1.11) implies

K(v) =

∫
Ω

A(x)∇v · ∇v ≤ lim inf
n→+∞

∫
Ω

A(x)∇vn · ∇vn = lim inf
n→+∞

K(vn),

which means that K is weakly lower semicontinuous on H1
0 (Ω), as

desired.
Let now u be a minimum of J on H1

0 (Ω). We are going to prove that
it is unique. Indeed, if u and v are both minima of J , one has

J(u) ≤ J
(u+ v

2

)
, J(v) ≤ J

(u+ v

2

)
,

that is,

J(u) + J(v) ≤ 2J
(u+ v

2

)
,

which becomes (after cancelling equal terms and multiplying by 4)

2

∫
Ω

A(x)∇u · ∇u+ 2

∫
Ω

A(x)∇u · ∇u =

∫
Ω

A(x)∇(u+ v) · ∇(u+ v).

Using the fact that A is symmetric, expanding the right hand side, and
cancelling equal terms, we arrive at∫

Ω

A(x)∇u · ∇u− 2

∫
Ω

A(x)∇u · ∇v +

∫
Ω

A(x)∇v · ∇v ≤ 0,

which can be rewritten as∫
Ω

A(x)∇(u− v) · ∇(u− v) ≤ 0.

Using (1.8) we therefore have

α ‖u− v‖2
H1

0 (Ω) ≤ 0,

which implies u = v, as desired.
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We are now going to prove that the minimum u is a solution of
(1.9) in the sense of (1.10). Given v in H1

0 (Ω) and t in R, we have
J(u) ≤ J(u+ tv), that is

1

2

∫
Ω

A(x)∇u·∇u−
∫

Ω

fu ≤ 1

2

∫
Ω

A(x)∇(u+tv)·∇(u+tv)−
∫

Ω

f(u+tv).

Expanding the right hand side, cancelling equal terms, and using the
fact that A is symmetric, we obtain

t

∫
Ω

A(x)∇u · ∇v +
t2

2

∫
Ω

A(x)∇v · ∇v − t
∫

Ω

f v ≥ 0.

If t > 0, dividing by t and then letting t tend to zero implies∫
Ω

A(x)∇u · ∇v −
∫

Ω

f v ≥ 0,

while if t < 0, dividing by t and then letting t tend to zero implies the
reverse inequality. It then follows that∫

Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ H1
0 (Ω),

and so u solves (1.9) (in the sense of (1.10)). In order to prove that
such a solution is unique, we are going to prove that if u solves (1.9),
then u is a minimum of J . Indeed, choosing u − v as test function in
(1.10), we have∫

Ω

A(x)∇u · ∇u−
∫

Ω

A(x)∇u · ∇v =

∫
Ω

f(u− v).

This implies

J(u)+
1

2

∫
Ω

A(x)∇u ·∇u−
∫

Ω

A(x)∇u ·∇v = J(v)− 1

2

∫
Ω

A(x)∇v ·∇v,

which implies J(u) ≤ J(v) since

1

2

∫
Ω

A(x)∇u · ∇u−
∫

Ω

A(x)∇u · ∇v +
1

2

∫
Ω

A(x)∇v · ∇v

is nonnegative by (1.8) since it is equal to

1

2

∫
Ω

A(x)∇(u− v) · ∇(u− v).

�
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1.5. A nonlinear equation. Let now a : Ω×R→ R be a continuous
function such that

(1.12) α ≤ a(x, s) ≤ β , ∀x ∈ Ω , ∀s ∈ R ,
with 0 < α ≤ β in R. Given a function f in L2∗(Ω), we ask ourselves
whether there exists a weak solution of the equation

(1.13)

{
−div(a(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,

that is, a function u in H1
0 (Ω) such that∫

Ω

a(x, u)∇u · ∇v =

∫
Ω

f v , ∀v ∈ H1
0 (Ω) .

Remark that, since a(x, u) belongs to L∞(Ω) being a bounded, the
integral on the left hand side is well defined.

Of course, since the equation is nonlinear, Lax-Milgram theorem
cannot be applied, so that we will need to follow another approach.

The first idea is to perform a change of variable if a does not depend
on the variable x. Indeed, in this case, we define

A(s) =

∫ s

0

a(t) dt ,

and v = A(u). Then ∇v = A′(u)∇u = a(u)∇u, so that u solves
(1.13) if and only if v is a solution in H1

0 (Ω) of −∆v = f . Since this
latter equation has a unique solution v, and since A is invertible (being
strictly increasing as its derivative a(s) is positive), then u = A−1(v) is
the solution of (1.13).

Unfortunately, such a trick does not work if the function a depends
also on the variable x. In this case, even if we can define

v(x) =

∫ u(x)

0

a(x, t) dt ,

we have

∇v = a(x, u)∇u+

∫ u(x)

0

∇a(x, t) dt ,

so that an extra term appears (which requires a to be C1).
Luckily, Lax-Milgram theorem (or a change of variable) is not our

only tool. We can for example consider the following functional:

J(v) =
1

2

∫
Ω

a(x, v) |∇v|2 −
∫

Ω

f v , v ∈ H1
0 (Ω) .

Using the assumptions on a, it is easy to see that J is both coercive
and weakly lower semicontinuous in H1

0 (Ω) (see the proof of Theorem
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1.25), so that there exists at least a minimum u of J on H1
0 (Ω) by

Weierstrass’ theorem.
Since u is a minimum, then J(u) ≤ J(u + tv) for every t in R, and

for every v in H1
0 (Ω). Starting from this inequality, we arrive to

0 ≤ 1

2

∫
Ω

[a(x, u+ tv)− a(x, u)]|∇u|2

+t

∫
Ω

a(x, u+ tv)∇u · ∇v +
t2

2

∫
Ω

a(x, u+ tv)|∇v|2 − t
∫

Ω

f v .

Dividing by t > 0, and letting t tend to zero, we will obtain (should
every passage be correct, which is not)

0 ≤ 1

2

∫
Ω

a′(x, u) |∇u|2 v +

∫
Ω

a(x, u)∇u · ∇v −
∫

Ω

f v ,

and the reverse inequality dividing by t < 0 and letting t tend to zero.
In other words, u in H1

0 (Ω) would be such that∫
Ω

a(x, u)∇u · ∇v +
1

2

∫
Ω

a′(x, u) |∇u|2 v =

∫
Ω

f v , ∀v ∈ H1
0 (Ω) .

This identity, however, has at least two problems: first of all, the func-
tion a is only continuous, so that a′(x, s) may not exist. This, however,
can be solved: just suppose that a has a continuous derivative (remark
that this assumption is not needed to prove that J has a minimum).
Furthermore, even if a has a continuous derivative, the term∫

Ω

a′(x, u) |∇u|2 v

is not necessarily well defined for every v in H1
0 (Ω); indeed, the term

|∇u|2 only belongs to L1(Ω), while H1
0 (Ω) functions are not necessarily

bounded (this only happens if the space dimension is one). There-
fore, we have to restrict the class of test functions we consider in
the inequality J(u) ≤ J(u + tv): we have to consider functions v in
H1

0 (Ω) ∩ L∞(Ω); once again, this is not enough: we also need that
a′(x, s) is bounded (note that the assumption “a bounded” does not
imply “a′ bounded”. . .).

