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Introduction

Let ¢ and n be nonnegative integers such that 2g — 2 +n > 0 and set
P ={p1,...,pn}. Let M, p denote the moduli orbifold of smooth compact
Riemann surfaces S of genus g with an injection P <— S. Mumford first no-
ticed that for n > 1 Strebel’s results on quadratic differentials [Str84] make
it possible to give a combinatorial description of M, p in terms of metrized
ribbon graphs, in which each orbicell corresponds to an isomorphism class
of ribbon graphs of genus g with n holes marked by P. Then Harer [Har86]
used this model to establish the virtual cohomological dimension of the mod-
ular group Iy p = 79°(M, p) (remember that M, p is a K(I'y p,1) as an
orbifold) and to compute the orbifold Euler characteristic of M, p in a joint
work with Zagier [HZ86]. We refer to Harer’s survey [Har88] for a more
detailed bibliography.

The same model (which we denote by M;"’?b) was the starting point
of Kontsevich’s work [Kon92] and allowed Witten and Kontsevich to guess
that the tautological classes x are related to the W cycles, where Wy, 3 is
supported on the subcomplex of ribbon graphs with a vertex of valency at
least 2¢ + 3. In fact Ws;+3 determines a homology class with noncompact
support on M, p, so we naturally obtain a cohomology class with coefficients
in Q by Poincaré duality. More precisely Kontsevich [Kon92] conjectured
that Ws;3 is a polynomial in the kappa classes.

First results in this direction were obtained by Wolpert [Wol83] and Pen-
ner [Pen92| [Pen93], who dealt (with some minor mistakes) with the simplest
case W5 = 12k1. The approach of Arbarello and Cornalba [AC96] passes
through Di Francesco-Itzykson-Zuber’s theorem [DFIZ93] and Kontsevich’s
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compactification ﬂ;f’}”b and led to stronger results.

In fact let my = (m—_1, mg, mq,...) be a sequence of nonnegative integers
such that » 7, (2i+3)m; = 2(6g—6+3n) and let Mﬁgﬁé be the orbicellular
complex of ribbon graphs whose top-dimensional orbicells are parametrized
by ribbon graphs with m; vertices of valency 2i + 3. Notice, by the way,
that Mﬁ,‘fﬁ’g = M;?I@”‘b if m, = (0,49 — 4 + n,0,0,...). For every [ =
(Iprs---,1p,) € RE denote by M%T]I’D(l) the subset of graphs in M%‘;:”]If—,
such that the p;-th hole has perimeter 2[,,. Remark that Mfgi”lbg is (not
canonically) isomorphic to Mfgf%(l) x RY for any | € RE.

Kontsevich [Kon92] proved that for every | € RY the orbicomplex
M%?II’D(Z) has an orientation and the classifying map Mf,‘l’fflbg(l) — Mgp
defines a homology class with noncompact support W, p on M, p that
does not depend on the choice of [ € le and which will be called com-
binatorial class. Moreover he introduced combinatorial realtive compacti-
fications an"ffj‘; which still have orientations and (in the case m_; = 0)
embed as subcomplexes into ﬂ;?glb; so that they define cycles W, p(l) in

——comb

ch(ﬂ;(jln;b(l); Q). Even if M p () is homeomorphic to a quotient ﬂ’g, P
of the Deligne-Mumford compactification M, p for all | € Rﬁ and the class
Wi, p(l) on Mﬁ,y p does not depend on [, however M; p has ugly singular-
ities, so we cannot use Poincaré duality to lift the cohomology class W,, p
via the projection

My.p — My p = M)
to ﬂg, P-

Back to Arbarello and Cornalba’s work, they found a way to com-
pute in principle all the W,, p in terms of the kappa classes and re-
ported their results in lower codimensions, giving a strong evidence to
Witten-Kontsevich’s conjecture. For example they discovered that on
My p the cycle Wigm,30,..),p is dual (in a sense to be made precise) to
288/-#13 — 4176k1 ko + 20736K3. Looking at a number of results such as the

previous one, they refined the conjecture as follows.

Conjecture  ([AC96]). Consider the algebra of polynomials
Q[ts] := Qlt1,to,...] where each t; has degree 1. Then for every m.
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such that m_y = 0 there exists a polynomial fm, € Q[t] of degree D ;- m;
such that Wy, p = fm. (k). Moreover f,, looks like
(20126 + 1)IH™

t) = Syt ! d .
fm. (t) 11;[1 o '+ (terms of lower degree)

In any event, the meaning of the other coefficients of f,,, was still ob-
scure.

Really they compared the combinatorial classes and the kappa classes as
functionals on the algebra generated by the psi classes, which are defined
both on M, p and on M;?;nb(l). In this way they were able to compute
the difference Wp,, p — fm. (k) in some concrete cases up to some minor
uncertainty.

In this thesis we give an affirmative answer to the previous conjecture
and we exhibit a formula that permits to compute all the polynomials f,,,
inductively on their degree.

Quite recently K. Igusa [Igu02] [Igu03] and K. Igusa-M. Kleber [IK03]

have proven very similar results by different methods.

The proof proceeds in the following way. Given the projection map
My p— ﬂ;?ln;b(l) for some [, we canonically lift the cycles W(l) in ﬂ;??b(l)
to cycles W on M, p using, in an essential way, a modification A(Sy, P) of
the arc complex (where (Sy, P) is a P-pointed compact orientable surface
of genus g) introduced by Looijenga (see [Lo095]). This modification comes

equipped with a map
A/Z;?Fb = A\(Smp)/rgf — Myp x Ap

which is generically 1 — 1.

Then we remark that the Wm,” p classes are push-forward via the for-
getful map mq : ﬂ% PUQ — ﬂg, p of some generalized combinatorial classes
Wm*,p, p associated to some p : () — Z>_; defined prescribing that every

q € @ marks a vertex of valency 2p(q) + 3. The simplest case is the class
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Wi 3 supported on the subcomplex of P U {q}-marked ribbon graphs in
which ¢ marks a vertex of valency 2r + 3.

Notice that the kappa classes are obtained as push-forward of psi classes
via the forgetful morphisms and in particular that (mg).( ZZ'H) = Ry. So for
example in order to prove that CT-WQT+3 +§2T+3 = Kk, in H*" (ﬂ% p; Q) where
r>1,¢ € Q and §2T+3 is a boundary class, it is sufficient to prove that
CTWquH + §3r+3 = Z“ in H2T+2(mg,PU{q};Q) and that (Wq)*(égr+3) =
Ba,3, since (Wq)*(Wqu+3) = Wayps, if r > 1.

Hence the problem translates to showing that

/ Z“vnzcr/A n+/A n
My PUiq} 5 B3

WQ'H»S 2r+3
for all n € H*(Mg pugqy; Q)
As Kontsevich found a nice PL differential form @, on ﬂgf;?fj {qy that
pulls back to 1, on ﬂg7 PU{q}), the key ideas are:

1. Translate the calculation on the combinatorial spaces to exploit the
explicit differential forms wg,: this is not difficult but involves some
technicalities and a little uncertainty in the description of the bound-

ary component Bj _ .

2. Find a deformation retraction Hy that shrinks the ¢-th hole and makes
it possible to recover the combinatorial class as “push-forward” of

*ZH via Hp. To do so we must restrict our attention to 7’s living on
——comb

M py (q) which are pull-back via Hy. However this will be sufficient

for our purposes.

Once we have our retraction Hg, we can look at H;n and discover that
w1 A Hn is supported on the smallest subcomplex Yo, 13 C M;O;nj (@}
which contains all the cells parametrized by ordinary ribbon graphs whose ¢-
th hole is bordered by 2743 edges. Then we dissect Yo, 3 into subcomplexes
VZQT 13 according'to the topology of the ¢-th hole. In this way the restriction
of Hy to each ?;T 3 is generically a fibration whose fibers F' are simplicial

complexes of dimension 2r + 2. Hence

¢r+1vHo77_ / /wr—i—l
/Mwmb o) Z Ho(Vara) JFi

Pu{q}
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and we get the result analyzing H (?;T 1 3) and computing the integral on the
fibers. For example, the class W1 arises as image via Hg of top-dimensional
simplices when the hole ¢ is contractible, i.e. no edge borders the hole ¢

from both sides. In this case the fiber is just one simplex and the integral

(r+1)!
(2r+2)!"

on the fiber is exactly

Theorem A. For any g and n > 1 the equality

2r+2)!

1174 _
W2r+3 - (7“—|—1)! q

holds in H2T+2(ﬂg,pu{q}) up to terms in the kernel of
Heg—6+2n—2r(Mgy pugqy) — Hoeg—6+2n—2-(Myp,0Myp). As a conse-
quence
0 ifr=-—1
Warss = { [M,.p] ifr =0
21t (2r + Dk, ifr>1
holds in H*" (M, p) up to boundary terms.

In fact our proof shows more as it determines quite precisely the bound-
ary terms Egr 43 and §2r+3 up to some uncertainty. As an example we have
the following corollary which was already proven by Arbarello and Cornalba

in a very different manner [AC96].

Corollary A.1. For every g andn > 1 such that 2g—24n > 0 the following
equality
Ws = 1261 — Gipr — Z dgr.1
g I#£0,P

holds in Hz(ﬂgvn;(@) up to Poincaré duals of elements in the kernel of
Hey—s+on(Mgyp; Q) — H6g78+2n(ﬂlg7p;Q), where O 18 the divisor of
irreducible surfaces with one node and 0y 1 is the divisor of surfaces with
two components of type (¢',I) and (g — ¢, P\ I) intersecting in a node.

Next we pass to a general combinatorial class Wm*7p. As explained

o~ .
before, we recover them as push-forward of some Wi, ,p on MFpl, via

o~

mg. However the notations and the results about the classes W,,, , p are
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quite heavy to state, so here we content ourselves to state the theorem in the
simpler case of Wm p and we refer to Chapter 5 for more complete results.

The techniques are analogous as in the proof of Theorem A but here new
combinatorial problems arise. However the only new idea is to think of the
retraction Hy : MZ?ZLSQ — MZ??SQ as a sequence of shrinkings HY of the
holes ¢; in a fixed order and then to reduce the problem to the shrinking of
one hole only, which we have already dealt with before. Now we just state
the main result.

For every m, = (0, mg, m1,ma,...) choose Q' such that |Q'| =>",~; m;
and a p: Q' — N such that [p~1(j)| = m; for all j > 1. Let P be the set
of partitions of Q" and for all u C Q' define py, = >, , p(4).

Theorem B (simplified version). For any g and n > 1 the following

relation holds in H*(Mg p) up to boundary terms:

2200 PO TT (25(q) + DI | Y Koy =
qu/ UGGQ/

my (M) —
= > “mgl W an),p

ME‘BQ/

where m;(M) = [{p € M|p, = i}| + diomo and

e (2p, + DN

25, + 2| — !
=Tl i (20, +2|pl — 1)
pneM

and moreover K.(s) is a monomial in the kappa classes (see Section 1.3).

The theorem gives an inductive recipe on |@Q’| to calculate all the coeffi-

cients of f,,,. As an example we have the following.

Corollary B.2. For every nonnegative g and positive n such that
29 — 2+ n >0 and for every a,b > 1 the following identity

25a’b/W2a+1’25+1 = 2“+b+2(2a + 1)”(2[) + 1)!!(Iﬂ7alﬂ7b + Kuaer)
— 29T (20 4+ 2b + 3) kg

holds in H***2(M,, p; Q) up to boundary terms.
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Chapter 1
The geometric point of view

In this chapter we recall some basic definitions and some elementary facts
from the theory of moduli spaces of curves. We follow Teichmiiller’s point
of view but we introduce also the Deligne-Mumford compactification and
its stratification by topological type. Then we define the tautological ring
and its cohomological analogue and we recall some properties of the psi
and kappa classes that will be useful later. In the last section we construct
a slight modification of Kontsevich’s compactification of M, p which is a
quotient of Deligne-Mumford’s one. We explain why the contraction map

cannot be a morphism of schemes but just a continuous surjection.

