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Abstract. We discuss results and open problem on the geometry of the moduli
space of complex curves, with special emphasis on vanishing results in cohomology
and in the tautological ring. The focus is on the techniques, namely algebraic
stratifications, transversely real foliations and q-convex exhaustion functions. A
selection of related problems in the field is also quickly mentioned.

1. Introduction

Let g and n be non-negative integers such that 2g − 2 + n > 0. The moduli space
Mg,n of curves of genus g with n distinct marked points can be looked at from
different point of views: algebro-geometric, complex-analytic, differential-geometric
and topological.

• For algebraic geometers,Mg,n classifies families of smooth complete curves of
genus g with n distinct sections and it is usually given the structure of smooth
Deligne-Mumford stack (see [18], [8]), which is in fact a global quotient of a
smooth quasi-projective variety by a finite group (see [42], or [8]). Moreover,
the moduli space is an actual variety whenever n > 2g+ 2. The merit of this
approach is that one deals with a true classifying space, which thus carries a
universal family π : Cg,n →Mg,n endowed with n distinct sections σ1, . . . , σn;
though occasionally one can also consider the associated coarse space, which
is a quasi-projective variety with quotient singularities.
• A complex analyst would focus more on Teichmüller space Tg,n, which is

a complex manifold that classifies complex structures on a fixed (compact,
connected) oriented surface of S genus g, up to Teichmüller equivalence (i.e.
up to isotopies of S that pointwise fix a subset P ⊂ S of n distinct points).
See for instance [1], [33], [50]. The moduli space1Mg,n can be obtained as
a quotient of Tg,n by the mapping class group MCGg,n of isotopy classes
(relative to P ) of orientation-preserving diffeomorphisms of S, which acts
properly and with finite stabilizers. This endows Mg,n with the structure
of complex-analytic orbifold. As Tg,n is diffeomorphic to a ball, it plays the
role of “orbifold universal cover” ofMg,n, with “orbifold fundamental group”
πorb1 (Mg,n) ∼= MCGg,n. The advantage of this approach is that one works
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on a fixed surface S, though one must then take care of the action of the
mapping class group (for an introduction to the group MCG, see [28]).
• A differential geometer would look at the space Metg,n of Riemannian met-

rics on a fixed S, and would recover Tg,n as the quotient of Metg,n under
conformal and Teichmüller equivalence (see [94]). The structure of Metg,n
is richer, as it is endowed with a natural Riemannian pairing and points are
not defined up to annoying equivalences; on the other hand, Metg,n is an
infinite-dimensional manifold.
• From the topological point of view, the orbifold Mg,n = Tg,n/MCGg,n is a
K(MCGg,n, 1) and so it is again a classifying space in a suitable topologi-
cal category (for example, the category of orbifolds or of simplicial spaces).
Thus, many invariants, such as the singular cohomology ring, can still be
computed using more flexible tools coming from topology. On the other
hand, a lot of structure (from complex analysis or differential geometry) is
not preserved under most topological manipulations.

In this paper, I will discuss some results and problems concerning certain algebro-
geometric and complex-analytic properties of Mg,n. Because of the vastity of the
subject, I will concentrate on the problem of the cohomological dimension ofMg,n,
namely of vanishing results for high degree cohomology groups, but also of vanishing
of high degree tautological classes.
I will put special emphasis on the techniques employed by the authors, namely
stratifications by algebraic subvarieties, transversely real-analytic foliations with
holomorphic leaves, exhaustion functions with controlled complex Hessian.
I would like to underline that the purpose of this survey paper is to only touch a
limited selection of topics; moreover, the treatment as well as the bibliography are
by no means intended to be exhaustive.

1.1. Structure of the paper. In Section 2 some selected problems are briefly
discussed, such as

• structure of de Rham cohomology and tautological subring of Mg,n, upper
bounds on the dimension of compact holomorphic subvarieties of Mg,n;
• cellular decompositions of Mg,n, higher vanishing of de Rham cohomology,

volumes of Mg,n;
• first cohomology group of finite covers of Mg and existence of relative bi-

canonical forms on the universal family.

Section 3 is dedicated to the analysis of the techniques involving stratifications,
foliations and exhaustion functions.
Finally, in Appendix A formal definitions of de Rham, Dolbeault and algebraic co-
homological dimensions are given, together with a short list of immediate properties.

1By abuse of notation, we will use the symbol Mg,n both for the moduli space of curves and
for the space Mg,n(C) of its complex-valued points.
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The last subsection contains a few naive considerations on the cases of M0,n, M1,n

and M2,n.

1.2. Acknowledgements. I am indebted to Enrico Arbarello and Eduard Looi-
jenga for fruitful exchange of ideas over many years.
The author’s research was partially supported by the MIUR grant FIRB 2010 “Low-
dimensional geometry and topology” (RBFR10GHHH 003).

2. Selected questions on the moduli space of curves

2.1. De Rham cohomology. Being an orbifold, many non-torsion invariants of
Mg,n behave like those of a manifold, for instance its singular cohomology with coeffi-
cients in a field of characteristic zero or the mixed Hodge structure on H∗dR(Mg,n;C).
Calculating the de Rham cohomology of Mg,n is a really hard problem, as well as
determining the (rational) Chow ring.
The de Rham cohomological dimension of Mg,n (see Appendix A.1) was computed
by Harer [48]: he showed that Hd(Mg,n;Q) vanishes for d > vcd(g, n), where

vcd(g, n) =


n− 3 if g = 0

4g − 4 + n if g, n > 0

4g − 5 if g ≥ 2 and n = 0

and proved that this bound is optimal.
Another major result by Harer [47] says that Hd(Mg;Q) stabilizes as g is at least
≈ 3d. Such a stability bound was later improved by Ivanov [54] to g ≈ 2d and by
Boldsen [13] to the essentially optimal g ≈ 3

2
d. As conjectured by Mumford [76] and

proven by Madsen-Weiss [66], this stable cohomology is generated by κ classes.

To spell things with algebro-geometric language, let M̂g,1 be the moduli space of
triples (C, p, z), where (C, p) ∈ Mg,1 and z is a formal coordinate on C centered at
p, and let Gr1−g∞ be the infinite Grassmannian of subspaces V of C((z)) such that the

homomorphism V → C((z))/C[[z]] has index 1−g. Krichever’s mapK : M̂g,1 → Gr1−g∞
attaches to (C, p, z) the subspace of C((z)) corresponding to meromorphic functions
on C which are regular away from p. A consequence of Madsen-Weiss proof is the
following.

Corollary 2.1. The map K induces an isomorphism on rational homology in degrees
≤ 2g

3
.

