A cyclic extension of the earthquake flow (joint work with Francesco Bonsante and Jean-Marc Schlenker)

Gabriele Mondello

Università di Roma "La Sapienza"

PCMI Summer Program 2011

S compact oriented surface of genus $g \ge 2$

S compact oriented surface of genus $g \geq 2$ $\mathcal{T}(S)$ Teichmüller space of S

S compact oriented surface of genus $g \ge 2$ $\mathcal{T}(S)$ Teichmüller space of S $\mathcal{Q} \cong T^*\mathcal{T}(S)$ of holomorphic quadratic differentials on S

$$A_t = \begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix}$$
geodesic flow

$$A_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \qquad U_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$$
 geodesic flow horocyclic flow

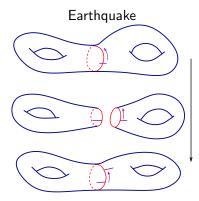
$$\begin{array}{cc} A_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} & U_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} & R_t = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \\ \begin{array}{c} \operatorname{geodesic flow} & \operatorname{horocyclic flow} & \operatorname{rotation flow} \end{array}$$

$$\begin{array}{cc} A_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} & U_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} & R_t = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \\ \begin{array}{c} \operatorname{geodesic flow} & \operatorname{horocyclic flow} & \operatorname{rotation flow} \end{array}$$

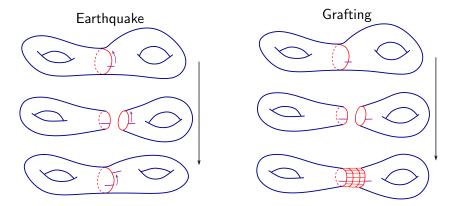
Use conformal/flat structure - No hyperbolic geometry involved

Flows of "hyperbolic" origin: make use of uniformization theorem

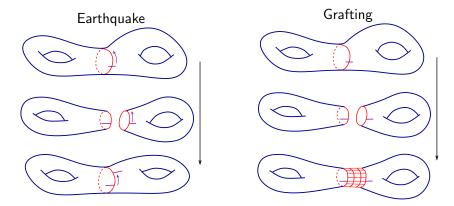
Flows of "hyperbolic" origin: make use of **uniformization theorem** $\mathcal{ML}(S)$ space of measured laminations on S



Flows of "hyperbolic" origin: make use of **uniformization theorem** $\mathcal{ML}(S)$ space of measured laminations on S

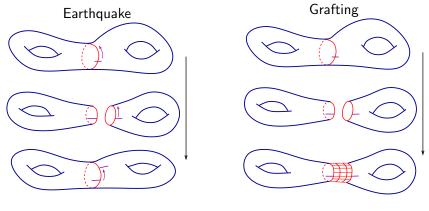


Flows of "hyperbolic" origin: make use of **uniformization theorem** $\mathcal{ML}(S)$ space of measured laminations on S



 $E:\mathcal{T}(S)\times\mathcal{ML}(S)\to\mathcal{T}(S)$

Flows of "hyperbolic" origin: make use of **uniformization theorem** $\mathcal{ML}(S)$ space of measured laminations on S



 $E: \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S)$

 $gr: \mathcal{T}(S) imes \mathcal{ML}(S) o \mathcal{T}(S)$

Earthquake

Concentrated on a lamination λ

Earthquake

Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Earthquake

Concentrated on a lamination λ

Grafting

Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Earthquake Concentrated on a lamination λ

Grafting Concentrated on a lamination λ Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow

"Spread" along a quadr. diff. φ

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

 $\mathsf{Hyperbolic \ length} \ \ell: \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathbb{R}$

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

Hyperbolic length $\ell: \mathcal{T}(S) imes \mathcal{ML}(S) o \mathbb{R} \rightsquigarrow d\ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

Hyperbolic length $\ell : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathbb{R} \rightsquigarrow d\ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$

 $\rightsquigarrow \mathcal{T}(S) \times \mathcal{ML}(S) \rightarrow \mathcal{T}^*\mathcal{T}(S) \text{ defined as } (X, \lambda) \mapsto d\ell_{\lambda}|_X$ is a homeomorphism

Earthquake Concentrated on a lamination λ

 $\label{eq:Grafting} \ensuremath{\mathsf{Grafting}}$ Concentrated on a lamination λ

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

Hyperbolic length $\ell : \mathcal{T}(S) imes \mathcal{ML}(S) \to \mathbb{R} \rightsquigarrow d\ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$

 $\stackrel{\sim}{\longrightarrow} \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}^*\mathcal{T}(S) \text{ defined as } (X, \lambda) \mapsto d\ell_{\lambda}|_X$ is a homeomorphism $\stackrel{\sim}{\longrightarrow} E_t$ is a flow on $\mathcal{T}^*\mathcal{T}(S)$

Earthquake Concentrated on a lamination λ

 $\begin{array}{l} \textbf{Grafting} \\ \textbf{Concentrated on a lamination } \lambda \end{array}$

Teichmüller horocyclic flow "Spread" along a quadr. diff. φ

Teichmüller geodesic flow "Spread" along a quadr. diff. φ

Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ defined as $E_t(X, \lambda) := (E_{t\lambda}(X), \lambda)$ is an \mathbb{R} -flow.