Thus, under all of these assumptions, any minimum u of J is such
that ∫

Ω

a(x, u)∇u · ∇v +
1

2

∫
Ω

a′(x, u) |∇u|2 v =

∫
Ω

f v ,
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for every v in H1
0 (Ω) ∩ L∞(Ω), so that it is a weak solution of the

equation {
−div(a(x, u)∇u) + 1

2
a′(x, u) |∇u|2 = f in Ω,

u = 0 su ∂Ω.

But this is not equation (1.13)! Our “functional” idea is wrong — since
the derivative of a product is not the product of derivatives. . .

It is now time for the right way of proving the existence of solutions
for (1.13). Let v in L2(Ω) be fixed. Then since a is bounded and strictly
positive, there exists a unique solution u in H1

0 (Ω) of

(1.14)

{
−div(a(x, v)∇u) = f in Ω,

u = 0 su ∂Ω.

Thus, the function S : L2(Ω)→ H1
0 (Ω) defined by S(v) = u is well de-

fined. Furthermore, since H1
0 (Ω) is embedded in L2(Ω), S is a function

from L2(Ω) into itself. Thus, a solution of (1.13) is a fixed point for S.
We are going to prove the existence of a fixed point using Schauder’s
theorem 1.11.

To apply Schauder’s theorem, we begin by observing that there exists
R > 0 such that ‖S(v)‖L2(Ω) ≤ R for every v in L2(Ω). Indeed, choosing

u = S(v) as test function in the weak formulation of (1.14), and using
the fact that a(x, s) ≥ α > 0, we have

(1.15) α

∫
Ω

|∇u|2 ≤
∫

Ω

a(x, v) |∇u|2 =

∫
Ω

f u ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) .

Recalling Poincaré inequality, we get

‖u‖2
L2(Ω) ≤ C ‖f‖L2(Ω) ‖u‖L2(Ω) ,

which implies the result choosing R = C ‖f‖L2(Ω). Thus, the ball BR

of L2(Ω) centered at the origin, and with radius R, is convex, closed
and bounded in L2(Ω), and S maps BR into itself. Let us prove that
S is continuous. Let {vn} be a sequence which strongly converges to v
in L2(Ω), and let un = S(vn) be the solutions of (1.14). Using (1.15)
we get, recalling that the norm of un in L2(Ω) is smaller than R,

α

∫
Ω

|∇un|2 ≤ R ‖f‖L2(Ω) ,

and so un is bounded in H1
0 (Ω). Thus, up to subsequences, vn converges

to v almost everywhere, and un tends to u weakly inH1
0 (Ω) and strongly
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in L2(Ω). Therefore, we can pass to the limit in the identities∫
Ω

a(x, vn)∇un · ∇z =

∫
Ω

f z , ∀z ∈ H1
0 (Ω) ,

to prove that u is a solution of (1.14) (with a(x, v)), so that u = S(v)
(by uniqueness). Since the limit u does not depend on the extracted
subsequences, then un = S(vn) converges to u = S(v) in L2(Ω), and so
S is continuous.

The compactness of S(BR) is easy to prove, since we have proved
that S(BR) is bounded in H1

0 (Ω): by Rellich-Kondrachov theorem, the
closure of S(BR) is compact in L2(Ω), as desired.

Therefore, by Schauder’s theorem, there exists at least a solution u
of (1.13).

2. Regularity results

Warning to the reader:
from now, unless explicitly stated, N ≥ 3.

Thanks to the results of the previous section, we have existence of
solutions for linear elliptic equations with data f in L2∗(Ω). The solu-
tion u belongs to H1

0 (Ω) and (thanks to Sobolev embedding) to L2∗(Ω).
One then wonders whether an increase on the regularity of f will yield
more regular solutions.

2.1. Examples. We are going to study a model case, in which the
solution of (1.9) can be explictly calculated. This example will give us
a hint on what happens in the general case.

Example 2.1. Let Ω = B 1
2
(0), let N ≥ 3, let α < N , and define

f(x) =
1

|x|α (− log(|x|))
.

It is well known that f belongs to Lp(Ω), with p = N
α

. We are going to
study the regularity of the solution u of{

−∆u = f in Ω,

u = 0 on ∂Ω,

taking advantage of the fact that the solution will be radially symmet-
ric. Recalling the formula for the laplacian in radial coordinates, we
have

− 1

ρN−1
(ρN−1u′(ρ))′ =

1

ρα (− log(ρ))
.
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Multiplying by ρN−1 and integrating between 0 and ρ, we obtain

ρN−1 u′(ρ) =

∫ ρ

0

tN−1−α

log(t)
dt.

Dividing by ρN−1 and integrating between 1
2

and ρ we then get (recall-

ing that u(1
2
) = 0)

u(ρ) = −
∫ 1

2

ρ

1

sN−1

(∫ s

0

tN−1−α

log(t)
dt

)
ds.

We are integrating on the set E = {(s, t) ∈ R2 : ρ ≤ s ≤ 1
2
, 0 ≤ t ≤ s},

s

t

ρ 1/2

ρ

1/2

E

which, after exchanging t with s, becomes E = {(t, s) ∈ R2 : 0 ≤ t ≤
1
2
, max(ρ, t) ≤ s ≤ 1

2
},

t

s

ρ

1/2

ρ 1/2

E

Exchanging the integration order, we then have

u(ρ) =−
∫ 1

2

0

tN−1−α

log(t)

(∫ 1
2

max(ρ,t)

ds

sN−1

)
dt

=
1

N − 2

∫ 1
2

0

tN−1−α

log(t)

[(
1

2

)2−N

− (max(ρ, t))2−N

]
dt

=
2N−2

N − 2

∫ 1
2

0

tN−1−α

log(t)
dt− 1

N − 2

∫ 1
2

0

tN−1−α(max(ρ, t))2−N

log(t)
dt.
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Since α < N , the first integral is bounded, so that it is enough to study
the behaviour near zero of the function

v(ρ) =

∫ 1
2

0

tN−1−α(max(ρ, t))2−N

log(t)
dt

= ρ2−N
∫ ρ

0

tN−1−α

log(t)
dt+

∫ 1
2

ρ

t1−α

log(t)
dt

= ρ2−N w(ρ) + z(ρ).