Problem 2.2. Is there an algebro-geometric proof of Corollary 2.1?

In general, the de Rham cohomology ofMg,n in the unstable range 2
3
g ≤ d ≤ 4g− 5

remains mysterious, though we know the orbifold Euler characteristic by work of
Harer-Zagier [44] (then simplified by Penner [80] and Kontsevich [58]).
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Exhaustive computations are available for low genera (see Mumford [76], Faber [23],
Getzler [34], Looijenga [62] and Getzler-Looijenga [35], Faber [24], Izadi [55], Tom-
masi [92], [93], Gorinov [39]). Genus-free computations are available in low degrees
using topological methods (see Harer [45] and [46]) and a mixture of topological and
algebro-geometric methods (see Arbarello-Cornalba [7]).

2.2. Tautological ring. Instead of dealing with the whole cohomology, many peo-
ple concentrate on the so-called tautological (Chow or cohomology) subring, intro-
duced by Mumford [76], generated by the classes ψi := c1(Li) and κb := π∗

(
c1(ωπ(D))b+1

)
,

where ωπ is the π-relative (holomorphic) cotangent line bundle, Li := σ∗i (ωπ(D)),
D = D1 ∪ · · · ∪ Dn and Di is the image of the i-th section of the universal curve
π : Cg,n → Mg,n. As tautological classes are rather ubiquitous in intersection-
theoretic computations, their study is quite valuable.
The most relevant conjectures were formulated by Faber [25] (Conjecture 1). Part
(b) of such conjecture was proven by Ionel [53], Morita [74] and Boldsen [13]; the
vanishing of part (a) was shown by Looijenga [64] and the one-dimensionality in
degree g−2 was verified by Faber [25]. The relations of part (c) were proven to be a
consequence on Givental’s proof [37] of Virasoro conjecture for P2; other proofs are
due to Getzler-Pandharipande [36], Liu-Xu [61] and Buryak-Shadrin [15]. Further
relations conjectured by Faber-Zagier in 2000 were established by Pandharipande-
Pixton [77]. See [26] for a survey of the vast literature on this subject till 2013.
In many of these papers a key role is played by suitable compactifications of the
moduli space of interest, like Deligne-Mumford compactification Mg,n of Mg,n (see
[18]), which is again a smooth Deligne-Mumford stack and indeed a global quotient
(see [63], [12], [2], [8]), the universal curve π : Cg,n →Mg,n, the space of admissible
covers [49], or the space of stable maps [32]. Indeed, intersection-theoretic com-
putations are often performed on such compactifications, where tautological classes
admit a very natural extension.
In the last year, an impressive conjectural description of relations among tautological
classes (see Pixton [85]), that generalize the FZ-relations to Mg,n, was proven by
Pandharipande-Pixton-Zvonkine [78]; on the other hand, Petersen-Tommasi [83]
showed that such a ring is not Gorenstein in general, thus negatively answering
another important question.

2.3. Compact subvarieties. As Mg is not compact, it is very natural to wonder
what is the largest dimension of a compact holomorphic (and so algebraic) subvariety
ofMg. The conjecturally optimal upper bound is g−2, which is known to be attained
for g = 3 (because the Satake compactification ofMg has codimension 2 for g ≥ 3).
All known explicit constructions of compact subvarieties of a certain dimension d
inside Mg essentially rely on Kodaira’s idea (see [57], [38], [99], [98]), which is not
expected to provide a much better estimate than d ∼ log2(g).
Some approaches to this problem will be more extensively discussed in Section 3.
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2.4. Cohomology of coherent sheaves. Almost nothing is known about coho-
mology of coherent sheaves (in the algebraic or analytic sense) on Mg,n. Very few
computations can be performed using known results on de Rham cohomology and
Hodge theory; it would be interesting to be able to answer at least some of the
following questions.

Problem 2.3. Compute some algebraic or analytic H i(Mg,n;F), when F is a tensor
product of the canonical bundle KMg,n , the Hodge bundle π∗(ωπ) and π∗

(
ω⊗Nπ

)
, the

line bundles Li and of their duals.

Being products of Chern classes, tautological classes can be seen as living in the
algebraic Hp(Mg,n,Ω

p
Mg,n

) or in the analogous Dolbeault cohomology group. Their
vanishing in high degree might be a consequence of a more radical vanishing of
the whole (algebraic or Dolbeault) cohomology of coherent sheaves in high degree,
namely of an upper bound on the Dolbeault/algebraic cohomological dimension of
Mg,n (see Appendices A.2 and A.3 for more precise definitions).

Problem 2.4. Is coh-dimDol(Mg,n) = coh-dimalg(Mg,n) = g − 1− δ0,n for g ≥ 3?

For g = 0, 1, 2, the problem can be easily attacked by hand, whereas for g = 3, 4, 5 a
positive answer follows from the existence of an optimal affine cover [31]. For g ≥ 6
the problem is still open.

2.5. Cellularizations. The above mentioned cohomological vanishing in high de-
gree by Harer is part of a stronger result that states that mapping class groups
are virtual (i.e. up to a finite-index subgroup) duality groups. The technique is
purely topological and makes use of a cellularization of Mg,n with n ≥ 1 by rib-
bon graphs due to several authors (Harer [48], Mumford, Thurston, Penner [79],
Bowditch-Epstein [14]). In all constructions, one can bijectively attach a metrized
ribbon graph (G, `) (i.e. a finite graph endowed with a cyclic orientation of half-
edges incident at each vertex) to a pointed Riemann surface with positive weights
(C, p1, . . . , pn, w1, . . . , wn) at its marked points, so that Mg,n × Rn

+ becomes home-
omorphic to a space of ribbon graphs Gg,n, which can be decomposed in cells eG
indexed by isomorphism type of unmetrized ribbon graph G. Such a space can
be retracted by deformation onto a smaller complex, from which one deduces the
vanishing of high degree (co)homology groups. The virtual duality property for
MCG follows from the sphericity of the so-called curve complex, that describes the
combinatorics of the boundary strata of Mg,n.
The idea behind the homeomorphism Mg,n × Rn

+ → Gg,n is to first geometrize a
given conformal structure on a surface and then produce a graph embedded in such
a surface by exploiting the geometrization. Harer-Mumford-Thurston’s construction
relies on the existence of quadratic differentials with closed horizontal trajectories
and prescribed quadratic residues at the punctures (proven by Strebel [91]), the
graph of interest being given by the critical horizontal trajectories; on the other
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hand, Penner-Bowditch-Epstein’s construction uses the uniformization theorem and
hyperbolic metrics with cusps, the graph being given by the cut-locus associated
to a fixed set of horocycles at the punctures. Though geometrically different, these
cellularization are in fact isotopic (see [73]), which explains why we can freely use
one or other for most purposes.
The following has remaining unanswered since then.