1.1 The Teichmiiller functor and the moduli space
of Riemann surfaces

Let S be a compact connected oriented surface of genus g and let P «— S

be an injection of n points such that 2g — 2 4+n > 0.

Definition 1.1.1. A family of P-pointed surfaces is a couple (7, s) where
7w : C — B is a proper differentiable submersion whose fibers are oriented
connected surfaces and {s, : B — C|p € P} is a collection of disjoint sec-

tions. An (S, P)-marking is an equivalence class of oriented diffeomorphisms

f:SxB-=¢C
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that commute with the projections onto B and such that f(p,b) = s,(b) for

every p € P. Two markings f ~ f are equivalent if and only if
flof:(S,P)x B— (S,P)x B
is vertically (i.e. over B) isotopic to the identity relatively to P.

A conformal structure on S\ P is an atlas such that the changes of coordi-
nates are differentiable and preserve the angles. There is an obvious bijection
between conformal structures and complex structures (via isothermal coor-
dinates) and between conformal structures and Riemannian metrics up to
multiplication by a positive function. Remark that every complex structure

on S\ P can be extended to the whole S in a unique way.

Definition 1.1.2. Let (7, s) be a family of P-pointed surfaces. A conformal
structure on (, s) is a differentiable atlas of C which endows Cp, \ Us,(b) with
a conformal structure for all b € B; equivalently, it is a family of metrics Ay
on Cp \ Usp(b) smoothly depending on b up to multiplication by a positive
function on C \ Us,(B).

We say that two marked families (C, f) and (C’, f’) of P-pointed sur-
faces with conformal structure are isomorphic if there is a diffeomorphism
t:C — (' such that to f’ = f and the restriction to each fiber ¢, : C;, — Cj,
is conformal outside the sections.

The Teichmiiller functor
Ts,p : (Top. Spaces) — (Sets)

associates to every manifold B the set of isomorphism classes of (S, P)-
marked families of P-pointed surfaces over B with conformal structure. It
is represented by a complex smooth manifold 75 p analytically isomorphic
to a ball of complex dimension 3g — 3 +n. Except in the case (g,n) = (0, 3)
it is never compact.

The modular group I's p := Diff { (S, P)/Diffo(S, P) of connected com-
ponents of the space of oriented diffeomorphisms of (S, P) acts on the

(S, P)-markings and so on Tgp. Its quotient is denoted by 9, p and
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classifies smooth families of compact P-pointed Riemann surfaces of genus
g. For g = 0 this functor is represented by a smooth affine variety of com-
plex dimension n — 3. On the contrary 9, p is not represented by a space
for ¢ > 1 (due to the existence of Riemann surfaces with nontrivial auto-
morphisms); hence the topological quotient Mg p := 75 p/I's p which is a
normal quasi-projective irreducible variety of (complex) dimension 3g—3+n
is only a coarse moduli space.

The functor M, p admits a natural extension ﬁg, p that classifies flat
families of stable P-pointed complex curves of (arithmetic) genus g, where
stable means that the singularities look like {zy = 0} C C? in local analytic
coordinates and that each connected component of the smooth locus has
negative topological Euler characteristic. The functor 90, p hass a coarse
moduli space ng p which is a normal irreducible projective variety with quo-
tient singularities and which contains M, p as a Zariski-dense open subset.
It can be seen that ﬁg7 p is in fact represented by a smooth Deligne-Mumford
stack M, p (or an orbifold) which is proper and connected. As before, the

stack Mo p is in fact a smooth projective variety.

1.2 The system of moduli spaces of curves

Many facts suggest that one should not look at the moduli spaces of
curves ﬂg,n each one separately, but one must consider the whole system
(M97n)2g,2+n>0. An evidence is given by the existence of three families of

maps that connect different moduli spaces.
1. The forgetful map is a projective flat morphism
g My puggy — Mg,p

that forgets the point ¢ and stabilizes the curve (i.e. contracts a pos-
sible two-pointed sphere). This map can be identified to the universal

family and so is endowed with natural sections

1907{77'27‘]} : Mgvp - MQ»PU{Q}

for all p; € P.
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2. The boundary map corresponding to irreducible curves is the finite
map

,192'7‘7- : Mg-l}PU{pCp”} Mg7P

(defined for g > 0) that glues p’ and p” together. It is generically 2 —1

and its image sits in the boundary of M, p.

3. The boundary maps corresponding to reducible curves are the finite
maps

Vg1 Mg’,lu{p’} X Mg—g’,ICU{p”} My.p

(defined for every 0 < ¢’ < g and I C P such that the spaces involved
are nonempty) that take two curves and glues them together identify-
ing p’ and p”. They are generically 1 — 1 (except in the case g = 2¢’
and P = () when the map is generically 2 — 1) and their images sit in

the boundary of M, p too.

The boundary maps naturally define Cartier divisors in ﬂg, p corresponding
to their images. We will denote by 4., C M, p and dg.1 C M, p the cycles
supported on the image of ¥ and ¥4 1 respectively.

We observe that Mg, p has a natural stratification by topological type of
the complex curve. In fact we can attach to every stable curve S its dual
graph vs whose vertices correspond to irreducibile components and whose
edges correspond to nodes of S. Moreover every vertex is labelled by a couple
(9v, Py), where g, is the geometric genus of the component S, associated to
v and P, C P is the set of marked points lying on S,. Moreover we call @,
the singular points of S,.

For every such labelled graph v we can construct a boundary map
797 : HMQ’LMPUUQ’U - MQ:P
v

which is a finite morphism. We call its image 9.

When there is no risk of confusion, we will denote by the same symbol
the cycles and the associated classes in the Chow ring (or in cohomology).
Remember by the way that the moduli spaces ﬂ% p of complex projective

stable curves have also the structure of smooth proper Deligne-Mumford
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stacks over C (or of compact analytic orbifolds). So it is possible to define

the Chow intersection ring with rational coefficients CH* (M, p)g (in fact

it is also possible to define integral Chow rings such that CH*(Mg p)g =

CH*(My,p) © Q).

1.3 Tautological classes

All the maps we have defined are in some sense tautological as they are very
naturally constructed and they reflect intrinsic relations among the various
moduli spaces. It is apparent that one can look at them as classifying maps in
the Deligne-Mumford stack M, p, which obviously descend to maps between
coarse moduli spaces. Hence we can consider all the cycles obtained by push-
forward or pull-back via these map as tautologically defined. However there
is an ingredient we have not considered yet: it is the relative dualizing sheaf
of the universal curve m,. One expects that it carries many informations
and that it can produce many classes of interest.

Denoted by wr, the relative dualizing sheaf, define the Miller classes as

Py, = c1(Li) € CHI(HQ,P)Q

where L; := 45 . 1w, and the modified (by Arbarello-Cornalba) Mumford-

Morita classes as

Ry 1= ()01, (3 do,gp0)) 1) € CH My p)o

T

One could moreover define the [-th Hodge bundle as E; := (wq)*(w@)j) and
consider the Chern classes of these bundles (for example, the lambda
classes \; := ¢;(E;)). However, using Grothendieck-Riemann-Roch, Mum-
ford [Mumg83] and Bini [Bin02] proved that ¢;(E;) can be expressed as a
linear combination of Mumford-Morita classes up to elements in the bound-
ary, so that they do not introduce anything really new.

When there is no risk of ambiguity, we will denote in the same way the

classes ¥ and k belonging to different ﬂ% p’s as it is now traditional.
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Because of the natural definition of k and 1 classes, as explained before,
the subring R*(My p) of CH*(Mg p)g they generate is called the tauto-
logical ring of My p. Its image RH*(M, p) through the cycle class map is

called cohomology tautological ring.

The system of tautological rings (R*(Mgp) C CH* (Mg p)g )2g—2+n>0
is the minimal system of subrings that contain the classes k and 1 which is
closed under the push-forward maps ., (i)« and (J4 1)«. The definition
is the same for the rational cohomology.

As it is evident from the definition, the classes psi and kappa are very

strictly related. In fact

i—1
(M) (gt -y = D gt
{i|r;>0}

b1
()« (W -~ Upntby ) = Uy - Uiy

where the first one is the so-called string equation and the second one for
b = 0 is the dilaton equation. They have been generalized by Faber for maps
that forget more than one point in a formula which can be proven using the

second equation before and the relation
TFZ(F&]‘) = Rj — 1/}5

Let Q := {q1,...,qm} and let mg : My pug — Mg p be the forgetful
map. Then

(@)s (Y - Wpbgs ™ - U™ = UG U K
where Ky, .., = D ges,, Fbo) and Ky is defined in the following way. If
v = (c1,...,¢) is a cycle, then set b(7y) := 22:1 be;- If 0 =71+, is the
decomposition in disjoint cycles (including 1-cycles), then we pose ky(,) =
[Ti1 fp(yy)- We refer to [KMZ96] for more details on Faber’s formula, to
[AC96] and [AC98] for more properties of tautological classes and to [Fab99]

for a conjectural description of the tautological rings.
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1.4 Kontsevich’s compactification

It has been observed by Witten [Wit91] that the intersection theory of kappa
and psi classes can be reduced to that of psi classes only by using the push-

pull formula with respect to the forgetful morphisms. Moreover recall that

Yp=c1 (Wwp (Dp))

on Mg p, where D), = Zp’G p 00 {pp'}- S0, in order to find a “minimal” pro-
jective compactification of M, p where to compute the intersection numbers
of the psi classes, it is natural to look at the maps induced by the linear sys-
tem L:= 3" pwr,(Dp). It is well-known that L is nef (Arakelov) and big,
so that the problem is to decide whether LL is semi-ample and to determine
its exceptional locus Fx(IL®!) for [ >> 0.

It is easy to see that L&' pulls back to the trivial line bundle via the
boundary map My 1,3 X {C} — Mg p, where C'is a fixed curve of genus
g — ¢ with a P U {p”}-marking and the map glues p’ with p”. Hence the
map induced by the linear system L% (if base-point-free) should restrict to
the projection Mg,{p/} X Mg_g/’Pu{p//} — Mg_g/’pu{p//} on these boundary
components.

While L is semi-ample in characteristic p, it is not in characteristic 0
(Keel [Kee99]). However one can still topologically contract the exceptional

(with respect to L) curves to obtain Kontsevich’s map
—-— ——
§/ : MSLP - Mg,P

which is a proper continuous surjection of orbispaces. A consequence of
Keel’s result is that the coarse M/% p cannot be given a scheme structure
such that the contraction map is a morphism. It is in some sense unexpected
because the morphism behaves as if it were algebraic, in particular the fiber
product M, p N, M;,P is projective.

So now we leave the realm of algebraic geometry and proceed topolog-
ically to construct and describe this different compactification. In fact we
introduce a slight modification of Kontsevich’s construction (see [Kon92|)

which will be very useful in the future. We realize it as a quotient of
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M% p X Ap by an equivalence relation, where Ap is the standard simplex
Ap:={l¢€ Rgol EpGP l, =1}.

If (S,1) is an element of M, p x Ap, then we say that an irreducible
component of S is positive (with respect to [) if it contains a point p € P
such that [, > 0. Similarly we say that a vertex v of the dual graph ~g is
positive if the associated irreducible component S, is.

Next we declare that (S,1) is equivalent to (S',1") if | = I’ and there
is a homeomorphism of pointed surfaces S — S’ which is analytic on the
positive components of S. As this relation would not give back a Hausdorff
space we consider its closure, which can be described as follows.

Given (5, 1) as before, consider the following two moves on the dual graph

Vst

1. if two nonpositive vertices v and v’ are joined by an edge e, then we can
build a new graph discarding e, melting v and v’ together and obtaining

a new vertex w which we label with (g, Pw) := (9o + gv, Py U Py)

2. if a nonpositive vertex v has a loop e, we can make a new graph

discarding e and labelling v with (g, + 1, P,).