It is easy to see (using the de l’Hopital rule), that if α 6= 2

w(ρ) ≈ ρN−α

log(ρ)
, and z(ρ) ≈ ρ2−α

log(ρ)
,

as ρ tends to zero, so that, if α 6= 2,

u(ρ) ≈ ρ2−α

log(ρ)
,

as ρ tends to zero. This implies that u belongs to L∞(Ω) if α < 2,
while it is in Lm(Ω), with m = N

α−2
, if 2 < α < N . Recalling that

f belongs to Lp(Ω) with p = N
α

, we therefore have that u belongs to

L∞(Ω) if f belongs to Lp(Ω), and p > N
2

, while it is in Lm(Ω), with

m = Np
N−2p

, if f belongs to Lp(Ω), with 1 < p < N
2

.

If α = 2, then

w(ρ) ≈ ρN−α

log(ρ)
, and z(ρ) ≈ log(− log(ρ)),

so that u is in every Lm(Ω), but not in L∞(Ω), if f belongs to Lp(Ω)
with p = N

2
. In this case (which we will not study in the following), it

can be proved that e|u| belongs to L1(Ω).
Observe that if α = N+2

2
, so that f belongs to L2∗(Ω), we get that

u belongs to L2∗(Ω), which is exactly the results we already knew by
Sobolev embedding. Also remark that the above example gives infor-
mations also if f does not belong to L2∗(Ω) (i.e., if N+2

2
< α < N), an

assumption under which we do not have any existence results (yet!).
If we want to take α = N , we need to change the definition of f . We

fix β > 1 and define

f(x) =
1

|x|N (− log(|x|))β
,
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which is a function belonging to L1(Ω). Performing the same calcula-
tions as above, we obtain

u(ρ) =
1

β − 1

∫ 1
2

ρ

dt

tN−1 (− log(t))β−1
,

so that

u(ρ) ≈ 1

ρN−2 (− log(ρ))β−1
,

as ρ tends to zero. Observe that in this case f belongs to L1(Ω) for
every β > 1, but u belongs to Lm(Ω), with m = N ·1

N−2·1 = N
N−2

if and

only if β > 2− 2
N

. If 1 < β ≤ 2− 2
N

, the solution u belongs “only” to

Lm(Ω), for every m < N
N−2

.
We leave to the interested reader the study of the case N = 2.

2.2. Stampacchia’s theorems. The regularity results we are going
to prove now show that the previous example is not just an example.
We begin with a real analysis lemma.

Lemma 2.2 (Stampacchia). Let ψ : R+ → R+ be a nonincreasing
function such that

(2.16) ψ(h) ≤ M ψ(k)δ

(h− k)γ
, ∀h > k > 0,

where M > 0, δ > 1 and γ > 0. Then ψ(d) = 0, where

dγ = M ψ(0)δ−1 2
δγ
δ−1 .

Proof. Let n in N and define dn = d(1− 2−n). We claim that

(2.17) ψ(dn) ≤ ψ(0) 2−
nγ
δ−1 .

Indeed, (2.17) is clearly true if n = 0; if we suppose that it is true for
some n, then, by (2.16),

ψ(dn+1) ≤ M ψ(dn)δ

(dn+1 − dn)γ
≤M ψ(0)δ 2−

nγδ
δ−1 2(n+1)γ d−γ = ψ(0) 2−

(n+1)γ
δ−1 ,

which is (2.17) written for n + 1. Since (2.17) holds for every n, and
since ψ is non increasing, we have

0 ≤ ψ(d) ≤ lim inf
n→+∞

ψ(dn) ≤ lim
n→+∞

ψ(0)δ−1 2−
nγ
δ−1 = 0,

as desired. �
The first result (due to Guido Stampacchia, see [6]), deals with

bounded solutions for (1.9).
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Theorem 2.3 (Stampacchia). Let f belong to Lp(Ω), with p > N
2

.
Then the solution u of (1.9) belongs to L∞(Ω), and there exists a
constant C, only depending on N , Ω, p and α, such that

(2.18) ‖u‖L∞(Ω) ≤ C ‖f‖Lp(Ω) .

Proof. Let k > 0 and choose v = Gk(u) as test function in (1.9) (Gk(s)
has been defined in (1.7)). Defining Ak = {x ∈ Ω : |u(x)| ≥ k} one
then has, since ∇v = ∇uχAk by Theorem 1.21, and using (1.8)

α

∫
Ak

|∇Gk(u)|2 ≤
∫

Ω

A(x)∇u · ∇uχAk =

∫
Ω

f Gk(u) =

∫
Ak

f Gk(u).

Using Sobolev inequality (in the left hand side), and Hölder inequality
(in the right hand side), one has

α

S2
2

(∫
Ak

|Gk(u)|2∗
) 2

2∗

≤
(∫

Ak

|f |2∗
) 1

2∗
(∫

Ak

|Gk(u)|2∗
) 1

2∗

.

Simplifying equal terms, we thus have∫
Ak

|Gk(u)|2∗ ≤
(
S2

2

α

)2∗ (∫
Ak

|f |2∗
) 2∗

2∗
.

Recalling that f belongs to Lp(Ω), and that p > 2∗ since p > N
2

, we
have (again by Hölder inequality)∫

Ak

|Gk(u)|2∗ ≤
(S2

2 ‖f‖Lp(Ω)

α

)2∗

m(Ak)
2∗
2∗
− 2∗

p .

We now take h > k, so that Ah ⊆ Ak, and Gk(u) ≥ h−k on Ah. Thus,

(h− k)2∗m(Ah) ≤
(S2

2 ‖f‖Lp(Ω)

α

)2∗

m(Ak)
2∗
2∗
− 2∗

p ,

which implies

m(Ah) ≤
(S2

2 ‖f‖Lp(Ω)

α

)2∗
m(Ak)

2∗
2∗
− 2∗

p

(h− k)2∗
.

We define now ψ(k) = m(Ak), so that

ψ(h) ≤ M ψ(k)δ

(h− k)γ
,

where

M =

(S2
2 ‖f‖Lp(Ω)

α

)2∗

, δ =
2∗

2∗
− 2∗

p
, γ = 2∗.
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The assumption p > N
2

implies δ > 1, so that applying Lemma 2.2, we
have that ψ(d) = 0, where

d2∗ = C(Ω, N, p)M.

Since m(Ad) = 0, we have |u| ≤ d almost everywhere, which implies

‖u‖L∞(Ω) ≤ d = C(N,Ω, p, α) ‖f‖Lp(Ω) ,

as desired. �

Remark 2.4. Observe that, in order to prove the previous theorem,
we did not use two of the properties of the equation: that the matrix
A is bounded from above (we only used its ellipticity) and, above all,
the fact that the equation was linear: in other words, the proof above
also holds for every uniformly elliptic operator (for example, for the
equation studied in §5 of the previous section).

The second results deals with the case of unbounded solutions.

Theorem 2.5 (Stampacchia). Let f belong to Lp(Ω), with 2∗ ≤ p <
N
2

. Then the solution u of (1.9) belongs to Lm(Ω), with m = p∗∗ =
Np
N−2p

, and there exists a constant C, only depending on N , Ω, p and

α, such that

(2.19) ‖u‖Lp∗∗ (Ω) ≤ C ‖f‖Lp(Ω) .