Problem 2.5. Does a similar cellularization exist for Mg, i.e. for the moduli space
of unpunctured Riemann surfaces?

Other questions arise very naturally.

Problem 2.6. Can one produce similar cellular model that parametrizes (possibly
punctured) Riemann surfaces endowed with extra structure, such as C-linear systems
(or C-linear systems of fixed finite order)?

Problem 2.7. Can one produce a similar cellular model for the Hurwitz scheme or,
more generally, for spaces of finite branched covers between Riemann surfaces?

2.6. Volumes via cellularizations. As the above-mentioned cellularization ofMg,n

via ribbon graphs is indeed geometric, it can be exploited to decompose volume in-
tegrals as sums indexed by ribbon graphs. This strategy allowed Kontsevich [58] to
rephrase such sums as Gaussian matrix integrals and so to prove Witten’s conjec-
ture [96]: top intersection numbers of ψ classes on the compactified moduli space of
curves satisfy certain recursive relations.
Witten conjectured [97] that similar recursions should hold for the moduli space

M1/r

g,n of curves endowed with an r-th root of the canonical bundle. This was es-
tablished by Faber-Shadrin-Zvonkine [27] using different tools (reduction to a genus
0 problem using double ramification cycles and then Givental’s theory of Gromov-
Witten potential [37]), though it is believed that there should exist a proof of this
fact in the line of Kontsevich’s.

Problem 2.8. Is there a matrix integral that produces top intersection numbers on

M1/r

g,n?

Two-pointed Hurwitz numbers are also conjectured to satisfy similar recursions; the
strategy suggested in [40] would be to relate them to top-intersections on a suitable
compactification J g,n of the universal Jacobian variety over Mg,n.

Problem 2.9. Is there a matrix integral that produces top intersection numbers of
tautological classes on J g,n?

Variations of this strategy allowed many authors to translate tautological classes into
combinatorially defined cycles with closed support: see Penner [82] and Arbarello-
Cornalba [6] for κ1, Igusa [51] and Mondello [68] for the remaining κ classes, and
[70] for a survey on this topic. Penner’s proof passes through the explicit expression
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of Weil-Petersson symplectic form in the local simplicial coordinates [81]; similar
computations for surfaces with boundary or with conical points are available [71]
and [72], and show a tight relation between the different geometrizations of conformal
structures on a surface and the different cellularizations and symplectic structures
on Mg,n.

2.7. Volumes of spaces of translation surfaces. The Kobayashi metric onMg,n

was shown to agree with the Teichmüller metric [89], which is explicit but still
difficult to handle, being Finsler and not smooth. Out of such metric, it is possible
to define two different volumes (depending on whether one works on the tangent or
cotangent space toMg,n), both of which are finite. In the latter and more usual case,
the volume computation can be phrased in terms of volumes of spaces of quadratic
differentials q with

∫
|q| < 1, whose volume form is inherited from the integral

structure H1(C̃q, Pq;Z⊕ iZ) ⊂ H1(C̃q, Pq;C) on the period domain of the degree 2

cover C̃q → C that pulls q back to the square of an Abelian differential.
The following is deliberately vague.

Problem 2.10. Translate such a volume form into “something understandable” from
the algebro-geometric point of view.

More generally, given g ≥ 2 and a partition m = (m1,m2, . . . ,mn) of 2g−2, consider
the moduli space H(m) of data (C, p1, . . . , pn, ϕ), where (C, p1, . . . , pn) ∈ Mg,n and
ϕ is an Abelian differential on C with a zero of order mi at each pi. Such a space
has an affine structure, coming from the local period map to H1(C,P ;C), which
is a local biholomorphism. Subvarieties A of H(m1, . . . ,mn) that look affine in
local period coordinates, and which are invariant under the action of SL2(R) on the
coefficients of H1(C,P ;R⊕ iR), are also endowed with a volume form. Moreover, it
is known that the volume form thus attached to the projectivization PA is finite.

Problem 2.11. Translate the computation of the volume of PA coming from the
period map in terms of characteristic classes.

Notice that the evaluation of volumes of PH(m1, . . . ,mn) with each mi divisible by r

is tightly related to the computation of top-intersection numbers on the spaceM1/r

g,n

of r-spin curves.

Problem 2.12. Does there exist a cellularization via ribbon graphs forH(m1, . . . ,mn)?
Is there an integration scheme via Gaussian matrix integral for such a space?

2.8. Finite covers. In the orbifold category, unramified covers of Mg correspond
to subgroups of MCGg. For instance, the classes of orientation-preserving diffeo-
morphisms of S that fix H1(S;Z/m) determine the level (m) conguence subgroup

MCG(m)
g ⊂ MCGg. Whether every finite-index subgroup of MCGg contains a con-

gruence subgroup is still an open important conjecture.
Many problems, such as the computation of the cohomology ring, can be posed for
unramified covers of Mg,n: the most elementary one seems to be the following.
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Problem 2.13. Is H1(Γ;C) = 0 for every finite-index subgroup Γ ⊂ MCGg with
g ≥ 3?

It is known that H1(Mg;C) = 0 because MCGg is generated by Dehn twists (see
[17]). Moreover, for g ≥ 3 Mumford [75] showed that H1(Mg;C) = H1(Mg;C),
whereas it is well-known that H1(M0,n;C) 6= 0 and that some finite unramified
covers of M1,1 and M2 will have nonvanishing H1

C.
The conjecture was shown to hold for finite-index subgroups of MCGg that contain
the Torelli subgroup, i.e. Ig := {f ∈ MCGg |H1(f) = id} (see Putman [86]), but
Problem 2.13 is still open.
Recent work of Boggi-Looijenga [11] shows that the conjecture reduces to a purely
topological statement about the topology of a finite branched cover of Riemann
surfaces.
In a similar fashion, inspired by Putman’s computation [87] of the second rational

homology group of MCG(m)
g , one can also speculate about H2 of an arbitrary finite

cover of Mg.

Problem 2.14. Is H2(Γ;C) generated by κ1 for every finite-index subgroup Γ of
MCGg and g ≥ 3?