Applying these moves to g iteratively until the process ends, we are given

red red

back a reduced dual graph vg7'. Call Vo(S,1) the subset of vertices v of v
such that [, = 0 for every p € P, and V4 (S,1) the subset of positive vertices

red

of V5T
For every couple (S, 1) denote by S the quotient of S obtained collapsing
every nonpositive component to a point. Given (S,1) and (S’,1') it is clear
that a homeomophism S — S’ of P-pointed spaces induces an isomorphism
of graphs vg‘fld — 75??;/ which does not necessarily preserve the labels g,.
We say that (S,1) and (S’,1') are equivalent if [ = I’ and there exists
a homeomorphism f : S — S’ whose restriction to each component is

red

analytic and which induces an isomorphism f7¢¢ : 7] N yg?‘%, of reduced

dual graphs. Finally call

5 :M%p X AP —>Mﬁp = M%p X AP/N
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the quotient map and remark that ﬂﬁp is compact and that £ commutes
with the projection onto Ap.

For every [ in Ap we will denote by Mﬁp(l) the subset of points of
the type [S,!] and we will write ﬂﬁp(L) for UleLﬂﬁP(l) where L C Ap.

.. A .. .
Then it is easy to see that M, p(A%) is in fact homeomorphic to a product
Mﬁp(l) x A% for any given | € A%. Observe that Hﬁp(l) is isomorphic to

ﬂ’g,p for all I € A% in such a way that
- -— ——A
§: Mgp = Mg p x{l} — M, p(l)

identifies to &'.
Notice by the way that the fibers of £ are isomorphic to moduli spaces.
More precisely consider a point [S,!] of ﬂﬁp. For every v € Vy(S,1) call

), the subset of edges of 'ygeld outgoing from v. Then we have the natural

isomorphism

s = I Meroa,
veVL(S,1)

according to the fact that Mg,p X7, M p is projective.

/
M,






Chapter 2

The combinatorial point of

view

Now we want to introduce a different approach to the moduli space of Rie-
mann surfaces, namely we want to give simplicial or cellular structure to the
objects we have met so far. First we define the arc complex (see [Har88]) and
we describe how an open subset of it triangulates M, p when P is nonempty.
In this description, simplices are parametrized by systems of disjoint arcs
between couples of punctures and ribbon graphs appear in some sense as a
dual notion. However they become the central object when we want to deal
with stable surfaces. We follow Looijenga’s treatment (see [Loo95]) and look
at stable surfaces as degeneration of smooth surfaces obtained by iterated
collapses. In this way we can define a modified arc complex using stable rib-
bon graphs that nearly cellularizes the Deligne-Mumford compactification
M, p. In the last section, we cellularizes Kontsevich’s compactification (see
[Kon92]) by means of ordinary ribbon graphs and we illustrate how these

different complexes are related to one another.

2.1 The arc complex

Fix a compact connected oriented surface S of genus ¢g and an injection
P:={pi,...,pn} — S with n > 0.
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Let A be the set of isotopy classes relative to P of embedded unoriented
loops or arcs a C S that intersect P exactly in the extremal point(s). The
arc complex is the abstract simplicial complex A(S, P) whose k-simplices
are subsets & = {ap,...,ax} of A that are representable by a system of
k 4+ 1 arcs and loops intersecting only in P. We will denote its geometric
realization by |A|.

A simplex a = {ayp,...,ar} of A is called proper if its star is finite, or
equivalently if S \Ufzoai is a disjoint union of open disks, each one containing
at most one point of P. The subset Ay, C A of improper simplices is a
subcomplex; we denote A° := A\ Ay the subset of proper ones and by |A°|
its “geometric realization” |A|\ |As|.

We will associate a marked ribbon graph G, to every proper simplex «
in a natural way and a metric on G, to every internal point of |«|. Let us

fix some notation first.

Definition 2.1.1. An (ordinary) ribbon graph G is a triple (X(G), 09, 01)
such that X (G) is a nonempty finite set, og is a permutation of X (G) and
o1 is a fixed-point-free involution of X (G). Let denote by X;(G) the set of
orbits in X (G) with respect to the action of o; for i = 0, 1.

Observe that this definition is equivalent to the intuitive one given in
terms of a graph plus a cyclic ordering of the half-edges outcoming from
each vertex (see Fig. 2.1). In fact we should look at X(G) as the set of
oriented edges of G, at Xo(G) as the set of vertices and at X;(G) as the
set of unoriented edges. So we can identify o9 with the operator that sends
an edge outcoming from a vertex v to the following edge outcoming from v
with respect to a given cyclic order, and o7 with the operator that simply
reverses the orientation of the given (oriented) edge.

Given an oriented edge € in X (G) we will denote by e = [€]1, [€]op and
[€]co its classes in X1(G), Xo(G) and X (G) respectively.

Observe that there is a natural bijection between connected components
of the ribbon graph G and orbits in X (G) under the action of the subgroup
(00,01) C 6(X(G)). Finally we can define 0o, requiring that osco100 = 1,
so that X (G) naturally corresponds to the set of holes of G and o, rotates
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Figure 2.1: Geometric representation of a ribbon graph

the edges that border each hole. To each ribbon graph (X (G),09,01) we
can associate a dual one G* := (X (G), 0!, 01) such that (G*)* = G.

Definition 2.1.2. A P-marking of G is an injection
z: P — Xo(G)U Xx(G)

such that X (G) is in the image of x. A metrized ribbon graph is a couple
(G, 1) where G is a ribbon graph and [ is a unital metric on G, i.e. a point

of Ag(l(G)'

We call (G, x) reduced if every unmarked vertex has valency greater than
two. One can associate a reduced marked ribbon graph (G,7) to any (G, )
(provided it is not a one-pointed or two-pointed sphere) simply “forgetting”
bivalent vertices and contracting unmarked tails (i.e. edges with a univa-
lent unmarked extremal point), so that a metric on (G, z) descends to its
reduction.

To each proper simplex a = {ay,...,q;} we can associate a connected

ribbon graph G7, simply taking as X (G%,) the set of oriented versions of the
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«;’s, as o1 the sense-reversing operator and making oy rotate edges outcom-
ing from a point p counterclockwise with respect to the given orientation of
S. It is easy to see that G, := (G})* inherits a P-marking: we call it the
“dual” ribbon graph associated to «. By the way, notice that G, can be

“concretely” realized as embedded in S.

Actually, it is clear that a point a of |a|® C |A°| correspond to a unital
metric on G}, and so on G,. Moreover, if X : |[A| — Ap is the simplicial
map that sends a vertex {a} of |A| to the barycenter of the extremal points
of the arc « (or to the extremal point if a is a loop), then the restriction of
A to a proper simplex is the circumference function of the associated ribbon
graph, that is it sends a metrized ribbon graph (G, a) to the point whose
p-th coordinate is half the perimeter of the p-marked hole (it is zero in the

case in which p marks a vertex).

To each metrized ribbon graph (G,a) we can canonically associate a

Riemann surface

S(G,a) = H T /N

eeX (@)

where Tz = [0, e(a)] x [0, 00]/[0, e(a)] x {oo} and ~ is the equivalence relation
generated by Tz > (£,0) ~ (e(a) —t,0) € T, () and Tz > (e(a), s) ~ (0,s) €
T, (&- Call Ty the image of T, under the above identification and (if G
is P-marked) 7}, the union of the T;’s for all € € x(p) and notice that the
conformal structures on T\ ({oo} U{0} x {0}U{e(a)} x {0}) C R? = C glue
to give a conformal structure on S(G) minus a finite set. So we get a well-
defined unique complex structure on S(G) and it is clear that a P-marking
descends to 2’ : P — S(G, a), thus determining a well-defined isotopy class
of homeomorphisms (S, P) — (S(G,a),2'(P)) and a continuous classifying

map

U |A°(S,P)| — Ts.p

to the Teichmiiller space.



2.2 Strebel’s theorem 15

2.2 Strebel’s theorem
Consider the continuous application
(W,2) 1 |A°(S, P)| — To,p x Ap

which is clearly I'g p-equivariant. We want to say that it is an homeomor-
phism, so we need to prove that it is bijective and open.

Remember how we constructed the metrized surface S(G,a): every
Tz C R? ~ C has the flat metric dz ® dz. Then notice that the holomorphic
quadratic differentials dz? on each T glue to give a global meromorphic dif-

ferential # on S(G,a). It is regular outside z(P) and has quadratic residues

__1
472

ries defined by Arg(f) = 0) are either closed or critical (i.e. they begin and

(2X(p))? at z(p). Moreover its horizontal trajectories (i.e. the trajecto-

end in a zero or a simple pole of 3). In particular the k-th order zeroes of
B correspond to (k + 2)-valent vertices of G and the critical graph of 3 (i.e.
the union of all critical horizontal trajectories) corresponds to the union of
the edges of G.

Definition 2.2.1. A meromorphic quadratic differential 3 on a Riemann
surface S’ is called Strebel differential if its closed horizontal trajectories

cover the surface S’ up to a subset of measure zero.

It can be proved that nonclosed horizontal trajectories of a Strebel dif-
ferential are necessarily critical and in fact there are only finitely many of
them.

Summarizing, given a metrized ribbon graph G with a P-marking we
can construct a P-marked Riemann surface S’ plus a Strebel differential 3
on S’ whose critical graph corresponds to G. Conversely, given a P-marked
Riemann surface S’ plus a Strebel differential 3 we can define a P-marked
metrized ribbon graph G from the critical graph of (.

Now we are ready to understand the full strength of the following result.

Theorem 2.2.2 (Strebel, [Str67]). Let S’ be a compact Riemann surface

and P' C S" a nonempty subset (such that P' contains at least two points
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if 8" is a sphere). Then for every function h : P' — Rxq there exists a
unique Strebel differential 3(S’, P',h) on S’ that is holomorphic on S"\ P’

and which has a double pole on every p' € P'\ h=1(0) of quadratic residue

__1
472

(2h(p'))? and at most a simple pole on every p’ € h=1(0).

This assures that the map (¥, \) is bijective. In fact the previous theorem
provides a set-theoretic inverse of (¥, \).

We are left to prove that the map is open. The quickiest way to do
that is to notice that |A°(S, P)| can be given a structure of differentiable
manifold compatible with the piecewise linear one (see [HM79]), hence W is
an open map by invariance of domain.

As a consequence, we get the desired isomorphism
P : |A°(S, P)|/Tsp — Myp x Ap
of orbifolds.

Remark. We may notice that one can construct a tautological family of
Riemann surfaces C — |A°(S, P)| whose restriction over a simplex « is real-
analytic. So W is continuous by the universal property of the Teichmiiller

space and V|, is real-analytic for every c.

2.3 The modified arc complex

Let Z C X1(G) be a nonempty subset of edges of an ordinary connected
ribbon graph G. We can construct two new ribbon graphs. The subgraph
Gz = (X(Gz),0),0) has X(Gz) equal to the set of orientations of edges
in Z, its o} is the natural restriction of oy and its of, sends an edge to the
next one belonging to X(Gz) with respect to the cyclic order induced by
0o. If Z does not coincide with X3 (G), then Gz has some new exceptional
holes corresponding to orbits in X(Gz) C X(G) under o/, which are not
orbits under the action of 0.

Consider now a proper subset Z of X;(G). Then the quotient graph
G/Gz has X(G/Gy) equal to X(G) \ X(Gyz), its o} is the restriction and
its o/ sends an edge to the next one of X (G/Gz) with respect to the cyclic
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order induced by 0. If Z is nonempty, then G/Gz has exceptional vertices
corresponding to orbits in X(Gz) C X(G) under o, that are not orbits

under the action of oy.

