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Motivation

S compact oriented surface of genus g ≥ 2

T (S) Teichmüller space of S
Q ∼= T ∗T (S) of holomorphic quadratic differentials on S

SL2(R) action on the space T ∗T (S)

At =

(
et 0
0 e−t

)
geodesic flow

Ut =

(
1 0
t 1

)
horocyclic flow

Rt =

(
cos(t) − sin(t)
sin(t) cos(t)

)
rotation flow

Use conformal/flat structure - No hyperbolic geometry involved
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Motivation

Flows of “hyperbolic” origin: make use of uniformization theorem

ML(S) space of measured laminations on S

Earthquake Grafting

E : T (S)×ML(S)→ T (S) gr : T (S)×ML(S)→ T (S)
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Motivation

Earthquake
Concentrated on a lamination λ

Teichmüller horocyclic flow
“Spread” along a quadr. diff. ϕ

Grafting
Concentrated on a lamination λ

Teichmüller geodesic flow
“Spread” along a quadr. diff. ϕ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake Et : T (S)×ML(S)→ T (S)×ML(S) defined as
Et(X , λ) := (Etλ(X ), λ) is an R-flow.

Hyperbolic length ` : T (S)×ML(S)→ R  d`λ is a 1-form on T (S)

 T (S)×ML(S)→ T ∗T (S) defined as (X , λ) 7→ d`λ|X
is a homeomorphism  Et is a flow on T ∗T (S)

Grafting map grt : T (S)×ML(S)→ T (S)×ML(S) is not a flow!
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Deformations of complex structures

(S , J) compact Riemann surface

, (H2, J̃)→ (S , J) universal cover
π1(S)→ G ⊂ PSL2(R) acts on H2 so that H2/G ∼= S
G acts also on −H2 and (−H2)/G ∼= S

Deformation of cpx structure on S ↔ µ = µ(z)dz̄dz Beltrami differential
µ̃ on H2 is extended by zero on −H2: it is G -invariant

 new complex structure J̃µ on CP1: agrees with J̃ on −H2

(CP1, J̃µ)→ (CP1, J̃) sends RP1 to a Hölder Jordan curve Λ
π1(S) acts on (CP1, J̃) holomorphically, so π1(S)→ Gµ ⊂ PSL2(C)

H3
= H3 ∪ CP1

∞ and Gµ acts on H3 \ Λ

Gµ ⊂ PSL2(C) is quasi-Fuchsian, i.e. acts prop. discont. on CP1 \ Λ

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 5 / 17
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π1(S) acts on (CP1, J̃) holomorphically, so π1(S)→ Gµ ⊂ PSL2(C)

H3
= H3 ∪ CP1

∞ and Gµ acts on H3 \ Λ

Gµ ⊂ PSL2(C) is quasi-Fuchsian, i.e. acts prop. discont. on CP1 \ Λ

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 5 / 17



Deformations of complex structures

(S , J) compact Riemann surface, (H2, J̃)→ (S , J) universal cover
π1(S)→ G ⊂ PSL2(R) acts on H2 so that H2/G ∼= S
G acts also on −H2 and (−H2)/G ∼= S

Deformation of cpx structure on S ↔ µ = µ(z)dz̄dz Beltrami differential

µ̃ on H2 is extended by zero on −H2: it is G -invariant

 new complex structure J̃µ on CP1: agrees with J̃ on −H2

(CP1, J̃µ)→ (CP1, J̃) sends RP1 to a Hölder Jordan curve Λ
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π1(S) acts on (CP1, J̃) holomorphically, so π1(S)→ Gµ ⊂ PSL2(C)

H3
= H3 ∪ CP1

∞ and Gµ acts on H3 \ Λ

Gµ ⊂ PSL2(C) is quasi-Fuchsian, i.e. acts prop. discont. on CP1 \ Λ

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 5 / 17



Deformations of complex structures

(S , J) compact Riemann surface, (H2, J̃)→ (S , J) universal cover
π1(S)→ G ⊂ PSL2(R) acts on H2 so that H2/G ∼= S
G acts also on −H2 and (−H2)/G ∼= S

Deformation of cpx structure on S ↔ µ = µ(z)dz̄dz Beltrami differential
µ̃ on H2 is extended by zero on −H2: it is G -invariant

 new complex structure J̃µ on CP1: agrees with J̃ on −H2

(CP1, J̃µ)→ (CP1, J̃) sends RP1 to a Hölder Jordan curve Λ
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Deformations of complex structures