Problems concerning finite unramified covers of Mg,n can be rephrased in terms of
local systems, and so of finite-dimensional representations of MCGg,n. It is known
that braid groups and so MCG0,n are linear (see Bigelow [10] and Krammer [60])
and that MCG1,1 = SL2(Z). Moreover, MCG2 is an extension ofM0,6/S6 by Z/2Z,
because every curve of genus 2 is hyperelliptic; hence, MCG2 is linear too. But it
is still unknown whether for g ≥ 3 there are faithful finite-dimensional linear repre-
sentations of MCGg, though it was proven than these groups cannot be embedded
as lattices inside Lie groups (see [56], for instance). Some time ago Kontsevich sug-
gested a way of attacking this problem by looking at the cohomology of configuration
spaces on a compact oriented surface of genus g and analyzing the dynamics of the
many pseudo-Anosov elements of MCGg on such a finite-dimensional vector space.
Nobody seems to have tried to implement such ideas at present.

2.9. Relative pluricanonical sections. Assume g ≥ 3, so that Mg has no holo-
morphic functions (because its Satake compactification is normal and it has bound-
ary of codimension 2 in this case). The vanishing of H1(Mg;C) recalled above
suggests that π∗ (ω⊗2π ) ∼= T ∗Mg has no holomorphic sections.

Problem 2.15. Show that every finite-degree unramified cover M̃g of Mg has no
nonzero holomorphic (1, 0)-forms.

Notice that, being ωπ big and nef on Cg (see Arakelov [4] and Mumford [76]), there
will be plenty of sections of ω⊗Nπ , and so of π∗(ω

⊗N
π ), for N big enough.

Problem 2.16. Find the smallest N such that the line bundle ω⊗Nπ on Cg ∼=Mg,1 has
a nonzero section.
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3. Stratifications

3.1. Arbarello’s stratification. The principle that Mg could be better under-
stood by using geometrically meaningful stratifications started to become popular
since Arbarello [5] exhibited a filtration

Mg =Wg ⊃ Wg−1 ⊃ · · · ⊃ W2 ⊃ W1 = ∅
satisfying the following properties:

• Wk is a closed, irreducible, algebraic subvariety of Mg of pure codimension
g − k;
• Wk :=Wk \Wk−1 for all k = 2, . . . , g is smooth;
• W2 concides with the locus of hyperelliptic curves.

The precise definition is as follows

Wk := {C ∈Mg | ∃p ∈ C such that h0(kp) ≥ 2}
Actually, analogous loci on Mg,1 can be even more naturally defined as

W∗k := {(C, p) ∈Mg,1 |h0(kp) ≥ 2}
which determine the filtration

Mg,1 =W∗g+1 ⊃ W
∗
g ⊃ · · · ⊃ W

∗
2 ⊃ W

∗
1 = ∅

with the properties:

• W∗k is a closed, irreducible, algebraic subvariety ofMg,1 of pure codimension
g − k + 1;
• W∗k :=W∗k \W

∗
k−1 for all k = 2, . . . , g + 1 is smooth;

• W∗2 concides with the locus of couples (C, p), where C is hyperelliptic and p
is a Weierstrass point of C.

The above stratifications attracted the attention of Mumford [76], who computed

the cohomology (and Chow) classes of Wk inside Mg (and of W∗k inside Mg,1).

3.2. Diaz’s stratification. In his paper Arbarello posed the following question.

Problem 3.1 (Arbarello). Can the strata Wk contain a complete curve?

Arbarello suspected that this is not the case; if confirmed, it would follow that Mg

is allowed to contain complete subvarieties of dimension at most g − 2. Indeed,
the coarse space of M2 is affine, as it coincides with M0,6/S6, and so M2 cannot
contain a complete curve. (The same argument works for the stratum W2 ⊂ Mg

with g ≥ 2.) In genus 3, the stratum W3 can be obtained as a quotient of the
space of smooth plane quartics (which is affine) by PGL3, and so its coarse space is
again affine. On the other hand, M3 contains a complete curve, because its Satake

compactification MSat

3 has coarse space which is projective and with boundary of
codimension 2.
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Diaz [20] managed to prove that indeed Mg cannot contain a complete subvariety
of dimension greater than g − 2, by suitably modifying Arbarello’s stratification as
follows. Fix d ≥ g and, for every k = 2, . . . , g, let

Dk,d := {C ∈Mg | ∃f : C → P1 of degree d such that div(f) is supported on at most k points}
Diaz shows that

Mg = Dg,d ⊃ Dg−1,d ⊃ · · · ⊃ D2,d ⊃ D1,d = ∅

is a stratification and that Dk,d := Dk,d \Dk−1,d cannot contain a complete curve.
The intuitive idea is rather simple: deforming a curve C inside Dk,d amounts to
keeping the ramification profile of the map f frozen over {0,∞} and moving the
branch points in C; indeed, sending a branch point to 0 (or to ∞) would result in
going to a deeper stratum Dk′,d with k′ < k or in developing a singularity in C.
Thus, the moduli of such a C ∈ Dk,d move in an open subset of an affine space.
Hence, if the base of the deformation is complete, then the moduli of such a C
could not move. In order to make such an argument formal, in passing from fami-
lies of curves to families of maps and in studying the degenerations of such ramified
covers, Diaz used the theory of admissible covers, developed by Harris-Mumford [49].

After Diaz’s work, one is naturally lead to the following.

Problem 3.2. Does there exist a complete subvariety of Mg of dimension g − 2?

It is rather embarassing to admit that at present Problem 3.2 is still open for g ≥ 4.

3.3. Looijenga’s vanishing. A variant of the above stratifications was considered
by Looijenga [64]. He defines the space

R :=

{
(C,P, x,Q)

∣∣∣ (C,P ) ∈Mn
g , x ∈ C,

Q degenerate linear system on C,
Q∞ = (n+ g)x,
P ⊂ supp(Q0)

}
which admits a forgetful map f : R → Mn

g to the space of curves with n not
necessarily distinct labelled points, and which can be stratified as

R = R0 ⊃ R1 ⊃ · · · ⊃ Rg+n−1
= ∅

where

Rk
:=
{

(C,P, x,Q) ∈ R
∣∣∣#supp(Q0) ≤ g + n− k − 1

}
As in Diaz’s work, the locally closed strata Rk := Rk \ Rk−1

are quasi-affine (and
this already reproves Diaz’s bound).
Looijenga’s key observation is that a suitable power of f ∗Li trivializes over Rk.
Indeed, at each (C,P, x,Q) ∈ Rk, the pencil Q determines a map to s : C → P1

which can be uniquely pinned down by setting the product of the branch values
(other than 0 and ∞) to 1, because the ramification pattern over 0 and ∞ is frozen
all over Rk. Hence, the differential form dz on P1 \ {∞} lifts to a differential form
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s∗(dz) on C which has fixed vanishing order mi at pi, and so it determines an

everywhere-nonzero section of f ∗L⊗(mi+1)
i .