Notice that there is a canonical correspondence between exceptional ver-
tices of G/Gz and exceptional holes of Gz (see Fig. 2.2). In fact consider
an exceptional hole H of Gz. For every (oriented) edge € € H call bz > 0
the minimum integer such that Ulagg (€) belongs to H. Then the subset
{oi(€)]€ € Hand0 < i < bz} is the corresponding exceptional vertex in
G/Gz. Conversely, given an exceptional vertex V of G/Gz and an € € V
call bs > 0 the minimum integer such that o3¢0y (¢) belongs to V. Then
{o10%,01(€)]€ € Hand0 < i < bz} is the corresponding exceptional hole in

“ﬁ N

V exceptional vertex
H  exceptional hole

Figure 2.2: Example of correspondence between exceptional holes and ex-

ceptional vertices
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To introduce the definition of stable P-marked ribbon graph think at
how an ordinary metrized P-marked ribbon graph G can degenerate: it
happens when the lengths of a subset Z of edges go to zero. As we can work

componentwise, we suppose Z connected. Then various cases can occur:

1. Z is a tree and contains at most one marked point, so it is contractible:
then we can collapse it to a vertex and put if necessary the marking

on it, that is we simply obtain G/Gz (see Fig. 2.3)

€8

€9

€10
€ &
o e o
€6

€5

€4

€2 €3

G/Gy

€1
€2 €3

Figure 2.3: Example of contractible subset Z of edges

2. Z is homotopic to a circle and has no marked points, so we call it
semistable. If Z surrounds a single hole, then it shrinks to a vertex
which inherits the marking in G/Gyz; otherwise G/Gz contains two

exceptional vertices (see Fig. 2.4)

3. if Z is neither contractible nor semistable, then its collapsing gives
rise to a new irreducible component. If Z contains no unmarked tails,
then we call Z a stable subset. Notice that every Z contains a maximal
stable subset Z%! (see Fig. 2.5).

Now we want to produce a stable version of ribbon graphs successively col-

lapsing semistable or stable subsets of edges.
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G G/Gy

Figure 2.4: Example of semistable subset Z of edges

Given an ordinary connected P-marked ribbon graph (G,z), we call
Ze = (Zo,Z1,...,2ZK) a permissible sequence for (G,z) if Zy = X1(G) and

Ziy1CZ ;t is a nonempty subset not containing a whole component of Z j‘?’t

for every j = 0,...,k — 1. Given such a Z, we can produce a (quasi)stable
P-marked ribbon graph taking the triple (G(Z,), ¥, t) where
G(Za) := (GZO/GZ1) U (Gzift/Gzz) Ue-- (GK/GZIC) UG

sty
Zk'

T: P — Xoo(G(Z,)) U Xo(G(Z,)) is induced by z and ¢ is a fixed-point-
free involution that exchanges every exceptional hole with its corresponding
exceptional vertex. The “stabilized” P-marked ribbon graph is simply ob-
tained discarding possible unstable components, namely unmarked spheres
with two exceptional holes, and making ¢ exchange the two corresponding
exceptional vertices. In any case, ¢ never exchanges two holes. We say that

the (stable) components of G/Gz,,, have order i and we define H; as the

i+1
set of holes belonging to components of order ¢ and V; as the set of marked
or exceptional vertices belonging to components of order i. Finally we say

that X := U;(H; UV;) is the set of special points.
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() G, o

Figure 2.5: Example of stable subset Z*! of edges

Definition 2.3.1. A stable metric with respect to Z, is a sequence of metrics
(ai)fzo where ag € A%O\ Z and a; is a metric on ﬁ\ Zi+1 which is unital

on every irreducible component.

So given a stable metric for Z, we can build a stable marked Riemann
surface S(G, Zs, ae). In fact we first consider the disjoint union of the sur-
faces S(Gw/Gz,,,,a:) for i = 0,...,k and then we identify some pairs
of points according to . Remark that there is an extended circumference

function
k

A : {unital metrics on S(G, Z,)} — HAHz‘
1=0

that restricts to a map A := Ag : {unital metrics on S(G, Zs)} — Ap.
Remark. Let C be a stable P-marked Riemann surface and let
v:C = u;,C; — C

be its normalization. Let P; := v~}(P) N C; and Q; := v~ (nodes) N Cj.
Consider the set Cir(C') of all circumference functions A associated to P-
marked stable ribbon graphs G(Z,) such that S(G, Z,) is a stable P-marked
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order 0 order 0
order 2 ’

e belongs to V) belongs to H
Gz/Gz, o e !

= belongs to V; o belongs to Hoy

Figure 2.6: Example of iterated collapses

surface homeomorphic to C. Then the elements of Cir(C) take values in
[1; Ap,ug;, so that we can define Im(C'ir(C')) C [[; Ap,uq, as the union of
the images of all A’s in Cir(C'). Notice that for any | € Ap we can define
the subset Cir(C,1) C Cir(C) of circumference functions A such that their
restrictions \ is constantly I. It is easy to see that both Ciir(C) and Cir(C, 1)

are simplicial complexes.
Now we can give the formal definition of stable P-marked ribbon graph.

Definition 2.3.2. Consider a metrized (possibly disconnected) ribbon
graph G with an injection = : P — ¥ in a subset of “special points”
Y C Xo(G) U Xo(G) containing X (G) plus a fixed-point-free involution
¢ acting on the set of “exceptional points” ¥\ z(P). We say that an order
function that assigns a natural number to each connected component of G

is admissible if
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- components of order 0 contain at least a P-marked hole

- if © exchanges each point of the component G; with a point in a com-
ponent of order < k then G; has order <k +1

- every h € Xoo(G) \ z(P) belongs to a component of order & > 0 and
the point ¢(p) sits in a component of order at most £ — 1 (and so is a

vertex).

We call (G, z,t) a P-marked stable ribbon graph if there exists an admissible
order function on G and we say that (G, z, ) is reduced if (G, x) is. A stable
metric on (G, z,t) is the datum of a unital metric a; for every connected

component G of G.

Now let a(G) be a proper simplex of A whose associated marked ribbon
graph is G = G,. Consider the set Z(G) of connected stable subsets of
X1(G) and for every a € |a(G)|° and every Z € Z(G) let |a(G)|° — |a(G)]
be the projection to a face. Define &(G) to be the closure of the graph of
the map

a(@)° = [a(@)|x [] la(Gy)l
ZeZ(G)
in |o(G)| x [Tla(GZ)l.

It can be proven that &(G) parametrizes all stable degenerations of the
ribbon graph G. Moreover all the &’s can be glued to obtain a modified
arc complex A. Remark that E(S, P) comes with an obvious cellularization
indexed by permissible sequences: for every Z, = (Zy,...,Z) there is a
(closed) cell isomorphic to |agp| X - - X |ag| that parametrizes stable metrics
on G(Z,). The projections |ag| x - -+ X |ag| — |ag]| glue to give a continuous
surjection A(S, P) — |A(S, P)| which is actually a quotient (i.e. |A(S,P)|
has the quotient topology).

Theorem 2.3.3 ([Loo95]). The modular group T'y p naturally acts on

~

A(S, P) respecting the cellularization. The product of the classifying map

A(S,P)/Tsp — M, p
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with X is a continuous surjection
©: A(S,P)/Ts,p — Mgp x Ap

that extends ®, so it is one-to-one when restricted to the dense open subset
|A°(S, P)|/T's,p. More precisely the fiber of ® over (C,1) naturally identifies
to Im(Cir(C,1)).

In what follows we will always identify Ap x Ry with ngo \ {0} and we
will still denote by d the map

® s Mp" = (A(S, P)/Tsp) x Ry — My p x (RE\ {0}).

2.4 The ribbon graph complex

Here we introduce the last complex we are interested in, which is due to
Kontsevich (see [Kon92]). The point of view is reversed: the central object
is the ribbon graph and no longer the arc system.

Form the category RG, p of P-marked ribbon graphs of genus g as
follows. Its objects are the ribbon graphs G, with a in A°(S, P), and
its morphisms are compositions of isomorphisms of pointed ribbon graphs
and contractions of one edge. Denote by M (resp. M) the functor
RG,.p — (Top. spaces) that associates (Jo|N|A°|) x R4 (resp. |a| xRy) to
every G,, and by M;?Fb (resp. ﬂ;f;"‘b) its limit functor. Remark that both

functors are represented by orbicellular complexes and that M;?};”b C ﬂ;?;lb

embeds as a dense open subspace. Moreover we can define a circumference

function A : M;?;nb — ngo \ {0} as in the case of the arc complex.

. .. - b . .
Remark. Notice that our definition of Mg%"b and M;?}n slightly differs
from Kontsevich’s one. In fact we allow some holes to have perimeter zero
(i.e. we admit marked vertices) while Kontsevich does not. Briefly Kontse-
omb ——comb

\_Iich’s spaces are obtained from ours by intersecting M; P and M, p~ with
A RD).
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We observe that the points of Mgf’}l””b correspond to the following data:

- a connected graph 7 (the “dual graph of the pointed surface”) with
vertices labelled by pairs (g, P,) such that L,P, = P and h'(y) +

Z'Ug’l) :g

- a subset Vi of vertices of v (the “positive vertices of the dual graph”)

- for every vertex v € Vi an ordinary P, U Q,-marked ribbon graph
(Gy,xy) of genus g with (nonunital) metric such that @, marks only
vertices of G, where ), bijectively correspond to the set of half-edges

of v outgoing from v.

We require moreover that no edge of v joins two nonpositive vertices (the
dual graph v is “reduced”).

It is clear that an isomorphism G, — G, of ribbon graphs with
a,af € A°(S,P) lifts to an isotopy class of oriented diffeomorphisms
(S,P) — (S, P). So the natural map (|A°(S, P)|/Tsp) x Ry — ./\/l;?}”b

is a homeomorphism and commutes with A and ), hence
Mgp x (REg\ {0}) — MyR?

is a homeomorphism too. At the same time the continuous surjection

T (JA(S, P)|/Ts.p) x Ry — My
(naturally induced by the definition of ﬂ;f’}.!‘b) is a quotient and the preim-
age of a point can be described as follows. Pick a point (v, Vi, {Gy})
in ﬂ;?}?b and consider the disjoint union of the marked surfaces X :=
Uvev, (S(Gy,xy) \ Qu), so that each point of @, corresponds to an ideal
boundary component of X, := S(Gy,x,) \ Qy. An orientation-preserving

embedding of f: X < S is admissible if

- for every positive v the restriction of f to S(Gy, )\ Q, preserves the

P,-marking

- every edge joining two positive vertices v and v (which determines
points ¢ € @, and ¢’ € Q) corresponds to a cylinder in S\ f(X)
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that connects the ideal boundary components of f(X,) and f(X,)

corresponding to q and ¢’ respectively

- every nonpositive w corresponds to a connected component Cy, of S\
f(X) of genus g, which contains P, and every edge of v joining w
with a positive v (which determines a point ¢ in @Q,) corresponds to
the ideal boundary component of f(X,) labelled by ¢ coinciding with
a boundary component of C,.

Then 671(6’) can be identified to AdmEmb(G*, S)/Diff (S, P).

Finally it is easy to see that d set-theoretically descends to a well-defined
R: M;?,Tb — Mﬁp x Ry. We want to show that R is a homeomorphism.
To see that R is continuous it is sufficient to prove that //\/\l;?fg”b — Mﬁp xR
is. This is obvious as this map is exactly £®. Bijectivity relies again on
Strebel’s result applied componentwise; moreover R is proper, hence closed.

We summarize the preceding observations in the following commutative

diagram
(JA°(S, P)|/Ts,p) x Ry
(|A(S, P)|/Ts,p) x Ry Mgt
My (IA(S. P)|/Ts.p) x Ry
ié
C My,p x (RE;\ {0}) ——— M 5"
— |
My,p x (R, \ {0}) : M2, xR,

and we recall that £ is the map that collapses nonpositive components so

that its fibers are isomorphic to products of smaller moduli spaces; while ®
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is the classifying map of Looijenga’s modification of the arc complex and its
fibers are the simplicial complexes Cir(C,[) of circumference values. The
map M\;‘fg‘b — (JA(S, P)|/T's,p) x Ry is the natural projection, so it is a
sort of simplicial “blow-up”.