Proof. We begin by observing that if p = 2∗, then p∗∗ = 2∗, so that the
result is true in this limit case by the Sobolev embedding. Therefore,
we only have to deal with the case p > 2∗.

The original proof of Stampacchia used a linear interpolation the-
orem; i.e., it is typical of a linear framework. We are going to give
another proof, following [1], which makes use of a technique that can
be applied also in a nonlinear context.

Let k > 0 be fixed, let γ > 1 and choose v = |Tk(u)|2γ−2 Tk(u) as
test function in (1.9) (Tk(s) has been defined in (1.6)). We obtain, by
Theorem 1.21,

(2γ − 1)

∫
Ω

A(x)∇u · ∇Tk(u) |Tk(u)|2γ−2 =

∫
Ω

f |Tk(u)|2γ−2 Tk(u).

Using (1.8), and observing that ∇u = ∇Tk(u) where ∇Tk(u) 6= 0, we
then have

α (2γ − 1)

∫
Ω

|∇Tk(u)|2 |Tk(u)|2γ−2 ≤
∫

Ω

|f | |Tk(u)|2γ−1.
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Since, again by Theorem 1.21, |∇Tk(u)|2 |Tk(u)|2γ−2 = 1
γ2
|∇|Tk(u)|γ|2,

we have

α (2γ − 1)

γ2

∫
Ω

|∇|Tk(u)|γ|2 ≤
∫

Ω

|f | |Tk(u)|2γ−1.

Using Sobolev inequality (in the left hand side), and Hölder inequality
(in the right hand one), we obtain

α (2γ − 1)

S2
2γ

2

(∫
Ω

|Tk(u)|γ2∗
) 2

2∗

≤ ‖f‖Lp(Ω)

(∫
Ω

|Tk(u)|(2γ−1)p′
) 1

p′

.

We now choose γ so that γ2∗ = (2γ − 1)p′, that is γ = p∗∗

2∗
(as it is

easily seen). With this choice, γ > 1 if and only if p > 2∗ (which is
true). Since p < N

2
, we also have 2

2∗
> 1

p′
, and so

(∫
Ω

|Tk(u)|p∗∗
) 2

2∗−
1
p′

≤ C(N,Ω, p, α) ‖f‖Lp(Ω) .

Observing that 2
2∗
− 1

p′
= 1

p∗∗
, we have therefore proved that

‖Tk(u)‖Lp∗∗ (Ω) ≤ C(N,Ω, p, α) ‖f‖Lp(Ω) , ∀k > 0.

Letting k tend to infinity, and using Fatou lemma (or the monotone
convergence theorem), we obtain the result. �

Remark 2.6. The results of theorems 2.3 and 2.5 are somehow “natu-
ral” if we make a mistake. . . Indeed, let u be the solution of −∆u = f ,
with f in Lp(Ω). Then, if we read the equation, we have that u has
two derivatives in Lp(Ω), so that it belongs to W 2,p

0 (Ω). By Sobolev

embedding, u then belongs to W 1,p∗

0 (Ω) and, again by Sobolev embed-
ding, to Lp

∗∗
(Ω) (or to L∞(Ω) if p > N

2
). The “mistake” here is to

deduce from the fact that the sum of (some) derivatives of u belongs
to Lp(Ω), the fact that all derivatives are in the same space. Sur-
prisingly, it turns out that, in the case of the laplacian, the fact that
−∆u belongs to Lp(Ω) actually implies that u is in W 2,p

0 (Ω) (this is the
so-called Calderun-Zygmund theory), so that the “mistake” is not an
actual one. . .

Summarizing the results of this section, we have the following pic-
ture.
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p1 2N
N+2

N
2

H1
0 (Ω)

L∞(Ω)

Theorem 2.3

H1
0 (Ω)

Lp
∗∗

(Ω)

Theorem 2.5

?

We will deal with the “?” part in the forthcoming section (actually,
in all the forthcoming sections).

3. Existence via duality for measure data

We are now going to deal with existence results for data which do not
belong to L2∗(Ω) (i.e., they are not in H−1(Ω)), so that neither Lax-
Milgram theorem nor minimization techniques can be applied. Before
going on, we need some definitions.

3.1. Measures. We recall that a nonnegative measure on Ω is a set
function µ : B(Ω) → [0,+∞] defined on the σ-algebra B(Ω) of Borel
sets of Ω (i.e., the smallest σ-algebra containing the open sets) such
that µ(∅) = 0 and such that

µ
(+∞⋃
n=1

En
)

=
+∞∑
n=1

µ(En),

for every sequence {En} of disjoint sets in B(Ω). This latter property
is called σ-additivity. A σ-additive measure µ is also σ-subadditive,
i.e., one has

µ
(+∞⋃
n=1

En
)
≤

+∞∑
n=1

µ(En),

for every sequence {En} of sets in B(Ω). A nonnegative measure µ is
also monotone, i.e., one has that

A ⊆ B implies µ(A) ≤ µ(B).

A measure µ is said to be regular if for every E in B(Ω) and for every
ε > 0 there exist an open set Aε, and a closed set Cε, such that

Cε ⊆ E ⊆ Aε, µ(Aε \ Cε) < ε.

A measure µ is said to be bounded if µ(Ω) < +∞. The set of nonneg-
ative, regular, bounded measures on Ω will be denoted byM+(Ω). We
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define the set of bounded Radon measures on Ω as

M(Ω) = {µ1 − µ2, µi ∈M+(Ω)}.
Given a measure µ in M(Ω), there exists a unique pair (µ+, µ−) in
M+(Ω)×M+(Ω) such that

µ = µ+ − µ−,
and such there exist E+ and E− in B(Ω), disjoint sets, such that

µ±(E) = µ(E ∩ E±), ∀E ∈ B(Ω).

The measures µ+ and µ− are the positive and negative parts of the
measure µ. Given a measure µ in M(Ω), the measure |µ| = µ+ + µ−

is said to be the total variation of the measure µ. If we define

‖µ‖M(Ω) = |µ|(Ω),

the vector space M(Ω) becomes a Banach space, which turns out to
be the dual of C0(Ω).

A bounded Radon measure µ is said to be concentrated on a Borel
set E if µ(B) = µ(B ∩ E) for every Borel set B. In this case, we will
write µ E. For example, we have µ± = µ E±, with E± as above.

Given two Radon measures µ and ν, we say that µ is absolutely
continuous with respect to ν if ν(E) = 0 implies µ(E) = 0. In this case
we will write µ << ν. Two Radon measures µ and ν are said to be
orthogonal if there exists a set E such that µ(E) = 0, and ν = ν E.
In this case, we will write µ ⊥ ν. For example, given a Radon measure
µ, we have µ+ ⊥ µ−.