As a consequence, f ∗(ψa11 · · ·ψann ), viewed as a class in rational cohomology or ratio-

nal Chow ring, is supported on Rk
with k = a1 + · · ·+ an. Because f is proper, this

implies that ψa11 · · ·ψann is supported on f
(
Rk
)

and so this class rationally vanishes

if k ≥ g + n− 1.
In the special case n = 1, this means that ψg1 = 0 onMg,1 and so κb = 0 onMg for
b > g − 2.

The idea of looking at (suitable compactified or partially compactified) space of maps
to P1 is very classical, still rather fruitful. Though technically more involved, the
same idea was implemented by Ionel [52] (who works in cohomology) and Graber-
Vakil [41] (who work in the Chow ring) to prove that tautological classes of degree
> g − 1 + c − δn,0 vanish on the curious partial compactification M≤c

g,n ⊂ Mg,n

consisting of stable curves with at most c rational irreducible components.
It is natural to wonder whether such vanishing theorems come from more general
upper bounds on the Dolbeault/algebraic cohomological dimension of M≤c

g,n. The
corollaries for de Rham cohomology of these conjectural upper bounds were verified
in [69], the proof essentially relying on Harer’s result.

3.4. Direct algebro-geometric approach. Direct ways to approach the problem
of compact holomorphic subvarieties of Mg are the following.

3.4.1. Affine covers. Try to find D1, . . . , Dg−1 (rational) divisors on Mg such that

(a) Di is ample (in the coarse space of Mg) for every i = 1, . . . , g − 1;

(b)
⋂g−1
i=1 supp(Di) is contained inside the boundary locus ∂Mg :=Mg \Mg.

Notice that all divisors of Mg are Cartier, since Mg is smooth; hence, so is the
boundary ∂Mg. As a consequence, divisors D1, . . . , Dg−1 satisfying (a) and (b) can
always be replaced by D1+ε∂Mg, . . . , Dg−1+ε∂Mg, where ε > 0 is a suitable small
rational number, and so it is harmless to also require

(c)
⋃g−1
i=1 supp(Di) contains ∂Mg.

Given such divisors, Mg can be realized as the union of the g − 1 open subsets
Ui :=Mg\supp(Di), whose coarse space is affine. With a slight abuse of terminology,
we will say that a Deligne-Mumford stack is affine if its coarse space is, and so that
such a {Ui} is an affine cover of Mg.

3.4.2. Affine stratifications. Try to find a stratification made of g − 1 layers

Mg = S0 ⊃ S1 ⊃ · · · ⊃ Sg−1 = ∅
by algebraic subvarieties such that locally closed strata Sk are affine. Again by
abuse of terminology, we will say that such a {Sk} is an affine stratification ofMg.
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Clearly, given an affine cover {Ui}, one can produce an affine stratification just by
setting S1 := U1 and Sk := (U1 ∪ . . .Uk−1)c ∩ Uk for all k = 2, . . . , g − 1 (remember
that Mg is separated).
Thus, one is naturally led to the following two questions.

Problem 3.3 (Looijenga). DoesMg admit an affine cover made of g−1 open subsets?

Problem 3.4 (Looijenga). Does Mg admit an affine stratification made of g − 1
layers?

We have seen above that Problem 3.3 is harder than Problem 3.4, which in turn
would imply Diaz’s bound because affine algebraic varieties cannot contain complete
curves. At present both problems are open for g ≥ 6.

3.4.3. q-convex exhaustion functions. Try to find a (smooth) function ξ :Mg → R
which satisfies

• ξ is proper and bounded from below;
• the complex Hessian (i∂∂ξ)

C
at the point C ∈ Mg is a Hermitean form of

signature (n+, n0, n−)
C

with the property that (n0 + n−)
C
≤ g − 2 for every

C ∈Mg.

By a result by Andreotti-Grauert [3], the existence of such a function would im-
ply the vanishing of Dolbeault cohomology in degrees > g − 2, from which Diaz’s
bound would again follow. Indeed, asMg can be endowed with a Kähler (1, 1)-form
α, the volume of a compact holomorphic subvariety X of dimension d would be
given by the cap product 0 6= volα(C) = [X] ∩ [αd], which shows that 0 6= [αd] ∈
H0,d

∂
(Mg,n; Ωd,0

Mg,n
) and so implies d ≤ g − 2.

Problem 3.5 (Looijenga). Does Mg admit such an exhaustion function with con-
trolled complex Hessian?

3.5. Approach via foliations. We have seen that, in order to bound the dimension
of a compact holomorphic subvariety of Mg, the strategy elaborated by Arbarello
and then Diaz was to find a stratification made of g − 1 layers whose locally closed
strata could not contain a complete curve.
Grushevsky-Krichever [43] found a different proof of this result, that uses foliations
instead of stratifications, and which we now describe.
First of all, they lift the problem to the (3g − 1)-dimensional space M2

g of triples
(C, p, q), with C ∈Mg and p, q ∈ C, namely p and q are not required to be distinct,
and they show that M2

g cannot contain a compact holomorphic subvariety Y of
dimension g + 1. They proceed by contradiction, assuming that such a Y exists.

They consider the 4g-dimensional space M̂2
g of quadruples (C, p, q, ϕ), where ϕ is a

meromorphic differential on C which is regular on C \{p, q} and has simple poles at
p, q. This space has natural local holomorphic coordinates given by relative periods,
i.e. by integrals of ϕ along paths in C \{p, q} that are closed or that join two zeroes
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of ϕ. This space has a natural holomorphic foliation F whose leaves L are defined
by requiring that ϕ has locally constant absolute periods, i.e. integrals along closed
paths only. Hence, each L has (complex) codimension 2g + 1 and so (complex)
dimension 2g − 1.

Then they consider a real-analytic section Φ of the bundle M̂2
g → M2

g by using
a very classical tool dating back to Riemann’s existence theorem, namely to every
(C, p, q) they associate the unique differential ϕ = Φ(C, p, q) satisfying:

• ϕ has residue 1 at p and −1 at q, if p 6= q (otherwise ϕ ≡ 0);
• all periods of ϕ are real.

Remark 3.6. Call q1, . . . , q2g ∈ C the zeroes of ϕ. Hence, there exists a unique

harmonic function F : C \ {p, q} → R such that Im(ϕ) = dF and
∑2g

i=1 F (qi) = 0.
If we call ti := F (qi), then we can reorder the indices in such a way that t1 ≥ t2 ≥
· · · ≥ t2g. Notice that the quantities ti − tj are relative periods.