In what follows we will always identify ﬂ;o?b and ﬂﬁp x Ry via R, so
that ¢ will be a map from M, p x (R>q \ {0}) to M;f}?b.
Remark. The (orbi)spaces ﬂ;??b and f/l\g?}”b have an (orbi)piecewise-
linear structure so de Rham theorem holds giving an isomorphism between
rational singular cohomology and rational PL. de Rham cohomology. Now all
cohomology groups will be considered with rational coefficients even though
tautological and combinatorial classes are defined over Z, so that all results

still hold in integral cohomology modulo torsion.
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Combinatorial classes

Now we introduce some remarkable subcomplexes of the combinatorial mod-
uli spaces which define interesting cycles in simplicial (cellular/singular) ho-
mology. This subcomplexes are simply defined prescribing that some vertices
have assigned odd valencies. It can be easily shown that, if we assign even
valency to some vertex, the subcomplex we obtain is not a cycle (even with
727 coefficients!).

We follow Kontsevich ([Kon92]) for the orientation of the combinatorial
cycles. In the last section we define a slight generalization of the combina-
torial classes by allowing some vertices to be marked, which will turn very

useful in the following chapter.

3.1 Combinatorial complexes

Fix S a compact Riemann surface of genus g and P = {p1,...,pn} C S a
subset of n points such that 29 — 2 4+ n > 0. Let m, = (m_1,mg,my,...)

be a sequence of nonnegative integers such that

> (2i+1)m; =49 —4+2n

i>—1

and define (my)! := Hizfl m;! and r = Eizflimi' We assume that

m—_1 = 0.
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Reasoning as in Section 2.4, it is possible to construct an orbispace
M;ZTIZ whose cells of maximal dimension are indexed by isomorphism
classes of ordinary ribbon graphs that have exactly m; vertices of valency
2i 4+ 3. Analogously it is possible to define an arc complex A(S, P),,, (resp.
a modified arc complex A(S, P),,.) as the smallest subcomplex of A(S, P)
(resp. of A(S,P)) that contains all simplices a such that G is an or-
dinary ribbon graph with exactly m; vertices of valency 2i + 3. Notice
that both these complexes are acted on by I's p and so is A°(S, P),,, =

A(S, P)p, NA°(S, P). Hence we can set /(/l\ﬁgf””lbj = (K(S, P)pm./Tsp) xRy.

Remark. In the case m_; > 0 it is still possible to define the com-
plexes A(S, P)p., A°(S, P)m, and A(S, P),,, from an (extended) arc com-
plex A(S, P), obtained adding to A contractible loops (i.e. unmarked
tails in the corresponding ribbon graph picture). However A(S, P),,, is
no longer a subcomplex of A(S,P), so we only have the classifying maps
MMy — My p x (REg\ {0}) and M™% — My p x (RE\ {0}), which
are quite mysterious if we consider them as maps of cellular complexes.

All the spaces we have introduced fit in the following commutative dia-

gram

(JA°(S, P, |/Ts,p) X Ry ——> MO (s MED

m*7P
(JA(S, P)m.|/Ts.p) x Ry —= A = M

¢

A fcomb ¢ A fcomb
Meomb, Moy

For every | € RE(\ {0} call My p(1) the slice My px {1} € My px(RE)\{0})

——comb

and similarly MCp" (1) := A1(1) ¢ M(73" and MEogb (1) := A=Y(1). In the
same way we can define M%‘:Z’?}b)(l) and ﬂ,ﬁ‘jff,’l(l) and the restrictions & and
</I\>l of ¢ and d respectively. Notice that the dimensions of the slices are the

expected ones because in every cell they are described by n linear equations.
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3.2 Orientation

Define L, as the space of couples (G,v), where G is a P-marked metrized
ribbon graph in MZ?gb({lp > 0}) and v is a point of S(G) belonging to an
edge that borders the p-th hole. It will be given the topology induced by
the natural piecewise-linear structure.

Clearly L, — ﬂ;?}nb({lp > 0}) is a combinatorial bundle with fiber
homeomorphic to S'. It is easy to see that, for a fixed [ € Ap such that

l, > 0, the pull-back of L, via

——comb

fl :H%P - Mg,P (l)

is isomorphic (as a topological bundle) to the sphere bundle associated to
L.
P

Lemma 3.2.1 ([Kon92]). Fiz p in P and | € RY, such that I, > 0. Then

on every simplex o € ﬂ;?]?b(l) define
Gpla = Y déandé
1<s<t<k—1
where €; = % and x(p) is a hole with cyclically ordered sides (eq, ..., ex).

. . . . — b .
These 2-forms glue to give a piecewise-linear 2-form w, on M;?IT (1) which

represents —c1(Ly). Hence the pull-back class & [wp] is exactly v, = c1(Lp)
in H? (m%p).

Proof. We will define a differentiable 1-form 3 on L, such that its integral
on each fiber is 1 and such that df is the pull-back of —t,. This will prove
that @, represents —c;(Lp).

Remember that a fiber of L, is a k-uple of cyclically ordered distinct
points ¢1, ..., ¢y of the circle R/l,Z. For all i = 1,..., k consider represen-
tative ¢; € R of ¢; = ¢; + [,Z such that ¢; € [0,1,).

Then the length of the i-th edge is

Git1 — ¢i ifi=1,...,k—1
¢ — b+, ifi=k

€; =
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Figure 3.1: A fiber of L,

so that we can define

=3 (3)4(3)

Then for every fiber of L, we obtain

g=S"2 [ =E g
/ﬁber of Ly ; lp 0 lp

and df is exactly

dp=- 3 d<l€"> /\d(?).
1<i<j<k—1 p p

Lemma 3.2.2 ([Kon92]). For every | € REY the restriction of

Q= Zlgwp

pEP

to ﬂ;?;nb(l) is a nondegenerate symplectic form, so Q' defines an orientation

——comb =T . . . . ——comb
on M,,. p(l). Hence Q A )\*dvolRi is an orientation on M., p.
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——comb

Proof. Let o be a cell of My p(I) whose associated ribbon graph G, has
only vertices of odd valency. Then on « the differentials de; span the cotan-
gent space. As the perimeters [, are fixed, we have the relation dl, = 0 for
all p € P. Hence

T M Wa=ax P R-de/( Y delpe P).
e€X1(Ga) eex(p)

On the other hand the tangent bundle is

TR O ax d 3 | 3 n=0 fraper
e€X1(Ga) eex(p)

In order to prove that Q|, : Ta — T*«a is nondegenerate, we construct its

right-inverse. Define B : T*a — T« as

2s
.0 ; 0
B(de) =) (-1)' 5=+ (1)) ———
; dop(e)h ; dopor(€)h
where € is any orientation of e, while 2541 and 2¢+ 1 are the cardinalities of
[€]o and [0 (€)]o respectively. We want to prove that QB(de) = de for every
e € X1(G). To shorten the notation, set f; := [0}(€)]1 and h; := [agal(a]l

and call F; = [0§(€)]ec for i = 1,...,2s — 1 and H; := [agaq(é')]oo for
j=1,...,2t—1 the holes bordered respectively by { fi, fit+1} and {hj, hji1}.
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Finally call £ and E_ the holes adjacent to e as in the previous figure.
Consequently denote by [ P and [ 5, the lengths of the half-perimeters of the
holes F; and Hj respectively. Remark that neither the edges f and h nor
the holes F' and H are necessarily distinct. This however has no importance
in the following computation.

First of all we have

2s

B(de) = — Z(—ni;; ~ Z(_Djaahj'

i=1

Then it is easy to see (using that the perimeters are constant) that

0 0 1

2 — I . .
lFini(afi - ale) = 4(df1+dfz+1)

and analogously for the h’s. Moreover

, o 0

_ 1 1 1
ZE_’_WEJF(% — Tfl) = Zdhgs + Edfl + §d€

and similarly for E_. At last we obtain QB(de) = de. O

Lemma 3.2.3 ([Kon92]). With the given orientation ﬂfﬁfﬁl(l) is a cycle

for alll € RY and ﬂ;olffb)(Ri) is a cycle with noncompact support.

Proof. Given a top-dimensional cell « in ﬂfg:’?;(l), each face in the bound-
ary O« is obtained shrinking one edge of G,. This contraction may merge
two vertices as in Fig. 3.2. Otherwise the shrinking produces a node
(obtained identifying two vertices) as in Fig. 3.3. Let o/ € da be the
face of a obtained by shrinking the edge L. Then AS9=7H2n=2r7q/ —
AB9—6+2n=2rp & N;, N and so the dual of the orientation form induced
by a on o is 14, (B T2 = (69 — 6 + 2n — 2r)iar (Ba) A BY T ETERT
where B, is the 2-vector field on « defined in Lemma 3.2.2.

Consider the graph G that occurs in the boundary of a top-dimensional
cell of Mf;’mfl(l) Suppose it is obtained merging two vertices of valencies
2t1 + 3 and 2t9 + 3 in a vertex v of valency 2(t; —:tg) + 4. Then d' is in the

——com

boundary of exactly 2(t1 + t2) + 4 cells of M., p(l) or 1 + t2 + 2 ones in

the case t; = t9. In any case the number of cells o/ is border of are even: we
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€2 €1
€2 €1

€3 €6

€4 €5
€3 €6

€4 €5

Figure 3.2: A contraction that merges a 3-valent and a 5-valent vertex

€1
! o %
€3 €4

Figure 3.3: A contraction that produces a node

need to prove that half of them induces on o/ an orientation and the other
half induces the opposite one. If o’ is obtained from some « contracting an
edge L, then we just have to compute the vector field ¢4z (B, ), which turns

to be
2(t1+t2)+4

)+ P
tar(Ba) =+ Y (=1)
i=1 Ofi
where f1,..., fot,41,)+4 are the edges of G, outgoing from v. It is a

straightforward computation to check that one obtains in half the cases
a plus and in half the cases a minus.

When G, has a node with 2¢; +2 edges on one side (which we will denote
by fi,..., far;+2) and 2t2 + 3 edges on the other side, the computation is
similar. The cell occurs as boundary of exactly (2t; + 2)(2t2 + 3) top-
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dimensional cells and, if o’ is obtained by a contracting the edge L, then

2t142

tir.(Ba) = + Z 8f

A quick check ensures that the signs cancel. Hence ﬂiﬁi’ﬁl(l) is a cycle and

——comb . .
as a consequence M, p is a cycle with noncompact support. O

Set @y, = Eﬁ*g*wp. With some modifications we have the following anal-
ogous result for combinatorial cycles on /(/l\;"}?b. Really one does not need
it to establish Theorem A and Theorem B on the locus of smooth surfaces,

but only if one wants to deal with boundary terms.

Lemma 3.2.4. The symplectic form € := ZpGP SWp (Tesp. Q" A )\*dvolRp)

gives an orientation to the complex Mcomb() for any | € Ri (resp.
M%ﬁfjﬂ(RP)) so that Mcomb() (resp. ./\/lcomb b (REY)) is a cycle (resp. a

cycle with noncompact support).

The spaces Mcomb and M, P reduce to Mwm when restricted to the

b
locus of ordinary rlbbon graphs and they coincide Wlth the closure of M7y,

in ﬂg‘_fg‘b and ﬂ;??b respectively. Hence f*i\)*[ﬂ%:’b%] = [ﬂif*m;]
Define the  combinatorial classes Wy, p(l) = @[Mfgfy’;(l)] and

Wi, p(l) := [M, p(1)] and observe that

HES 61 an 00 (Mgp X RY) = Hgy_ 6109, (Mg p(1))

—

Wi, p(RY) Win..p(0)

and
ne ——comb ~ ——comb
H6g76+3n72r(M (RP)) H69*6+2n72r(Mg,P (l))

Wi p(REY) 1 Win..p(1)

for every [ € Rﬁ naturally with respect to £. So, from now on we will write

W, p and Wmhp instead of W,,, p(l) and Wmhp(l) for the homology

classes they define in ﬂ'g, p = ﬂ;?gb(l) and M, p respectively for any
[l € Ri. Moreover we will identify Wm*,p with its Poincaré dual in

H? (M, p).