Theorem 3.1. Let ν be a nonnegative Radon measure. Given a Radon
measure µ, there exists a unique pair (µ0, µ1) of Radon measures such
that

µ = µ0 + µ1, µ0 << ν, µ1 ⊥ ν.

Proof. Suppose that µ is nonnegative, and define

A = {µ(E) : E ∈ B(Ω), ν(E) = 0}.
Let α = supA, and let En be a maximizing sequence, i.e., a sequence
of Borel sets such that

lim
n→+∞

µ(En) = α, ν(En) = 0.

If we define E as the union of the En, clearly ν(E) = 0 (since ν is σ-
subadditive), and µ(E) = α (since µ(E) ≥ µ(En) for every n). Define
now

µ1 = µ E, µ0 = µ− µ1.
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Clearly, µ1 ⊥ ν (since ν(E) = 0, and since µ1 is concentrated on E
by definition). On the other hand, if ν(B) = 0, then µ0(B) = 0; and
indeed, if it were µ0(B) > 0 for some B 6= E, then

0 < µ0(B) = µ(B)− µ(B ∩ E) = µ(B \ E),

so that B ∪ E will be such that ν(B ∪ E) = 0, and

µ(B ∪ E) = µ(E) + µ(B \ E) = α + µ(B \ E) > α,

thus contradicting the definition of α.
As for uniqueness, if µ = µ0 + µ1 = µ′0 + µ′1, then µ0− µ′0 = µ′1− µ1.

If ν(B) = 0, we will have (µ1 − µ′1)(B) = 0. Since µ1 − µ′1 is also
orthogonal with respect to ν, this implies that (µ1 − µ′1)(E) = 0 for
every Borel set E, so that µ1 = µ′1, hence µ0 = µ′0.

If the measure µ has a sign, it is enough to apply the result to µ+

and µ−. �
Examples of bounded Radon measures are the Lebesgue measure LN

concentrated on a bounded set of RN , or the measure defined by

δx0(E) =

{
1 if x0 ∈ E,

0 if x0 6∈ E,

which is called the Dirac’s delta concentrated at x0. We clearly have
δx0 ⊥ LN . Another example of Radon measure is the measure defined
by

µ(E) =

∫
E

f(x) dx,

with f a function in L1(Ω). In this case µ << LN , and

µ±(E) =

∫
E

f±(x) dx, |µ|(E) =

∫
E

|f(x)| dx.

Therefore, L1(Ω) ⊂ M(Ω). For sequences of measures, we have two
notions of convergence: the weak∗:∫

Ω

ϕdµn →
∫

Ω

ϕdµ, ∀ϕ ∈ C0
0(Ω),

and the narrow convergence:∫
Ω

ϕdµn →
∫

Ω

ϕdµ, ∀ϕ ∈ C0
b(Ω).

For positive measures, narrow convergence is equivalent to weak∗ con-
vergence and convergence of the “masses” (i.e., µn(Ω) converges to
µ(Ω)). If xn is a sequence in Ω which converges to a point x0 on
∂Ω, then δxn converges to zero for the weak∗ convergence (since the
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measure δx0 is indeed the zero measure in Ω), but not for the narrow
convergence.

Measures can be approximated (in either convergence) by sequences
of bounded functions.

Before dealing with existence results for elliptic equations with mea-
sure data, we will begin with a particular case.

3.2. Duality solutions for L1 data. Let f and g be two functions
in L∞(Ω), and let u and v be the solutions of{
−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,

{
−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.

where A∗ is the transposed matrix of A (note that A∗ satisfies (1.8)
with the same constants as A). Since both u and v belong to H1

0 (Ω), u
can be chosen as test function in the formulation of weak solution for
v, and vice versa. One obtains∫

Ω

u g =

∫
Ω

A∗(x)∇v · ∇u =

∫
Ω

A(x)∇u · ∇v =

∫
Ω

f v.

In other words, one has ∫
Ω

u g =

∫
Ω

f v,

for every f and g in L∞(Ω), where u and v solve the corresponding
problems with data f and g respectively. Clearly, both u and v belong
to L∞(Ω) by Theorem 2.3, but we remark that the two integrals are
well-defined also if f only belongs to L1(Ω), and u only belongs to
L1(Ω) (always maintaining the assumption that g — and so v — is
a bounded function). This fact inspired to Guido Stampacchia the
following definition of solution for (1.9) if the datum is in L1(Ω).

Definition 3.2. Let f belong to L1(Ω). A function u in L1(Ω) is a
duality solution of (1.8) with datum f if one has∫

Ω

u g =

∫
Ω

f v,

for every g in L∞(Ω), where v is the solution of{
−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.

Theorem 3.3 (Stampacchia). Let f belong to L1(Ω). Then there
exists a unique duality solution of (1.8) with datum f . Furthermore, u
belongs to Lq(Ω), for every q < N

N−2
.
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Proof. Let p > N
2

and define the linear functional T : Lp(Ω)→ R by

〈T, g〉 =

∫
Ω

f v.

By Theorem 2.3, the functional is well-defined; furthermore, since
(2.18) holds, there exists C > 0 such that

|〈T, g〉| ≤
∫

Ω

|f | |v| ≤ ‖f‖L1(Ω) ‖v‖L∞(Ω) ≤ C ‖f‖L1(Ω) ‖g‖Lp(Ω) ,

so that T is continuous on Lp(Ω). By Riesz representation Theorem
for Lp spaces, there exists a unique function up in Lp

′
(Ω) such that

〈T, g〉 =

∫
Ω

up g, ∀g ∈ Lp(Ω).

Since L∞(Ω) ⊂ Lp(Ω), we have∫
Ω

up g = 〈T, g〉 =

∫
Ω

f v, ∀g ∈ L∞(Ω),

so that up is a duality solution of (1.9), as desired. We claim that up
does not depend on p; indeed, if for example p > q > N

2
, we have∫

Ω

up g =

∫
Ω

f v =

∫
Ω

uq g, ∀g ∈ L∞(Ω),

so that up = uq in L1(Ω) (and so they are almost everywhere the
same function). Therefore, there exists a unique function u which is a
duality solution of (1.9), and it belongs to Lp

′
(Ω) for every p > N

2
; i.e.,

u belongs to Lq(Ω) for every q < N
N−2

, as desired. �
Remark that the fact that u belongs to Lq(Ω) for every q < N

N−2
is

consistent with the results of the last part of Example 2.1 (the case
α = N).

3.3. Duality solutions for measure data. The case of L1(Ω) data
is only a particular one, since L1(Ω) is a subset ofM(Ω). However, re-
calling thatM(Ω) is the dual of C0(Ω), the proof of Theorem 3.3 could
be performed in exactly the same way if one knew that the solution of
(1.9) were not only bounded, but also continuous on Ω if the datum is
in Lp(Ω) with p > N

2
. This is exactly the case if the boundary of Ω is

sufficiently regular.