One can check that Φ(M2
g) is the union of leaves of F, soM2

g inherits a holomorphic
but transversely real-analytic foliation, whose leaves L have complex dimension
2g − 1 (and so complex codimension g). So the intersection L ∩ Y consists of a
(possible empty) disjoint union of complex subvarieties of M2

g of dimension ≥ 1.

Strategy. The idea is to construct compact real subvarieties Y2g−1 ⊂ Y2g−2 ⊂ · · · ⊂
Y1 ⊂ Y0 = Y such that

(a) tk|Yk−1
constantly attains its maximum µk along Yk for k = 1, . . . , 2g − 1;

(b) if L is the leaf through (C, p, q) ∈ Yk, then the component (L ∩ Y )(C,p,q) of
L ∩ Y containing (C, p, q) is completely contained inside Yk.

Pick a (C, p, q) ∈ Y2g−1. The intersection (L ∩ Y )(C,p,q) is at least (complex) 1-
dimensional; on the other hand, the values of t1, . . . , t2g are frozen on Y2g−1 and so
all relative periods are frozen along (L ∩ Y )(C,p,q), which contradicts the fact the
relative periods are coordinates.

Notice that the subvarieties Yk are well-defined by property (a), because of the
compactness of Y and that X1 ⊂ Mg,2 (unless t1 ≡ · · · ≡ t2g−1 ≡ 0 along X,
which would immediately allow us to conclude). So one only needs to show that the
above property (b) holds. The restriction of the function t1 to a leaf L is locally
the maximum of finitely many harmonic functions (more precisely, they become
harmonic after a possible base-change) and so t1|L is subharmonic. Let L be the leaf
through (C, p, q) ∈ Y1. Being (L ∩ Y )(C,p,q) holomorphic and positive-dimensional,
as t1 attains its maximum at (C, p, q), it is constant along (L ∩ Y )(C,p,q) and so
(L ∩ Y )(C,p,q) is contained inside Y1.
Then one considers t2|Y1 and one can check that, either it is already constant, or it
never attains the value µ1. In the former case, we are done; in the latter case, the
restriction of t2 to L ∩ {t1 > t2} is locally the maximum of finitely many harmonic
functions (after a possible base-change, as usual) for every leaf L. So one proceeds
in the same way as above.
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3.6. Results in low genera. For g ≤ 5, Fontanari-Looijenga [30] exhibit a strati-
fication of Mg with g − 1 affine locally closed layers. More explicitly,

M2 = S2
2

M3 = S3
3 ⊃ S2

3 = Hyp3
M4 = S4

4 ⊃ S3
4 = N4 ⊃ S2

4 = Hyp4
M5 = S5

5 ⊃ S4
5 = T5 ⊃ S3

5 = T5 ∩N5 ⊃ S2
5 = Hyp5

where Hypg and Tg are the loci respectively of hyperelliptic and trigonal curves of
genus g and Ng is the locus of curves C ∈ Mg that admit an even effective theta-
characteristic, i.e. a line bundle L such that L⊗2 ∼= KC and h0(C,L) is positive and
even.
The result was later improved by Fontanari-Pascolutti [31], who exhibited an affine
open cover made of g− 1 layers for g ≤ 5. They take a direct approach as described
in Section 3.4 but they work in the moduli space Ag of principally polarized Abelian
varieties of dimension g, in which Mg embeds via the Torelli map j : Mg → Ag
defined as j(C) := (J(C),ΘC), where J(C) is the Jacobian variety of C and ΘC is
its Theta divisor. The advantage of working in Ag is that one can use the theory
of modular forms, whose vanishing loci are ample divisors. Thus, in genus 3 it is
enough to find a modular form that does not vanish on the hyperelliptic locus. In
genus 4 (resp. 5) the authors succeed in finding modular forms Fnull, F1, FH (resp.
Fnull, F1, FH , FT ) that do not simultaneously vanish at (J(C),ΘC) of a smooth curve
C. As the combinatorial complexity increases very rapidly with g, it seems hard to
push this strategy much further.

3.7. Non-affineness of Arbarello’s stratification. Fontanari [29] observed that
Diaz’s computation [22] of the class ofWg−1 insideMg together with the ampleness
criterion by Cornalba-Harris [16] showed that Arbarello’s open stratumWg is always
affine. Clearly, the hyperelliptic locus W2 is affine too. But whether Arbarello’s
(locally closed) strata were affine remained unknown for long time, though some
people suspected they were not in general.
The main difficulties in studying Arbarello’s strata are that they are not complete
intersections in the whole space (with the obvious exception of the divisorial one)
and that in general Wk−1 is not Cartier inside Wk.
The negative suspects were confirmed by Arbarello-Mondello [9], who showed that
most strata Wk and W∗k are not affine, by embedding them as open subsets inside
smooth spaces in such a way that the complement is not purely divisorial.
The case of the strataWk essentially relies on computations by Diaz [21]. For strata
W∗k in Mg,1, the idea is to use the desingularization

G1d,∗ =
{

(C, p, V )
∣∣∣ (C, p) ∈Mg,1 and 1 ∈ V ⊂ H0(C, kp), dimC(V ) = 2

}
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of W∗k, which resolves W∗k−1 as the union of G1d−1,∗ and

Z =
{

(C, p, V ) ∈ G1d,∗
∣∣∣h0(kp) ≥ 3

}
The authors show that in most cases Z is not contained inside G1d,∗ and is not purely
divisorial.

3.8. Stratification of the Hodge bundle. The theory of translation surfaces
naturally suggests a stratification of the Hodge bundle π∗(ωπ) overMg, whose total
space will be denoted by Hg.
Indeed, if the space H(m) of translation surfaces with fixed singularities is defined as
in Section 2.7, then strata of Hg can be identified to H(m)/Aut(m). By regrouping
strata by codimension, we obtain a stratification of Hg (and so of its projectivization
PHg) by 2g − 2 layers.
One can rephrase the stratification problem of Mg for the Pg−1-bundle PHg: the
hope is to find an affine stratification of PHg with (g− 1) + (g− 1) = 2g− 2 layers.

Problem 3.7. Are strata PH(m) affine?

Affirmative answer to this question would easily allow to conclude that coh-dimalg(Mg) ≤
g − 2.
One can observe that all hyperelliptic strata are affine, as well as the strata PH(4)
and PH(3, 1) in genus 3 (see [65]). Moreover, in private conversation with Looijenga,
it became apparent that [84], [88] and [95] imply that PH(6) and PH(8)odd are
affine too (see Kontsevich-Zorich [59] for a classification of connected components
of PH(m)).
Really, to bound the algebraic cohomological dimension from above it is enough to
prove the assertion below, which is weaker than the statement of Problem 3.7.