H3
= H3 ∪ CP1

∞ and Gµ acts freely and discontinuously on H3 \ Λ

Get a hyperbolic 3-manifold M = H3/Gµ diffeomorphic to S × R
with boundary components at infinity (CP1

∞ \ Λ)/Gµ = (S , Jµ) t (S ,−J)

Sµ

M

S

Ω+

Gµ
Λ

Ω−

H3

(S , Jµ) ∼= Ω+/Gµ and (S ,−J) ∼= Ω−/Gµ acquire a CP1-structure

Theorem (Bers, 1960)

QF = {quasi-Fuchsian manifolds M} ↔ T × T is biholomorphic.
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Quasi-Fuchsian manifolds

M quasi-Fuchsian manifold, M̃ → M universal cover

Convex core C (M̃) = convex envelope of Λ

∂+
∞M

M

M̃

ΛC (M̃)

∂+C (M̃)

∂−C (M̃)CP1

λ̃+

C (M)

λ+

∂+C (M)

∂+C (M) is a bent surface, i.e. I = h hyperbolic metric and III = λ+
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Quasi-Fuchsian manifolds

Closest point projection ∂+
∞(M)→ ∂+C (M)

M

∂+
∞M

∂+C (M)

C (M)

∂+
∞(M) ∼= Grλ+(∂+C (M))

Recipe for grafting: hyperbolic surface (S , h) and measured lamination λ
Embed σ̃ : (S̃ , h̃) ↪→ H3 with I = h̃ and III = λ̃

B = −∇ν shape operator, normal flow away from σ(S)  
ht = h(cosh(t) + sinh(t)B, cosh(t) + sinh(t)B)
Grλ(h) is conformally equivalent to [h∞] = [h(id + B, id + B)]
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Anti de Sitter 3-space

Similar description for the earthquake?

− +

+

γ

Π

Anti de Sitter space
AdS3 = {x ∈ R2,2 | 〈x , x〉 = −1}

∼= (PSL2(R),K)

Lorentzian, complete, K = −1, Isomid(AdS3) ∼= PSL2(R)×PSL2(R)
AdS3 as interior of a quadric Q = {det = 0} ⊂ Pgl2(R) ∼= RP3

 ∂AdS3 ∼= PQ ∼= RP1 × RP1

Space-like totally geodesic planes Π ∼= H2

Time-like geodesics γ are closed of length 2π
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MGH AdS 3-manifolds

Definition

An AdS3-manifold N is Maximal Global Hyperbolic if

it contains a closed, oriented, space-like surface S of g ≥ 2
(Cauchy surface)

every inextendible time-like curve intersects S exactly once

N is maximal under inclusion.

N MGH AdS3-manifold =⇒ N ∼= S × (−π/2, π/2)

∃Ω ⊂ AdS3 open convex , ∃ ρ = (ρl , ρr ) : π1(S)→ PSL2(R)× PSL2(R)
with ρl , ρr ∈ T (S) such that N ∼= Ω/ρ(π1(S))

Theorem (Mess, 1990)

MGH(S) −→ T (S)× T (S) is a diffeomorphism.
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Hölder Jordan curve on ∂Ω
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Convex core C (Ñ) = smallest convex
subset of Ω containing a space-like
complete surface and whose closure
contains Λ

∂+C (N) has I = h+ and III = λ+

∂−C (N) has I = h− and III = λ−

Metrically
hl = h+(id + JB+, id + JB+) and
hr = h+(id − JB+, id − JB+)

h+
Eλ+

||

E−λ+

""
hl (Mess) hr

h−

E−λ−

bb

Eλ−

<<

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 11 / 17



MGH AdS 3-manifolds

λ−

Ω

Λ

C (Ñ)
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Landslide

Earthquake is a flow Et : T ×ML → T ×ML

Idea: embed S in AdS3 using I ∝ h and III ∝ h∗ with h, h∗ ∈ T (S)

Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic S1-landslide flow Le iθ : T × T → T × T s.t.

L−1(h, h∗) = (h∗, h)

L1
e iθn

(h, h∗n) limits to Eλ(h) as (θn/2)2h∗n → λ

∀e iθ 6= 1 and h, h′ ∈ T , ∃! h∗ ∈ T s.t. L1
e iθ

(h, h∗) = h′

(analogous to Thurston’s earthquake theorem)

there is a complexification that limits to grafting (more later).

Warning! Metrics in T are up to isotopy
We need to “fix the gauge” between h and h∗
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Landslide flow

Definition

m : (S , h)→ (S , h∗) is minimal Lagrangian if m∗(h∗) = h(b, b) with

b self-adjoint, det(b) = 1, d∇b = 0.