Theorem 3.4 (De Giorgi). Let Ω be of class C1, and let f be in
Lp(Ω), with p > N

2
. Then the solution u of (1.9) with datum f belongs

to C0(Ω), and there exists a constant Cp such that

‖u‖C0(Ω) ≤ Cp ‖f‖Lp(Ω) .
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Thanks to the previous result, we thus have the following existence
result.

Theorem 3.5. Let µ be a measure in M(Ω). Then there exists a
unique duality solution of (1.8) with datum µ, i.e., a function u in
L1(Ω) such that ∫

Ω

u g =

∫
Ω

v dµ, ∀g ∈ L∞(Ω),

where v is the solution of (1.9) with datum g and matrix A∗. Further-
more, u belongs to Lq(Ω), for every q < N

N−2
.

3.4. Regularity of duality solutions. If the datum f belongs to
Lp(Ω), with 1 < p < 2∗, then the duality solution of (1.9) is more
regular.

Theorem 3.6. Let f belong to Lp(Ω), 1 < p < 2∗. Then the duality
solution u of (1.8) belongs to Lp

∗∗
(Ω), p∗∗ = Np

N−2p
.

Proof. Let q = Np
Np−N+2p

, and define T : Lq(Ω) → R as in the proof of

Theorem 3.3. We then have

|〈T, g〉| ≤
∫

Ω

|f | |v| ≤ ‖f‖Lp(Ω) ‖v‖Lp′ (Ω) .

By Theorem 2.5, the norm of v in Lr(Ω) is controlled by a constant
times the norm of g in Ls(Ω), with r = s∗∗. Taking r = p′, this gives
s = q; hence,

|〈T, g〉| ≤ C ‖f‖Lp(Ω) ‖g‖Lq(Ω) ,

so that the function u which represents T belongs to Lq
′
(Ω); since we

have q′ = Np
N−2p

, the result is proved. �

Once again, the fact that u belongs to Lp
∗∗

(Ω) is consistent with the
results of Example 2.1 (the case N+2

2
< α < N).

The picture at the end of Section 2 can now be improved as follows.

p1 2N
N+2

N
2

H1
0 (Ω)

L∞(Ω)

Theorem 2.3

H1
0 (Ω)

Lp
∗∗

(Ω)

Theorem 2.5

?

Lp
∗∗

(Ω)

Theorem 3.6

?

L
N
N−2

−ε(Ω)

Theorem 3.3
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4. Existence via approximation for measure data

The result of Theorem 3.5 is somewhat unsatisfactory: even though
it proves that there exists a unique solution by duality of (1.9) if the
datum belongs to M(Ω), it only states that the solution belongs to
some Lebesgue space, and does not say anything about the gradient
of such a solution. In order to prove gradient estimates on the duality
solution we have to proceed in a different way.

Theorem 4.1. Let µ belong to M(Ω). Then the unique duality solu-
tion of (1.8) with datum f belongs to W 1,q

0 (Ω), for every q < N
N−1

.

Proof. Let fn be a sequence of L∞(Ω) functions which converges to µ
in M(Ω), with the property that ‖fn‖L1(Ω) ≤ ‖µ‖M(Ω), and let un be

the unique solution in H1
0 (Ω) of{

−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.

Let k > 0 and choose v = Tk(un) as test function of the weak for-
mulation for un. We obtain, recalling that ∇un = ∇Tk(un) where
∇Tk(un) 6= 0, and using (1.8),

α

∫
Ω

|∇Tk(un)|2 ≤
∫

Ω

A(x)∇un ·∇Tk(un) =

∫
Ω

fnTk(un) ≤ k ‖µ‖M(Ω) ,

where in the last passage we have used that |Tk(un)| ≤ k. Using Sobolev
embedding in the left hand side, we have

α

S2
2

(∫
Ω

|Tk(un)|2∗
) 2

2∗

≤ k ‖µ‖M(Ω) .

Observing that |Tk(un)| = k on the set An,k = {x ∈ Ω : |un(x)| ≥ k},
we have

α

S2
2

k2 (m(An,k))
2
2∗ ≤ k ‖µ‖M(Ω) ,

which implies

m(An,k) ≤ C
(‖µ‖M(Ω)

k

) N
N−2

,

with C depending only on N and α. Now we fix λ > 0, and we have

{|∇un| ≥ λ} = {|∇un| ≥ λ, |un| < k} ∪ {|∇un| ≥ λ, |un| ≥ k},

so that

{|∇un| ≥ λ} ⊂ {|∇un| ≥ λ, |un| < k} ∪ An,k.
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Since

m({|∇un| ≥ λ, |un| < k}) ≤ 1

λ2

∫
Ω

|∇Tk(un)|2 ≤
k ‖µ‖M(Ω)

λ2
,

we have

m({|∇un| ≥ λ}) ≤
k ‖µ‖M(Ω)

λ2
+ C

(‖µ‖M(Ω)

k

) N
N−2

,

for every k > 0. If we choose k = λ
N−2
N−1 ‖µ‖

1
N−1

M(Ω), the above inequality

becomes

m({|∇un| ≥ λ}) ≤ C
(‖µ‖M(Ω)

λ

) N
N−1

.

Let q < N
N−1

be fixed, and let t > 0. Then∫
Ω

|∇un|q =

∫
{|∇un|<t}

|∇un|q +

∫
{|∇un|≥t}

|∇un|q

≤ tqm(Ω) + (q − 1)

∫ +∞

t

λq−1m({|∇un| ≥ λ}) dλ

≤ tqm(Ω) + C(q − 1) ‖f‖
N
N−1

L1(Ω)

∫ +∞

t

λq−1− N
N−1 dλ

= tqm(Ω) +
C(q − 1)
N
N−1
− q
‖µ‖

N
N−1

M(Ω)

t
N
N−1

−q
.

Choosing t = ‖µ‖M(Ω), we obtain

(4.20)

∫
Ω

|∇un|q ≤ Cq ‖µ‖qM(Ω) ,

so that un is bounded in W 1,q
0 (Ω), with q < N

N−1
. Note that Cq diverges

as q tends to N
N−1

. Therefore, up to subsequences, un converges to some

function uq weakly in W 1,q
0 (Ω) and strongly in L1(Ω). Since un, being

a weak solution, is such that∫
Ω

un g =

∫
Ω

fn v, ∀g ∈ L∞(Ω), ∀n ∈ N,

we can pass to the limit as n tends to infinity to have∫
Ω

uq g =

∫
Ω

v dµ, ∀g ∈ L∞(Ω),

so that uq (which belongs to W 1,q
0 (Ω) for some q < N

N−1
) is the duality

solution of (1.9) with datum µ. This fact is true for every q < N
N−1

, so
that uq does not depend on q. It then follows that the duality solution

u of (1.9) belongs to W 1,q
0 (Ω) for every q < N

N−1
. �
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Remark 4.2. If µ = f is a function in L1(Ω), and fn converges to
f strongly in L1(Ω), we have that fn is a Cauchy sequence in L1(Ω).
Thus, if we repeat the proof of the previous theorem working with
un − um, using the linearity of the operator, and “keeping track” of
fn − fm, we find that (4.20) becomes∫

Ω

|∇un − um|q ≤ Cq ‖fn − fm‖qL1(Ω) ,

for every q < N
N−1

. Since {fn} is a Cauchy sequence in L1(Ω), it then

follows that un is a Cauchy sequence in W 1,q
0 (Ω), for every q < N

N−1
.