Problem 3.8. Is coh-dimalg(PH(m1, . . . ,mn)) ≤ n− 1?

A less ambitious question is the following.

Problem 3.9. Are smallest strata PH(2g − 2) affine?

Recently, it was proven [67] that coh-dimDol(PH(m)) ≤ g and that coh-dimDol(Mg) ≤
2g − 2, which is certainly not optimal, though it is the first nontrivial result valid
for all g. This only mildly connects to Problem 3.8, as Dolbeault and algebraic
cohomology of quasi-projective varieties need not be easily related. Moreover, pass-
ing from the cohomological dimension of strata to the cohomological dimension of
the whole space is something formal for de Rham or algebraic cohomology, but it
can be considerably more involved for Dolbeault cohomology (because non-algebraic
holomorphic functions on a locally closed stratum need not leave a “trace” on the
boundary of such stratum).
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The strategy for proving such a bound goes through finding an exhaustion function
ξ with controlled complex Hessian (see Section 3.4.3). The function (C,P, [ϕ]) 7→
ξ(C,P, [ϕ]) is cooked up using the area of ϕ, namely

A(ϕ) =
i

2

∫
C

ϕ ∧ ϕ

and the ϕ-lengths along short smooth ϕ-geodesics γ joining zeroes of ϕ, namely

`γ(ϕ) =

∣∣∣∣∫
γ

ϕ

∣∣∣∣
The complex Hessian is then explicitly analyzed using local period coordinates.
It is not unlikely that a similar strategy might also work for a partial compactification
of Mg contained inside Mg.

Appendix A. Cohomological dimensions

A.1. De Rham cohomological dimension.

A.1.1. Definition. Given a smooth connected manifold M of (real) dimension n, we
can define the de Rham cohomological dimension of M as

coh-dimdR(M) := sup
{
k ∈ N

∣∣∣Hk
dR(M ;L) 6= 0, for some C-local system L on M

}
and it has the following properties:

(a) coh-dimdR(M) ∈ [0, n] and coh-dimdR(M) = n if and only if M is compact;

(b) if M̃ →M is a finite unramified cover, then coh-dimdR(M̃) = coh-dimdR(M);

(c) if π : M̃ → M locally looks like U → U/G with G a finite group, then

coh-dimdR(M̃) = coh-dimdR(M);
(d) coh-dimdR(M ×N) = coh-dimdR(M) + coh-dimdR(N);
(e) ifM → N is a fibration with fiber of (real) dimension r, then coh-dimdR(M) ≤

coh-dimdR(N) + r and equality holds if the map is proper;
(f) if f : M → R is a smooth proper function, bounded from below, such that

n+(Hess(f)p) + n0(Hess(f)p) ≤ q for all critical points p ∈ M of f , then
coh-dimdR(M) ≤ q.

Clearly, given a good open cover U = {Ui} of M , i.e. such that all finite intersections
UI :=

⋂
i∈I Ui are either empty or contractible, one can compute Hk

dR(M ;L) using
the Cech complex associated to U . This way one can easily prove (c). Property (e)
is a consequence of Leray-Serre spectral sequence and (f) follows from Morse theory.

A.1.2. Orbifolds. An orbifold M of (real) dimension n is a topological spaces mod-
elled on U/G, where U is a contractible open subset of Rn and G is a finite group. A
subchart V/H of U/G is the datum of an injective homomorphism of groups H ↪→ G
and an H-equivariant diffeomorphism V → U onto its image, such that the induced
map V/H → U/G is an inclusion of open subsets of M . A differential form (in the
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orbifold sense) in U/G is a G-invariant differential form on U and its restriction to
V/H is by the definition the H-invariant restriction to V .
Thus, one can extends the notion of global (smooth) differential forms, of exterior
derivative and of de Rham cohomology to orbifolds. Thus, the definition of de Rham
cohomological dimension still makes sense and the same properties as above hold
for orbifolds.

A.2. Dolbeault cohomological dimension. An analogous quantity can be pro-
duced in the context of complex analytic geometry. Namely, given a complex man-
ifold X of (complex) dimension d, we define the Dolbeault cohomological dimension
of X as

coh-dimDol(X) := sup
{
q ∈ N

∣∣∣H0,q

∂
(X;E) 6= 0, for some hol.vector bundle E on X

}
which has the following properties:

(a) coh-dimDol(X) ∈ [0, d] and coh-dimDol(X) = d if and only if X has a compact
d-dimensional component;

(b) if X̃ → X is a finite (unramified) cover, then coh-dimDol(X̃) = coh-dimDol(X);

(c) if π : X̃ → X locally looks like U → U/G with G a finite group, then

coh-dimDol(X̃) = coh-dimDol(X);
(d) coh-dimDol(X × Y ) = coh-dimDol(X) + coh-dimDol(Y );
(e) if X → Y has fibers of (complex) dimension s, then coh-dimDol(X) ≤

coh-dimDol(Y ) + s and equality holds if the map is a proper submersion;
(f) if ξ : X → R is a smooth proper function, bounded from below, such that

n+(i∂∂ξ)x + n0(i∂∂ξ)x ≤ q for all x ∈ X, then coh-dimDol(X) ≤ q.

Property (f) is due to Andreotti-Grauert [3] and uses Bochner technique instead of
Morse theory.

De Rham and Dolbeault cohomological dimensions are related as follows. If L is a
C-linear system on a complex manifold X, then L ⊗C Ωp,0

X is a holomorphic vector
bundle and there is a spectral sequence

Ep,q
2 = H0,q

∂
(X;L⊗C Ωp,0

X ) =⇒ Hp+q
dR (X;L)

so that the two cohomological dimensions satisfy

(dD) coh-dimdR(X) ≤ coh-dimDol(X) + dimC(X).

Clearly every definition and remark can be formulated in the category of complex
analytic orbifolds.

A.3. Algebraic cohomological dimension. Let X be a complex algebraic variety
X of dimension d and assume thatX is Cohen-Macaulay. We can define the algebraic
cohomological dimension of X as

coh-dimalg(X) := sup
{
q ∈ N

∣∣∣Hq(X; E) 6= 0, for some alg.coherent sheaf E on X
}
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which has the following properties:

(a) coh-dimalg(X) ∈ [0, d] and coh-dimalg(X) = d if and only if X has a complete
irreducible component of dimension d;

(b) if X̃ → X is a finite (unramified) cover, then coh-dimalg(X̃) = coh-dimalg(X);

(c) if π : X̃ → X locally looks like U → U/G with G a finite group, then

coh-dimalg(X̃) = coh-dimalg(X);
(d) coh-dimalg(X × Y ) = coh-dimalg(X) + coh-dimalg(Y );
(e) if X → Y is of relative dimension s, then coh-dimalg(X) ≤ coh-dimalg(Y )+s

and equality holds if the map is proper, flat and relatively Gorenstein.
(f) Let X = X \D with X smooth and complete and D ⊂ X a divisor. Suppose

that L = OX(D) carries a Hermitean metric h such that the curvature
iΘ(L, h) has at most q non-positive eigenvalues at every x ∈ X. Then
coh-dimalg(X) ≤ q.