Normalize (h, h∗) so that the identity is minimal Lagrangian

Embed φ̃θ : S̃ ↪→ AdS3 with Ĩθ = cos2(θ/2)h̃ and ĨII θ = sin2(θ/2)h̃∗

φ̃θ is ρθ(π1(S))-equivariant with ρθ : π1(S)→ PSL2(R)× PSL2(R)

Find φ̃θ(S̃) ⊂ Ωθ ⊂ AdS3 domain of discontinuity for ρθ(π1(S))

 Get φθ : S ↪→ Nθ “unique”

ρθl ↔ hθ = h(cos(θ/2) + sin(θ/2)Jb, cos(θ/2) + sin(θ/2)Jb)

Define Le iθ(h, h∗) := (hθ, hπ+θ)

Fix h and (θn/2)2h∗n → λ  (Iθn , IIIθn)→ (h, λ) and L1
e iθn

(h, h∗n)→ Eλ(h)
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φ̃θ is ρθ(π1(S))-equivariant with ρθ : π1(S)→ PSL2(R)× PSL2(R)

Find φ̃θ(S̃) ⊂ Ωθ ⊂ AdS3 domain of discontinuity for ρθ(π1(S))

 Get φθ : S ↪→ Nθ “unique”

ρθl ↔ hθ = h(cos(θ/2) + sin(θ/2)Jb, cos(θ/2) + sin(θ/2)Jb)

Define Le iθ(h, h∗) := (hθ, hπ+θ)

Fix h and (θn/2)2h∗n → λ  (Iθn , IIIθn)→ (h, λ) and L1
e iθn

(h, h∗n)→ Eλ(h)

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 13 / 17



Landslide flow

Definition

m : (S , h)→ (S , h∗) is minimal Lagrangian if m∗(h∗) = h(b, b) with
b self-adjoint, det(b) = 1, d∇b = 0.

Normalize (h, h∗) so that the identity is minimal Lagrangian
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Centers

h, h∗ hyperbolic

 h∗ = h(b, b) center c = h(id + b, id + b)

id : (S , c)→ (S , h) harmonic with Hopf differential Φ
id : (S , c)→ (S , h∗) harmonic with Hopf differential Φ∗ and Φ + Φ∗ = 0

C : T × T → Q defined as (h, h∗) 7→ (c ,Φ)

Landslide on T × T ↔ PSO2(R) action on Q

Theorem L ↔ horocyclic flow on Q limits to earthquake as h∗ → λ

Remark

If h fixed and h∗n → [λ], then lim
n

cn does not depend only on h and [λ]
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Smooth grafting

Fix h, h∗ and s ≥ 0.

Embed σ̃s : S̃ ↪→ H3 with Ĩs = cosh2(s/2)h and ĨII s = sinh2(s/2)h∗

Σ̃s ⊂ CP1 surface at infinity facing σ̃s(S̃)

Define smooth grafting SGr ′s(h, h∗) := Σs

Theorem (Labourie, 1991)

For all s > 0, SGrs : T × T → P is a diffeomorphism.

Barbot-Béguin-Zeghib (2007) =⇒ smooth earthquake theorem

G. Mondello (Roma “Sapienza”) Landslide flow PCMI 2011 15 / 17



Smooth grafting

Fix h, h∗ and s ≥ 0.
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Complex landslide

Theorem (McMullen, 1994)

Fix h ∈ T and λ ∈ML.

Then G : H2 → P defined as
G (z) := Gryλ(E−xλ(h)) is holomorphic.

Define complex landslide P ′z : T × T → P as P ′z = SGr ′y ◦ L′−x

Theorem (Bonsante-M-Schlenker, 2011)

(1) For all h, h∗ the map z 7→ P ′z(h, h∗) is holomorphic as z ∈ H2

so L(h, h∗) : S1 → P extends over ∆
∗

(2) As a map L•(h, h∗) : S1 → T , it extends over z = 0 as L0(h, h∗) := c.
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Questions

Scannell-Wolf (1997): for λ 6= 0 fixed, grλ : T → T is a
diffeomorphism.

Given h∗ and s ∈ (0, 1), is Sgrs(·, h∗) : T → T a diffeomorphism?

Is the landslide flow Hamiltonian on T × T ?

Landslide flow can be defined on the universal T (∆).

Are all the points fixed by L on the diagonal of T (∆)× T (∆)?

Description of other SL2(R)-flows in terms of surfaces in
AdS3-manifolds?
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