This implies that un strongly converges to the solution u in W 1,q
0 (Ω),

for every q < N
N−1

, so that (up to subsequences) ∇un converges to ∇u
almost everywhere in Ω.

Remark 4.3. If µ = f is a function in L1(Ω), and we repeat the proof
of the previous theorem working with un− vn, where vn is the solution
of (1.9) with a datum gn which converges to f in L1(Ω), we find as
before that

(4.21)

∫
Ω

|∇(un − vn)|q ≤ C ‖fn − gn‖qL1(Ω) ,

for every q < N
N−1

. Since {fn − gn} tends to zero in L1(Ω), it then

follows that un − vn tends to zero in W 1,q
0 (Ω), for every q < N

N−1
. In

other words, the solution u found by approximation does not depend
on the sequence we choose to approximate the datum f . We already
knew this fact (since every approximating sequence converges to the
duality solution which is unique), but this different proof may be useful
if, for example, the differential operator is not linear, but allows to
prove (4.21) in some way, so that the concept of duality solution is not
available.

If the datum f is “more regular”, one expects solutions with an
increased regularity. We already know, from Theorem 3.6, that the
summability of u increases with the summability of f , but what hap-
pens to the gradient? Recall that if the datum f is “regular” (i.e., if it
belongs to L2∗(Ω)), the summability of u increases with that of f , but
the gradient of u always belongs to (L2(Ω))N . Surprisingly, this is not
the case for “bad” solutions, as the following theorem shows.

Theorem 4.4. Let f be a function in Lm(Ω), 1 < m < 2∗. Then the

duality solution of (1.9) belongs to W 1,m∗

0 (Ω), m∗ = Nm
N−m .
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Proof. Let fn = Tn(f), and let un be the unique solution of{
−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.

Since we already know that un will converge to the duality solution of
(1.9), it is clear that in order to prove the result it will be enough to

prove an a priori estimate on un in W 1,m∗

0 (Ω). In order to do that, we
fix h > 0 and choose ϕh(un) = T1(Gh(un)) as test function in the weak
formulation for un. If we define Bh = {x ∈ Ω : h ≤ |un| ≤ h + 1},
and Ah = {x ∈ Ω : |un| ≥ h} (for the sake of simplicity, we omit the
dependence on n on the sets), we obtain, recalling (1.8),

α

∫
Bh

|∇un|2 ≤
∫

Ω

A(x)∇un · ∇ϕh(un) =

∫
Ω

fn ϕh(un) ≤
∫
Ak

|f |.

Let now 0 < λ < 1; we can then write∫
Ω

|∇un|2

(1 + |u|)λ
=

+∞∑
h=0

∫
Bh

|∇un|2

(1 + |un|)λ
≤

+∞∑
h=0

1

(1 + h)λ

∫
Bh

|∇un|2

≤
+∞∑
h=0

1

α(1 + h)λ

∫
Ah

|f | =
+∞∑
h=0

1

α(1 + h)λ

+∞∑
k=h

∫
Bk

|f |

=
+∞∑
k=0

∫
Bk

|f |
k∑

h=0

1

α(1 + h)λ

≤C
+∞∑
k=0

∫
Bk

|f | (1 + k)1−λ ≤ C

∫
Ω

|f |(1 + |un|)1−λ

≤C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)(1−λ)m′
) 1

m′

.

Let now q > 1 be fixed. Then, by Sobolev and Hölder inequality,

1

Sqq

(∫
Ω

|un|q
∗
) q

q∗

≤
∫

Ω

|∇un|q =

∫
Ω

|∇un|q

(1 + |un|)λ
q
2

(1 + |un|)λ
q
2

≤
(∫

Ω

|∇un|2

(1 + |u|)λ

) q
2
(∫

Ω

(1 + |un|)
λq
2−q

)1− q
2

≤C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)(1−λ)m′
) q

2m′

×
(∫

Ω

(1 + |un|)
λq
2−q

)1− q
2

.
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We now choose λ and q in such a way that

(1− λ)m′ = q∗ =
λq

2− q
.

This implies

λ =
N(2− q)
N − q

, q = m∗ =
Nm

N −m
.

It is easy to see that 1 < m < 2∗ implies 0 < λ < 1, as desired. We
thus have(∫

Ω

|un|q
∗
) q

q∗

≤ C

∫
Ω

|∇un|q ≤ C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)q
∗
)1− q

2m

.

Since q
q∗
> 1 − q

2m
is true (being equivalent to m < N

2
), we obtain

from the first and third term that un is bounded in Lq
∗
(Ω) (which

is again Lm
∗∗

(Ω), see Theorem 2.5) by a constant depending (among
other quantities) on the norm of f in Lm(Ω). Once un is bounded, the
boundedness of |∇un| in Lq(Ω) (with q = m∗) then follows comparing
the second and the third term. �

We can now draw the complete picture.

p1 2N
N+2

N
2

H1
0 (Ω)

L∞(Ω)

Theorem 2.3

H1
0 (Ω)

Lp
∗∗

(Ω)

Theorem 2.5

W 1,p∗

0 (Ω)

Lp
∗∗

(Ω)

Theorem 4.4

W
1, N
N−1

−ε
0 (Ω)

L
N
N−2

−ε(Ω)

Theorem 4.1

5. Nonuniqueness for distributional solutions

If the datum µ is a measure, we have proved in Theorem 4.1 that
the sequence un of approximating solutions is bounded in W 1,q

0 (Ω),
for every q < N

N−1
. Therefore, and up to subsequences, un weakly

converges to the solution u in W 1,q
0 (Ω), for every q < N

N−1
. Choosing a

C1
0(Ω) test function ϕ in the formulation (1.10) for un, we obtain∫

Ω

A(x)∇un · ∇ϕ =

∫
Ω

fn ϕ,

which, passing to the limit, yields∫
Ω

A(x)∇u · ∇ϕ =

∫
Ω

ϕdµ ∀ϕ ∈ C1
0(Ω),
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so that u is a solution in the sense of distributions of (1.9). Since
the definition of solution in the sense of distributions can always be
given (even when the notion of duality solution is unavailable due for
example to the operator being nonlinear), one may wonder whether
there is a way of proving uniqueness of distributional solutions (not
passing through duality solutions).

The following example is due to J. Serrin (see [5]). Let ε > 0 and
Aε(x) be the symmetric matrix defined by

aεij(x) = δij + (aε − 1)
xi xj
|x|2

.