(g) IfX is a smooth complex affine variety, then it is Stein and so coh-dimDol(X) =
coh-dimalg(X) = 0.

Property (f) is again essentially due to Andreotti-Grauert [3] (see also [19]).
Algebraic and Dolbeault cohomologies are related by Serre’s GAGA theorems [90]:
if X is a smooth complex projective variety and E is an algebraic vector bundle
on X, then Hq(X;E) = H0,q

∂
(X;E), where X and E on the right hand side are

considered as a complex manifold and a holomorphic vector bundle. Unfortunately,
these cohomological dimensions are not interesting invariants for smooth projective
varieties.
All the considerations can be extended to the category of complex Deligne-Mumford
stacks, which are indeed locally of the form U/G, where U is a complex affine variety
and G is a finite group.

A.4. A naive look at the cases of Mg,n for g = 0, 1, 2. Let g, n ≥ 0 such that
2g − 2 + n > 0. The map f :Mg,n+1 →Mg,n that forgets the (n+ 1)-th point has
fiber C \ P , where C is a complex projective curve of genus g and P is a collection
of n distinct points of C.
If n = 0, then f is proper of relative (complex) dimension 1. Hence,

coh-dimalg(Mg,1) = coh-dimalg(Mg) + 1, coh-dimDol(Mg,1) = coh-dimDol(Mg) + 1

If n ≥ 1, then f is algebraic affine of relative (complex) dimension 1, and so

coh-dimalg(Mg,n+1) ≤ coh-dimalg(Mg,n), coh-dimDol(Mg,n+1) ≤ coh-dimDol(Mg,n)

A.4.1. Genus zero. A point inM0,n is represented by (P1, 0, 1,∞, x1, . . . , xn−3) with
xi ∈ P1 \ {0, 1,∞} and xi 6= xj for i 6= j. Thus, M0,n

∼= (C \ {0, 1})n−3 \∆, where
∆ is the big diagonal (and so a Cartier divisor). Hence, M0,n is a smooth complex
affine variety of dimension n− 3. It follows that

coh-dimalg(M0,n) = coh-dimDol(M0,n) = 0



STRATIFICATIONS OF Mg 19

A.4.2. Genus one. A point in M1,1 is represented by an elliptic curve E = C/Λ,
where Λ = Z ⊕ Zτ with τ ∈ H = {z = x + iy ∈ C | y > 0}. Indeed, if {α, β} is a
positively oriented basis of H1(E;Z) and ϕ is a nonzero holomorphic (1, 0)-form on
E (which is unique up to rescaling), then

τ =

(∫
β

ϕ

)/(∫
α

ϕ

)
Getting rid of the choice of the basis amount to quotienting H by the action of
SL2(Z) via Möbius transformations(

a b
c d

)
· τ =

aτ + b

cτ + d

Hence, M1,1
∼= H/SL2(Z) and in fact T1,1

∼= H and MCG1,1
∼= SL2(Z). As M1,1 is

irreducible, not complete and of dimension 1, it is affine. Hence, so is M1,n and we
can conclude that

coh-dimalg(M1,n) = coh-dimDol(M1,n) = 0 .

A.4.3. Genus 2. Every curve of genus 2 is hyperelliptic and so it canonically maps
onto P1 with degree 2 branching over 6 distinct points. Hence, there is a natural
map Br : M2 →M0,6/S6, that takes a curve C to the quotient (C/ι, P ), where ι
is its hyperelliptic involution and P is the branching divisor of C → C/ι. Clearly,
such a map Br is a B(Z/2Z)-fibration, because of the short exact sequence

0→ Z/2Z ∼= 〈ι〉 → Aut(C)→ Aut(C/ι, P )→ 0

and so M2 has the same cohomological dimensions as M0,6, that is

coh-dimalg(M2) = coh-dimDol(M2) = 0

As a consequence,

coh-dimalg(M2,1) = coh-dimDol(M2,1) = 1

and for n ≥ 2 we have

coh-dimalg(M2,n) = coh-dimDol(M2,n) ≤ 1 .
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pp. 199–230. MR 1363058 (96k:18008)

35. E. Getzler and E. Looijenga, The Hodge polynomial of M3,1, e-print
http://arxiv.org/abs/math/9910174.

36. E. Getzler and R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge
bundle, Nuclear Phys. B 530 (1998), no. 3, 701–714. MR 1653492 (2000b:14073)

37. Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians,
Mosc. Math. J. 1 (2001), no. 4, 551–568, 645, Dedicated to the memory of I. G. Petrovskii on
the occasion of his 100th anniversary. MR 1901075 (2003j:53138)

38. Gabino Gonzalez Diez and William J. Harvey, On complete curves in moduli space. I, II, Math.
Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 461–466, 467–472. MR 1120481 (92j:14028)

39. A. G. Gorinov, Rational cohomology of the moduli space of pointes genus 1 curves, e-print
http://arxiv.org/abs/1303.5693.

40. I. P. Goulden, D. M. Jackson, and R. Vakil, The moduli space of curves, double Hurwitz
numbers, and Faber’s intersection number conjecture, Ann. Comb. 15 (2011), no. 3, 381–436.
MR 2836449 (2012h:14129)

41. Tom Graber and Ravi Vakil, Relative virtual localization and vanishing of tautological classes
on moduli spaces of curves, Duke Math. J. 130 (2005), no. 1, 1–37. MR 2176546 (2006j:14035)

42. A. Grothendieck, Techniques de construction en géométrie analytique X: construction de
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90. Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble
6 (1955–1956), 1–42. MR 0082175 (18,511a)

91. Kurt Strebel, On quadratic differentials with closed trajectories and second order poles, J.
Analyse Math. 19 (1967), 373–382. MR 0224808 (37 #407)

92. Orsola Tommasi, Rational cohomology of the moduli space of genus 4 curves, Compos. Math.
141 (2005), no. 2, 359–384. MR 2134272 (2006c:14043)

93. , Rational cohomology of M3,2, Compos. Math. 143 (2007), no. 4, 986–1002.
MR 2339836 (2008d:14043)

94. Anthony J. Tromba, Teichmüller theory in Riemannian geometry, Lectures in Mathemat-
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