)
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3.3 Generalized combinatorial classes

It is possible to define a slight generalization of the previous classes, pre-
scribing that some markings hit vertices with assigned valency.

Given a finite set @ := {q1,...,qn} and a map p : Q@ — Z>_; we de-
fine mf = (m’il,mg, ...) as mf := |p~1()|. Consider now an m, and a p
such that m” | = m_y, m{ < m, and Y .5 (20 + 1)m; = 4g — 4 + 2|P|

——comb

and call M, p

dimension are ordinary ribbon graphs in which ¢; marks a vertex of valency

the subcomplex of ﬂisrﬁ;UQ whose simplices of maximal

2p(g;) + 3 for every j = 1,...,h and denote by W,,, , p its cohomology
class in H;??SQ({ZQ =0]q € Q}) (as before the orientation is determined
by > ep l;iwp). Define analogously ./T/l\f?;’:”g p and let /Wm,ﬂp, p be its coho-
mology class in in M, pyg. Notice that these classes live in codimension
23 > 1im;+2|Q[ = 2r+2|Q|. The following statement is straightforward.

Lemma 3.3.1. Let g : ﬂg,qu — ﬂg,p be the forgetful morphism. Then

one has
- (my)! —

(@)« (Win. p.p) = mwm*f

where (7q). : H¥ 2R (M, pug) — H?* (M, p) is the induced push-forward

map.






Chapter 4

Classes with one special

vertex

We deal with the simplest combinatorial class, namely the class Wa, 13 of
graphs with only one vertex of valency 2r + 3.

At a first reading the proof may look quite involved, because of some
technicalities. However the basic ideas are quite simple. We want to describe
them in some detail before going to the formal proof.

The first observation is that M;?ij {q}(l) is homeomorphic to M, puq)

for every [ € RSBJ ta} \ {0}. The second remark is that the differential form
Wy lives on the slices M;f’}”j {q}(l) such that I, > 0, while the (generalized)
combinatorial class (which we briefly denote by W, +3), defined prescribing
that ¢ marks a vertex of valency (at least) 2r + 3, lives on the slices that
have [, = 0.

So a deformation retraction Hy of M;?Fj {q} onto the slice defined by
lq = 0 would help us to compare @} ™! and the combinatorial class W, 5 as
functionals on the cohomology of M;‘y’}”ﬁ {q}(l).

The deformation retraction Hy we will construct however does not pre-

. ——comb
serve the locus of the smooth curves, but it retracts the whole M;’OITU {a}

onto the slice ﬂ;??j (gt (lg = 0). In fact Ho is defined sending all the edges
bordering the g-th hole to zero (it is defined only when I, is “small”, be-

cause we must avoid the situation in which Hy would squeeze another hole
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beside ¢). So it shrinks a circular g-th hole (i.e. such that 7, is a disk) to a
g-marked vertex, while it produces a “singular” graph if the topology of the
g-th hole is more complicated. But, if we subdivide the complex ﬂ;ff;‘j {a}
into subcomplexes Y: according to the topology of the ¢g-th hole, then the

restriction of Hy to each subcomplex is a simplicial fibration.

Then we consider a differential form 7 on ﬂ;??j{q}(lq = 0) and we

compare the integral of 7 on W3, 4(l) (the closure of Wi, 43(1)) for an [
such that I, = 0 with the integral of @™ A Hgn on Mgf}?ﬂ{q} (I") for an I
such that lfl > 0. Here we notice that the form EZH A ‘Hgn has support
on the top-dimensional simplices whose g-th hole has exactly 2r 4+ 3 distinct
edges. Then the integral of EZ‘H A Hgn is performed by calculating for each
?; the integral of W(;H on the fibers of Hp. In the case of a circular g-th
hole with 27 + 3 edges we obtain the factor 2"+1(2r + 1)!L.

The analogous result for the (ordinary) combinatorial class W, ;3 and

Ky is derived from the preceding one by simply noticing that the forgetful

comb

morphism 7, has a combinatorial analogue ;" on the combinatorial spaces

comb
q

on the whole ﬂ;?;i’j {qy but what we get is enough to conclude). So that

(another little technical problem is due to the fact that = is not defined

(ﬂ’q)*(¢g+l) = K, and (Trgomb)* sends W;H to Wa,43. Hence we obtain our

result for the kappa classes too.

4.1 The retraction H, and wgomb

Fix ¢ > 0 and n > 0 such that 2g — 2 +n > 0 and define P := {py,...,pn}

and

Cpg = {1 e REW 1, <1, forall pe P},

Denote by m, : ﬂg,pu{q} x Cpy — Mgy p ¥ Rﬁ the map that forgets ¢ and

the ¢-th coordinate. We can define Wgomb forcing the commutativity of the
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following diagram

M §~ ——comb
(Mg,PU{Q} \DQ) X Cp7q  — Mg,PU{q}(CP,q) \ Dgomb (*)
TFQ\L lﬂ.gomb
M € ——comb
Mg’P X Ri Mg,P (Ri)

where Dy := Upepdy g4} and Dg"mb = é(Dq x Cpg). We remark that {m,

——comb

does not factorize through ¢ : Mg puggy X Crg — My puggr(Cpg). In fact

‘ /L\
S Sy

comb
q

nonpositive
component

Figure 4.1: = is not defined in this case

pick a point (S,1) in M%PU{Q} x Cpq such that ¢ and p lie on a two-pointed
component 57 of S of genus zero which has only one singular point and
suppose that the adjacent component Sy is nonpositive (see Fig. 4.1). Then
£(S,1) does not “remember” the analytic type of Sy but Emq(S,1) does (if
l, > 0) because the p-marking now hits Sy after forgetting ¢ and stabilizing.

However this is the only case, so it sufficient to cut away D, and Dgomb.

comb
q

not know in general how Strebel’s differential changes when we delete the

Remark. The behaviour of the map is really misterious as we do
marked point ¢ and consequently how the critical graph modifies. However
we know that if ¢ marks a vertex then the new critical graph is obtained
simply forgetting the marking. On the other hand, when this happens the

form @, is not defined because [, = 0. All the technical problems derive from
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this dichotomy. We will overcome this difficulty by keeping the perimeter [,

positive so that w, makes sense and by taking the limit for [, — 0. Then

comb
q

map that shrinks the hole ¢ to a vertex and forgets the ¢g-marking.

we will show that, in this limit, = is well approximated by the simplicial

o ——comb

Notation. Call ¥, C M;‘j}”j{q} (resp. Y, C Mg pugq) the closure of
the locus of graphs where the hole 2:(q) has positive perimeter and consists
exactly of h distinct (unoriented) edges. Set ?Zh = UiZh}/}i (resp. Ysp i=
UisnY5).

Clearly the topological boundary 8?2;1 (resp. OY »y) is contained in-
side ?ghfl = Ulgigh,lf/} (resp. Y<p-1 = Ui<i<p-1Yi). Moreover
@(?ZQ(CRQ)) is contained inside (Mg pugq \ Dg) x Cpq and similarly
Y >2(Cp,) is contained inside (ﬂ;?;nj{q} \Dgomb) x Cpg. In fact Y1(Cpy) is
a closed neighbourhood of D™ (Cp,q) inside ﬂ;f’?j{q}(cp,q). Remark, by
the way, that wq|71 = @q\?l = 0 because the hole ¢ does not contain enough

edges.

Proposition 4.1.1. There is a deformation retraction

——comb ——comb

H: Mg,Pu{q}(CP,q) x [0,1] — M97PU{q}(CPv‘I)

such that Hy is the identity and Ho is the piecewise-linear retraction onto
——comb

Mg,PU{q}(RE x {0}) that “shrinks” the q-th hole. Moreover Hy(Y}) C Y,
for all t € [0,1].

——comb

Proof. Consider a cell A\=*(Cp,) N |a| x R, inside Mg pugq}(Cpg)- Denote
by e1,...,e, the coordinates of || x R, corresponding to the unoriented
edges of G, that border the hole ¢ and by fi,..., fr the remaining ones.
Then it is sufficient to define 7-lt as the map that sends e; — t - e; and
fj = f; and to observe that all these deformation retractions glue to give

a global H. By definition it is obvious that H;(Y) C Y. O

——comb ——comb

Call Ho : Mg pug1(Crg) = Mg puggy (R x {0}) the restriction of Hy.
Since we will work with classes of the form w;H 3 *Hgyn and we would like
to exploit the explicit representative w, which is defined only where I, > 0,

then we let the perimeters vary in the subset C'}, ¢ = CpgN{lg >0} only.
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& = -

t=1 t=1/2

- e

nonpositive component

Figure 4.2: The deformation retraction H

Proposition 4.1.2. Let n be a piecewise-linear differential form on
Y>o(RY x {0}). Then wy A Hin (which is defined only on ?ZQ(C;(Z)) reg-
ularly extends by zero to the whole ﬂ;??ﬁ{q}(C;q). Moreover, if [n] is the
restriction of (w&)*p to Y o(RY x {0}), then £ @, A Hin is exactly
g = T € p.

Proof. The first assertion is trivial because w, vanishes on 8?22(0;5,(1) C

Y1(Ch ;). For the second assertion, remember that de Rham isomorphism
holds on ﬂ;?;lﬁ {q}(C;S, ;) and that @, defines a cohomology class relative to
Yi(CF ;). Hence the result follows from the commutativity of (x) and from

the excision of D, and Dgomb. O

4.2 Proof of Theorem A

Now we can pass to analyze the simplest kind of combinatorial classes,
namely those with just one special vertex.

Let P := {p1,...,pn} and for every integer r > —1 denote by /V[72qr+3
the combinatorial class of ﬂ% pu{q) Whose vertices are all trivalent except

one which has valency 2r + 3 and is marked by ¢. Analogously call /W2r+3
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the combinatorial class on ﬂ% p whose vertices are all trivalent except one

which has valency 2r + 3 (in the case r = 0 all the vertices are trivalent).

Theorem A. For any g and n > 1 the equality

@r+2)!

wa
W2r+3_ (T+1)! q

holds in HQHQ(Mg’pU{q}) up to terms in the kernel of

Ce : HQS(MQ,PU{q}) - HQS(MQ,Pa 8M97P)
where s =39 —3+n—1r. As a consequence

0 ifr=-—1
Warys = { [M,.p] ifr =0
2t (2r + Dk, ifr > 1

holds in H*" (M, p) up to boundary terms.
Strategy. The (2r 4 2)-form &} *! determines a class in
H>2(Ys(C,), 0Y22(CF )
and so it couples with forms of H 25(}?22(0;5 ,)) by Poincaré duality. Hence
o

which maps to HQS(?EQ(CRq))*.

We will determine a boundary class Egr 43 in ?ZQ(CPH) such that the

*

may be viewed as an element of the dual space H 25(?22(0;,1)) )

equality

W2qr+3 = 2T+1(2r + 1)!![QQ]T+1 - Bgr+3

holds in H 25(}722(01:7(1))* when coupled with cocycles in the image of

EH - H* (Y 52(RY x {0})) — H*(Ys2(Cpy)).
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Now by the commutativity of the following diagram

> (Hoé®). g .
H? (Y2 (Cpg))* — H>(Y55(RE x {0}))
J{(m)i"mb
HQS (ﬂg,Pu{q}) HQS (M;?;’Lb(Ri))*

G |

Hao(My,p, 0My p) ——= H2 (Mg  (RE), oM p" (RD))*

the image of ker(Hoé®), in Hag (M, pugqy) is contained inside ker (.. This
concludes the argument. Because of Proposition 4.1.2 and Lemma 3.3.1 we

then immediately obtain the second claim.