If aε = N−1
ε(N−2+ε)

, then the function

wε(x) = x1 |x|1−N−ε

is a solution in the sense of distributions of

(5.22) − div(Aε(x)∇wε) = 0, in RN \ {0}.

Indeed, if we rewrite w(x) = x1|x|α and

aij(x) = δij + β
xi xj
|x|2

,

simple (but tedious) calculations imply

wx1(x) = |x|α + αx2
1|x|α−2, wxi(x) = αx1xi|x|α−2,

so that

N∑
i=1

aij(x)wxi(x) = δ1j|x|α + (αβ + α + β)x1xj|x|α−2.

Therefore,

(A(x)∇w)x1 = αx1|x|α−2 + (αβ + α+ β)[2x1|x|α−2 + (α− 2)x3
1|x|α−4],

and

(A(x)∇w)xj = (αβ + α + β)[x1|x|α−2 + (α− 2)x1x
2
j |x|α−4],

so that

div(A(x)∇w) = x1|x|α−2[α + (N − 1 + α)(αβ + α + β)].

Given 0 < ε < 1, if we choose α = 1−N − ε, and β = N−1
ε(N−2+ε)

+ 1, we

have

α + (N − 1 + α)(αβ + α + β) = 0,
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so that w is a solution of (5.22) if x 6= 0. To prove that wε is a solution
in the sense of distributions in the whole RN , let ϕ be a function in
C1

0(Ω), and observe that since |Aε(x)∇wε| belongs to L1(Ω), we have∫
RN
Aε(x)∇wε · ∇ϕ = lim

r→0+

∫
RN\Br(0)

Aε(x)∇wε · ∇ϕ.

Using Gauss-Green formula, and recalling that wε is a solution of the
equation outside the origin, we have∫

RN
Aε(x)∇wε · ∇ϕ = − lim

r→0+

∫
∂Br(0)

ϕAε(x)∇wε · ν dσ,

where ν is the exterior normal to Br(0), i.e., ν = x
r
. By a direct

computation,

Aε(x)∇wε · x
r

= Qx1|r|α−1,

with Q = 1 + αβ + α+ β = −N−1
ε

. Therefore, recalling the value of α,
and rescaling to the unit sphere,

−
∫
∂Br(0)

ϕAε(x)∇wε · ν dσ =
N − 1

ε

1

rε

∫
∂B1(0)

ϕ(ry)x1 dσ.

Using again the Gauss-Green formula, we have∫
∂B1(0)

ϕ(ry)x1 dσ = r

∫
B1(0)

e1 · ∇ϕ(rx) dx,

where e1 = (1, 0, . . . , 0). Therefore, since 0 < ε < 1, we have

lim
r→0+

∫
∂Br(0)

ϕAε(x)∇wε · ν dσ = lim
r→0+

r1−ε
∫
B1(0)

e1 · ∇ϕ(rx) dx = 0,

so that wε is a solution in the sense of distributions of−div(Aε∇wε) = 0
in the whole RN .

Let now Ω = B1(0) be the unit ball, and let vε be the unique solution
of {

−div(Aε(x)∇vε) = div(Aε(x)∇x1) in Ω,

vε = 0 on ∂Ω,

which exists since div(Aε(x)∇x1) is a regular function belonging to
H−1(Ω) (as can be easily seen). Therefore, the function zε = vε + x1

is the unique solution in H1(Ω) of the problem{
−div(Aε(x)∇zε) = 0 in Ω,

zε = x1 on ∂Ω,
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so that the function uε = wε − zε is a solution in the sense of distribu-
tions of {

−div(Aε(x)∇uε) = 0 in Ω,

uε = 0 on ∂Ω,

which is not identically zero since zε belongs to H1(Ω), while wε belongs
to W 1,q

0 (Ω) for every q < qε = N
N−1+ε

. Hence, the problem{
−div(Aε(x)∇u) = f in Ω,

u = 0 on ∂Ω,

has infinitely many solutions in the sense of distributions, which can
be written as u = u+ t uε, t in R, where u is the duality solution.

One may observe that the solution found by approximation belongs
to W 1,q

0 (Ω) for every q < N
N−1

, while the solution of the above example

belongs to W 1,q
0 (Ω) for some q < N

N−1
, and that we are not allowed to

take ε = 0 since in this case aε diverges. Thus one may hope that there
is still uniqueness of the solution obtained by approximation. However,
it is possible to modify Serrin’s example in dimension N ≥ 3 (see [4])
to find a nonzero solution in the sense of distributions for{

−div(Bε(x)∇u) = 0 in Ω,

u = 0 on ∂Ω,

which belongs to W 1,q
0 (Ω), for every q < N

N−1
. Here

Bε(x) =


1 + (aε − 1)

x21
x21+x22

(aε − 1) x1 x2
x21+x22

0

(aε − 1) x1 x2
x21+x22

1 + (aε − 1)
x22

x21+x22
0

0 0 I

 ,

where I is the identity matrix in RN−2, and aε is as above, with ε fixed
so that wε(x) = x1 (

√
x2

1 + x2
2)ε−1 belongs to W 1,q(R2) for every q < 2.

On the other hand, in dimension N = 2 there is a unique solution in
the sense of distributions belonging to W 1,q

0 (Ω), for every q < 2. The
proof of this fact uses Meyers’ regularity theorem for linear equations
with regular data.

Theorem 5.1 (Meyers). Let A be a matrix which satisfies (1.8). Then
there exists p > 2 (p depends on the ratio α

β
and becomes larger as α

β

tends to 1) such that if u is a solution of (1.9) with datum f belonging
to L∞(Ω), then u belongs to W 1,p

0 (Ω).
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Theorem 5.2. Let N = 2. Then there exists a unique solution in the
sense of distributions of (1.9) such that u belongs to W 1,q

0 (Ω), for every
q < 2.

Proof. Since the equation is linear, it is enough to prove that if u is
such that ∫

Ω

A(x)∇u · ∇ϕ = 0, ∀ϕ ∈ C1
0(Ω),

then u = 0. Since u belongs to W 1,q
0 (Ω), for every q < 2, it is enough

to prove that ∫
Ω

A(x)∇u · ∇ϕ = 0, ∀ϕ ∈ W 1,p
0 (Ω),

for some p > 2, implies u = 0. Let B be a subset of Ω, and let vB be
the solution of {

−div(A∗(x)∇vB) = χB in Ω,

v = 0 on ∂Ω.

By Meyers’ theorem, vB belongs to W 1,p
0 (Ω), for some p > 2. Hence∫

Ω

A(x)∇u · ∇vB = 0,

while, choosing u as test function in the weak formulation for vB (which
can be done using a density argument and the regularity of ∇vB), we
have ∫

Ω

A∗(x)∇vB · ∇u =

∫
B

u.

Therefore, ∫
B

u = 0, ∀B ⊆ Ω,

and this implies u ≡ 0. �
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