Proof of Theorem A. Consider a closed PL differential form 7 on ?22<R}j X
{0}) of degree 2s which is the pull-back of a form via a projection onto
Y >2(1,0) for some | € Ri. By Proposition 4.1.2 the form Hgn A w;]“
extends by zero to M;?gg{q}(C’E ;) and its pull-back via £is Prtt o EHE ).
Moreover Hgn A @y ™ has support inside Yo, 13(C%,). In fact @™ has
support inside ?Zgr+3(C]J§7 q), while H{n has support inside ?§2T+3(C}: q)
because 7 has support inside Y <o,13(RY x {0}).
Now decompose ?2r+3(CIJ£ q) into three families of subsets:

1. the closure ?gfff?)(C; o) of the locus of graphs where the surface T,isa
disk; in this case H) (?Zﬁﬁs(c}t ;) is exactly the support of Wi,y s(RY)

consisting of graphs with one vertex of valency 2r + 3 marked by ¢

2. the closure ?ZZ:{UQ(C; q) of the locus of graphs where T, is a cylinder
with exactly one internal edge e, which divides the other edges of x(q)
into two subsets of cardinality v1 + 1 and vo + 1 = 2r — vy + 1; its
image via Hp is the union of loci Wghvz (RY) of graphs with one node
marked by ¢ that is obtained identifying two vertices of valencies vy

and vg

3. the closure ?Z?{Tiw’%}((}’; ;) of the locus of graphs where T, a sur-

face of genus h with v > 2 — 2h boundary components which touch
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v1,...,0, external edges (i.e. not in Tq) respectively, where 6k — 6 +
> i—1(vj +3) = 2r; its image via Ho is the locus 727{%”_7%}(]1%@ of
graphs with one nonpositive component of genus h which has the ¢-

marking and v nodes corresponding to vertices of vy, ..., v, valencies.

—surf

Yo 1.3)

Figure 4.3: Three examples of loci Y

Remark that \,, (Ho(Yar13(1))) takes values between I, — I, and I,,. So
choose 0 < ¢ < L" << L' and notice that Ho(Y2.43([L", L']",€)) contains

(Uh,v*7g,v* U Supp(Wgr—l—B) le,’vz Nq ) ([L”7 L' — 5]n)

v1,02

and is contained inside

(Un,w. Zh . UsupD(Wp i) Unywp Noy ) (I = €, L"),

v1,V2

Since the volume of the difference [L” —e, L']™ \ [L”, L’ — e]™ goes to zero as

€ decreases, we have
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/ dlp, N+ Ndlp, / G Sl = (o)
(L, L] Mg, Puiq)
= lim N(dlp, A+ Ndly,) AT A HGn =
e—0 ?2r+3([l/’,l/]",€)
= lim / N(dly, A ... dly,) NG A HEn+
€—>0< Yglfg([l// L") ( P P ) q 0
+ / N (dlpy A .. .dly,)) NTETE A HEn+
vﬁg 2r chle%([l’” L’]”,a) l !
- Z / o *(dzpl A.odly,) NopTEA Hgn> = (e0)
h v

— lim (/ Ne(dly, A ... dl,) /\77/ Ly
e—0 Wg +3([L”,L'—6}") Fdi‘Sk(E)

+ Y / Z\*(dzpl/\...dl,,n)/\n/pyl oLt

v1+ve=2r v1 ’U2 [LN L/_E] ) v1 vy (5)

+Z/ Ne(dlp, A ... dly,) /\n/me QZ-H) =
s, (€)

Zp . (L, L/ —¢]™)

:/ dly, /\-'-/\dlpn(/ n/ w4+

(L, L Wis(l) JFdisk(e)

L / . / TRal / n / ol
Z Ni o) JEY, () Z Z 0 ( Furd(e) ! )

v14v2=2r V1,2
where [ belongs to RY and F disk (¢) is the intersection of the generic fiber of

Ho over supp(Wa, . 5([L", L' — €]")) with Ya,43((¢,+00)", ) and similarly
for FY! and Fsurf,

Remark. In (e) we used Proposition 4.1.2 and the push-forward through
the map

it ——comb

& Mg PU{q} X R X {E} - Mg PU{q}(R X {E})

In (ee) we used that Hy restricts to

disk Hdisk -
Yorps([L", L™, €) : supp(Wa43([L" — &, L']™))

(HG*) = (supp(W g 5([L", L' = €]™))) —= supp(Wa,5([L", L' —€]"))
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where the lower map is a fibration with fiber F%**(¢) and the differ-
ences V4%, \ (o) (supp (7,5 (L7, L' — ")) and supp (W (1" —
g, L'1") \ supp(Wa, . 5([L", L' — €]™)) tend to zero with e.

It is easy to see that F'9*¥(¢) is a simplex of dimension 2r 42 with affine

coordinates ey, ...,ez12 where e; are the (unoriented) edges of the hole
dinat h g th iented) ed f the hol
( ), so that ZQHQ ej = 2¢. It is also immediate to see that W ’"+1 is equal
o(r+ 1)(!d(12)€') - A d(%5£2) so that the integral of ! on Fd“k(s) is
+1)!
equal to m

. I .
*1 vanishes on Ffﬁvg if v1 and w9

are even; while @ ”Jrl = (r+ 1) A Ad(Z22) if v and vy are odd,

where 2¢ey + Z?T? ej = 2¢ and e is the “separating” edge of the cylinder.

A simple computation shows that wj

We conclude that for v; and v9 odd

because Fflylvz contains 1)11)2 top—dimensional simplices. On the other hand
the integral of w L on F 7 is nontrivial to compute.
However the cycles N 010 and z; hv. clearly lift to cycles ]\731,1,2 and Z\Z .

on Mg"g‘j{q} (RY x {0}) and so on M, pugqy, then we can define

) . (r+1)! =
Bly= 3 i+ D@+ 1) 5 N32+123+1+Z 0 - A
1,520

i+j=r—1
so that the equation W, , 5 = 2" (2r4- 1)1y 1 — BSH_ in H*+2(M, pugqy)
is satisfied in the sense explained before.

comb\ * )

For the second claim, we can use an n = (7 . Because of the
commutativity of the diagram (x) and Proposition 4.1.2 it follows that
(7g)«(Wi ,5) = 27120 + 1)k, — Bopys (with Barys = (mg)«(BY,3))
holds in H*(M,p) up to terms in the kernel of & : Hos(Myp) —

HQS(Mg P) O

Remark. In fact we have proven more than what is stated in Theorem A as
we have determined BQT r+3 and B2T+3 up to minor uncertainties. Moreover

the classes Bzr 43 and Bg,urg are push-forward of combinatorial classes via
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some boundary maps. The problem now would be to compute the coeffi-
cients of 2271)* and to clarify what terms we must add to EST 43 and §2T+3

to obtain the full equality.

Corollary A.1l. For every g and |P| =n > 1 such that 29 —2+n > 0 the

following equalities hold up to elements in the kernel of
(®EH0). : H.(Va(CF,)) — Ho(YVo2(RY x {0})
and in ker(&.) respectively

WE()I = 12¢Z - 5;]7"7" - Z 5;1’71 i H4(ﬂ97PU{Q})
. g’ 1#0,P o
W5 = 12%1 — 52‘7~7« — Z 59/7[ m H2(ngp)

g’ I#0,P

where 53, ; 15 the image of the morphism
My 10ty X Mo g7y X Mg—g 12017y = Mg.Pute)
that glues p’ with ¢' and p" with ¢" (analogously for 67 ).

The second equality of the previous corollary has been proven first by
Arbarello and Cornalba [AC96] in a very different manner. Here it is a con-
sequence of the proof of Theorem A, because for » = 1 the subset 7" does
not contain simplices of top dimension while all simplices of top dimension

. eyl
inY? have v1 = vy = 1.






Chapter 5

Classes with many special

vertices

The case of a general combinatorial class WM*,/J, p is not much more com-
plicated. The only real obstacle is the notation that becomes cumbersome,
but the main ideas are already present in the previous chapter.

The only substantially new proof concerns Lemma 5.1.3 where we com-

pute the number of admissible clusters by an inductive argument.

5.1 Proof ot Theorem B

We now want to examine the case of an arbitrary class Wm*,p, p on Mg, PUQ
for some p : Q@ — Z>_;1. So fix P := {p1,...,pp} withn > 1 and @Q =
{q1,- s QusQu+1,---,qs} such that Q = p~ Y =1) = {qui1,...,qs} and let
7=~ _1im;. Clearly one must have 4g —4 +2[P| = 3,5 (2i + 1)m.

We always assume m_1 = m” .

Notation. We denote by Bg the set of partitions of @ and by My the
discrete partition {{q1},...,{gs}}. We denote by B¢ ¢ the subset of P
consisting of M = {p1,...,ur} such that the restriction M N Q = {1 N
Q,...,ur N Q} is the discrete partition of Q.

Definition 5.1.1. Given P and p as before and M a partition of @), consider
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the boundary map

'lgM,p,P :MQ,PUM X H MO,MU{LH} - M%PUQ

pneM
that glues every point y € M with ¢,. Then we call combinatorial class with
rational tails Wﬁ,p,P the image through 9,7, p of Wm*(M)’mM,p x {pt}M,
where p|ar @ M — Z—y sends p to py =3, p(q) and

mi(M) := [{p € M|p, = i}| + dio(mo — mg).

Theorem B. Suppose m; = mf fori# 0 and Q # 0. Then, up to elements

i the kernel of

Heg—6+2n-+25(Mg,pug) — Heg—6+2n—25(M p g OM, po):

the following equation holds in H2T+25(ﬂg’PuQ).‘

922qeq(P(0)+1) H(2p(q) + 1) H ¢g(ll)+1 =

qeQ qe@
=W, pp+ Z Cur Wﬁ,p,P
Mo#MePq
where 2 2l — D)
pu + ,Uz - ..
Cy = H ¢y and ¢, = T
! (2p, + )N

For the general case, choose Q' such that |Q'| = 37,5, (m; —m]
p:QUQ — Zs_; such that [571(j)| = m; for all j # 0 and p|g = p. For
every p C QU Q' define g, := " ., p(q).

Corollary B.1. Suppose m_1 = m”, and P,Q" # 0. Then the following
relation holds in H*"725(M, pug) up to boundary terms:

) and a

2%acque'POHD T (25(q) + DI | [T 59 D ko) =

qEQUQ’ e €Sy
ma(M)! =
= Z (m..(M) _mINI(M))!CMWm*(M):TALP
MemQ,Q’
(2put2|p|—D)!!

where ¢, 1= and Ty 2 QQ — Z>_1 sends q to p,, where pg > q.

(2pa+1)1
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We remark that Theorem A and Corollary B.1 give an inductive method
to express all /Wm*,p, p in terms of the tautological classes and vice versa.
In fact it is sufficient to isolate the term on the right hand side which cor-
responds to the discrete partition to obtain the recursion or to isolate the

term on the left hand side that corresponds to o = e.

Proof of Corollary B.1. Tt follows immediately from Theorem B applying

Faber’s formula and Lemma 3.3.1. O

Proof of Theorem B. Define Q; := {qi,...,¢;} and and let ¢); denote 1)y,.
Analogously to the previous section, let Cpy for k = 1,...,u be the subset
of 1 € REG defined by

lg; =0 forall j=k+1,s

J

zf:j+]_l(h<lq1' forallj=1,....,k—1

Sy < lp, forall j=1,...,n

and set ) := Cpy N {ly, > 0}. Notice that Cpp = RY x {0}€.

——comb ——comb Hu

Call Ho : M, puo(Cpu) = M, pug(Cpo) the composition HyHg - - -
of all the retractions

——comb ——comb

Hé =Hy' : Mg PUQ(CPZ) - Mg PUQ(CPZ 1)

and remark the important fact that (H{)*w;—1 is not the ©;—1 on

MEO?SQ(CPZ) but @; A (H))*w;—1 and w; A W;—1 are cohomologous. So

f* [—f(Qz)JFl (Hz) fp(% 1)+1 ] is exactly ¢P qi) +1 Zpiqli—l)-i-l if p(ql) > 0.
Now pick a closed PL differential form n of degree 6g — 6 + 2n —

2r on M;OITSQ(CPO) which is the pull-back of a form via a projection

——comb ——comb

M, pug(Cro) — My pug(l, {0}9) with [ € RY. To produce a more useful

representative for the class of

wﬁ(qu)“wz(_‘fg—l)“- —p(q1)+1H07]

on M;OZLL?Q(C ) We proceed in the following inductive way. We start with
Bo(n) :=n on Mg?gSQ(vao). The first step is to pull it back via

——comb ——comb

Hé Mg PUQ(CPl) - Mg PUQ(CPO)



52 Classes with many special vertices

@+ Jiving on M;?Z@Q(CEJ. Then we obtain

——comb +

a well-defined form (1 (n) on M po(Cp ;). Now suppose we have already

and to cup it with the w’f(

produced f_1(n) for k < u. Then we can pull 3;_1(n) back via H§ and cup

——comb

it with wg(qk)ﬂ to obtain a well-defined () on the whole M p ;g (C’; k)

——comb

Finally we get a form 3(n) := (,(n) on ngqu(C;u) with the property
that the pull-back of its class to Mg, PUQ X C}'.f Bt

wz(qu)—&-l 59T71)+1 o ¢§)(q1)+1€~*H3 [77]

——comb

Call 7t17,,,7tu(0;u) C Mg,pUQ(C;u) the closure of the locus of graphs
such that

- the hole z(q,) has t, distinct (unoriented) edges

- foralli=1,...,u—1 the hole x(¢;) has ¢; distinct (unoriented) edges
beside those which border any of the holes z(qy), ..., x(gi+1)-

As in the previous section, it is easy to see that [(n) has support con-
tained inside the locus ?20(q1)+37--~,20(Qu)+3(C?J_u)' Now we want to analyze

its image through Hy which consists of several components.

Definition 5.1.2. Given an ordinary ribbon graph, we say that a subset

of markings form a cluster if
- any vertex of z(u) contains an edge that belongs to a hole in z(u)

- any two distinct holes in z(u) are joined by a chain of adjacent holes

belonging to x(u).

Two clusters p and p’ are disjoint if p U i is not a cluster (in particular p

and p/ are disjoint as sets).

We associate to every partition M = {p,...,ux} in Pg
the closure ?M(ng’u) of the locus of top-dimensional simplices of
?QP(qIH;gW’Qp(qqu(CEU) such that pi,...,ur form disjoint clusters. It is
obvious that {?M(CEU)} is a dissection of ?2p(q1)+37_”72p(qu)+3(C;u). Really

they overlap on simplices of nonmaximal dimension, but it is not important
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for what follows. Strictly speaking, we would need a refinement of this dis-
section: for every tripartition M® = { M4k vl M5 f} of M we denote
by YMo(C’;u) the closure of the locus in ?M(C;g’u) where every cluster in
M4k (vesp. in M or in M**T) form a disk (resp. a cylinder or a surface
with negative Euler characteristic).

Then Ho(Y pre (C’;ﬁu)) is the union of the simplices in ﬂ;?}an(C Po) in-
dexed by ribbon graphs G such that:

1. every p € M%% marks a vertex lying in the smooth locus of G of
valency 2p,,+3 (if || > 1 we should say: p marks a nonpositive sphere
that intersects only one positive component in a vertex of valency

2p, + 3), while all the other vertices in the smooth locus are trivalent

2. every pu € M marks a node which is obtained identifying two vertices
of valencies v1 and vy with vy + vo = 2p, (i.e. p marks a nonpositive
sphere that intersects only two positive components in vertices of va-

lencies v1 and vg)

3. every p € M*“f marks a nonpositive component of genus h and with
v nodes of valencies vi, ..., v, such that 6h — 6+ "7, (v; +3) = 2p,.

As in the simplest case, the length
j‘pi (HO(?M(ll, ceny ln, Elyev-yEuy {O}Q)))

may vary between [; — ¢ and [;, where € = E;‘:l €j. Reasoning in the same

way as in the previous section, we obtain

/ dlp, A+ Adly, / PO o gpla L ) =
[L”,L’]n Mg,PUQ

. / Cdly, A dl, A B(n) =
6—»0%; ?MO([L”,L’]n751,--~75u7{0}Q) " ’

[L”,Ll}n Me HO(Y]\JO)(I) F]MO (81,...,5u)

where [ belongs to Cpo and Fye(er,...,e,) is the intersection
of the generic fiber of Ho over Ho(Yae)([L', L' — €]*,{0}9) with
Y are((g, +00)", €1, ..., €4, {0}9).
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As we are now interested only in cycles that do not lie in the boundary
after forgetting Q\Q, we may restrict to the case in which M = Mswrf = ()
and M5k Q is the discrete partition because of the wise choice of keeping
the perimeters inside C;u. Hence Hy (?Mﬂ,@(C;S’u)) is exactly the support
of E(Wit . p(CPy)).

Then we only need to compute

: /
v o A1
22 i=1(P(ai)+1) [Tizi (2o(@) + DN Sy g persenen) .

which is in fact the number of isomorphism class of (P U @)-marked ribbon

graphs in Fiy7g¢(e1,...,€,) that parametrize simplices of top dimension.

tail internal to g;,

Figure 5.1: An example of admissible cluster

To complete the proof, we need to determine the number ¢, of all possible
isomorphism types of admissible cluster associated to p. To be precise, ¢,

is exactly the number of isomorphism classes of ribbon graphs G such that:
- G is a connected ordinary ribbon graph marked by the set U {0, v}
- S(Q) is a sphere and p forms a cluster

- the vertices of G have valency at most three; the bivalent ones always

border the hole 0 and one of them is marked by v
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SifunQ = {q} is nonempty, then ¢ marks the only univalent vertex;

otherwise there are no univalent vertices

-ifp={q¢, <--<aq,}or{g, < - < ¢,,q} then the hole i} has
2p(gi,) + 3 sides and for all j = 1,...,h — 1 the hole i; has 2p(q;;) +3
sides beside those which border the holes iy, ...,7;41.

So we are left to prove the following lemma. O

Lemma 5.1.3. Let p(u) = >_ ¢, p(q). Then

_ oA 2[p[ - 1!
" (2p, + DN
where we have conventionally set (—1)!! = 1.

Proof. Remark that the calculation has a clear geometrical meaning even if
we allow some p(g;;) to assume the value —1. However in what follows we
will bound ourselves to the case p(gi,) > —1 and p(g;;) > 0 for all j > 1.

We proceed by induction on |p|.

Clearly, if |u| = h = 1 then ¢, = 1. If h > 1 then the cluster has no
symmetries and so the possible v-markings are exactly 2p,,+3. In particular
if h=2and uN Q is empty, then the cluster consists of the holes ¢;, with
2p(gi,) + 4 sides and ¢;, with 2p(q;,) + 3 sides that have exactly one edge
in common. If h = 2 and ;N Q = {G}, then the cluster is made of a hole
qi, with 2p(q;,) + 5 distinct edges and an internal tail marked by ¢. In both
cases ¢, = 2p, + 3.

Now we deal with the case h > 2. Remember that p(q;;) > 0 for j =
2,3,...,h.

If p(¢i;) = —1 and so the hole ¢;; does not contain an internal tail,
then we look at the situation just before shrinking ¢;,. We have a loop
surrounding ¢;, and its vertex has valency 2p, +5. So this vertex is obtained
collapsing the subcluster p/ = p\ {¢;,}. By induction hypothesis, ¢, is
(2pp +3)pw = 2pp+3)20p + 1) +2(|pf = 1) = 1)+ 2(p + 1) +3) =
(20 +3)(2pp + 2| — 1) -+ (2p4 + 5).
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If p(gi,) > 0, then we look at the situation before collapsing ¢;, and g;, .
There are two possibilities: the holes may touch each other in one edge (case
a) or in one vertex (case b). Moreover ¢ may appear as internal tail in ¢;, or
gi,- We want to show that in both cases the number of configurations (which
we denote respectively by ¢, and cZ) depends only on p(g;,) + p(¢i,) and not
on p(g;,) and p(g;,) separately. Hence ¢, depends only on p(g;, ) + p(qi,) too

as ¢, = ¢, + cZ. Hence we can apply the previous computation. Case (a)

ext subcase

Figure 5.2: Examples of cases (a’) and (a”)

immediately split into two subcases, so that ¢}, = CZ, + cﬁ”.

(a’) The two holes touch in an edge and there is not an internal tail inside
i, OT @i,. So the holes ¢;,,...,q;, (and possibly ¢) are distributed in
t = (2p(qi,) +3)+ (2p(qiy) +3) — 1 = 2(p(qi,) + p(qi,)) + 5 subclusters
Wy ...,y Then we obtain

t

i =2 [em

Jed k=1
where J ={j : p\ {qgi,,qi,} — {1,... ,t}|pj_1(k) >0 Vk}.

(a”) The two holes touch in an edge and there is an internal tail in ¢;, or

in g;,. Then the holes ¢;,,...,q;, are distributed in t;,; = 2(p(qi,) +
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p(qi,)) + 3 clusters if the tail hangs on the separating edge (int) and in
text = toert = 2(p(qiy) + p(¢i,)) + 4 clusters if it hangs on an extremal

point of the separating edge (vert) or the external perimeter (ezt).

Hence
tint tvert tewt
a’ ) ) ‘
g =23 Jlew+s 20 Temwt 2 [Tew
jEJ'L"rLt k=1 jEJ'ue'rt k=1 jeJezt k=1
where

Jsep = {7\, @i, G — {1, ,tmt}]ij(k) >0 Vk}
Jvert = {.7 Y \ {%‘1;%275} - {]-7 o 7tve7‘t}|pj*1(k;) Z 51,k Vk}
Jext = {j S \ {Qilvquq} - {17 s ’text}|pj—1(k) >0 Vk}

so we are done again.

ext subcase

Figure 5.3: Examples of cases (b’) and (b”)

Also case (b) splits into two subcases and CZ = CZ + CZH.

(b’) The two holes touch in a vertex and there is no internal tail in ¢;, or gi,.

So we have t = 2(p(qi,) + p(qi,)) + 5 subclusters but u} corresponding
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to the common vertex must be at least 4-valent. Moreover the two
holes can touch the cluster ) in 2p,/ (2p,, +3) ways (or in 2p,, ways

if |} = 1), hence we obtain

t

(2/)# + 3 22[)# H

jeJ k=1
where J = {,7 STA {qi17Qi2} - {17 t}‘p] (k) > 01 k Vk}

(b”) The two holes touch in a vertex and there is an internal tail in ¢;,
or gi,. Then the tail may hang on a vertex (vert) or on the external
perimeter (ext). Anyway the holes ¢i,,. .., ¢, are distributed in t =
2(p(qi,) + p(gi,)) + 4 clusters. Hence

t t
& =2 [T ei ) + @olai) +20(a) +3) D[] e

jeJ k=1 jeJ k=1

where

J=1{jp\{di, aipr ¢} = {1, tHpj-r0) = G1 VE}
and finally we are done.

Remark that Figure 5.3 illustrates the exact situation, i.e. the two holes ¢;,
and g;, cannot be nested. In fact the “internal” hole should be contracted
before the other, and so in our case it should be ¢;,. But an “internal” hole
should also have one side only, while we are assuming that p(g;,) > 0. This
explains why we have assumed that only p(q;,) can take value —1, which,

on the other hand, we need to perform the above explicit computation. [J

As an example we compute the class W41 2541 of graphs with two

nontrivalent vertices.

Corollary B.2. For every nonnegative g and positive n such that
29 — 24+ mn >0 and for every a,b > 1 the following identity holds
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2000 Wog i1 9p41 =
= 20442(20 + 1)1(2b + 1) (Kakp + Kats) — (20 + 2b + 3) Wagp2p11 =
= 29404220 + 1)I1(2b + 1)1 (Kakp + Kags) — 27771 (2a + 20 + 3) kg

in H?*+2 (M, ) up to boundary terms.
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