Hyperbolic length $\ell: \mathcal{T}(S) imes \mathcal{ML}(S) \to \mathbb{R} \rightsquigarrow d\ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$

 $\stackrel{\sim}{\longrightarrow} \mathcal{T}(S) \times \mathcal{ML}(S) \to T^*\mathcal{T}(S) \text{ defined as } (X,\lambda) \mapsto d\ell_{\lambda}|_X \\ \text{is a homeomorphism } \rightsquigarrow E_t \text{ is a flow on } T^*\mathcal{T}(S)$

Grafting map $gr_t : \mathcal{T}(S) \times \mathcal{ML}(S) \to \mathcal{T}(S) \times \mathcal{ML}(S)$ is <u>not</u> a flow!

(S, J) compact Riemann surface

(S,J) compact Riemann surface, $(\mathbb{H}^2, \widetilde{J}) \to (S,J)$ universal cover

(S, J) compact Riemann surface, $(\mathbb{H}^2, \tilde{J}) \to (S, J)$ universal cover $\pi_1(S) \to G \subset \mathrm{PSL}_2(\mathbb{R})$ acts on \mathbb{H}^2 so that $\mathbb{H}^2/G \cong S$

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

 \rightsquigarrow new complex structure \tilde{J}_{μ} on \mathbb{CP}^1 : agrees with \tilde{J} on $-\mathbb{H}^2$

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

 \rightsquigarrow new complex structure \tilde{J}_{μ} on $\mathbb{CP}^1:$ agrees with \tilde{J} on $-\mathbb{H}^2$

 $(\mathbb{CP}^1, \tilde{J}_\mu) \to (\mathbb{CP}^1, \tilde{J})$ sends \mathbb{RP}^1 to a Hölder Jordan curve Λ

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

 \rightsquigarrow new complex structure \tilde{J}_μ on $\mathbb{CP}^1\colon$ agrees with \tilde{J} on $-\mathbb{H}^2$

 $(\mathbb{CP}^1, \tilde{J}_{\mu}) \to (\mathbb{CP}^1, \tilde{J})$ sends \mathbb{RP}^1 to a Hölder Jordan curve A $\pi_1(S)$ acts on $(\mathbb{CP}^1, \tilde{J})$ holomorphically, so $\pi_1(S) \to G_{\mu} \subset \mathrm{PSL}_2(\mathbb{C})$

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

 \rightsquigarrow new complex structure \tilde{J}_μ on $\mathbb{CP}^1:$ agrees with \tilde{J} on $-\mathbb{H}^2$

 $(\mathbb{CP}^1, \tilde{J}_{\mu}) \to (\mathbb{CP}^1, \tilde{J})$ sends \mathbb{RP}^1 to a Hölder Jordan curve Λ $\pi_1(S)$ acts on $(\mathbb{CP}^1, \tilde{J})$ holomorphically, so $\pi_1(S) \to G_{\mu} \subset \mathrm{PSL}_2(\mathbb{C})$ $\overline{\mathbb{H}}^3 = \mathbb{H}^3 \cup \mathbb{CP}^1_{\infty}$ and G_{μ} acts on $\overline{\mathbb{H}}^3 \setminus \Lambda$

Deformation of cpx structure on $S \leftrightarrow \mu = \mu(z) \frac{d\bar{z}}{dz}$ Beltrami differential $\tilde{\mu}$ on \mathbb{H}^2 is extended by zero on $-\mathbb{H}^2$: it is *G*-invariant

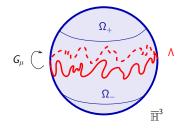
 \rightsquigarrow new complex structure \tilde{J}_μ on $\mathbb{CP}^1:$ agrees with \tilde{J} on $-\mathbb{H}^2$

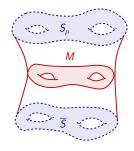
 $(\mathbb{CP}^1, \tilde{J}_{\mu}) \to (\mathbb{CP}^1, \tilde{J})$ sends \mathbb{RP}^1 to a Hölder Jordan curve Λ $\pi_1(S)$ acts on $(\mathbb{CP}^1, \tilde{J})$ holomorphically, so $\pi_1(S) \to G_{\mu} \subset \mathrm{PSL}_2(\mathbb{C})$ $\overline{\mathbb{H}}^3 = \mathbb{H}^3 \cup \mathbb{CP}^1_{\infty}$ and G_{μ} acts on $\overline{\mathbb{H}}^3 \setminus \Lambda$

 $\mathcal{G}_{\mu} \subset \mathrm{PSL}_2(\mathbb{C})$ is **quasi-Fuchsian**, i.e. acts prop. discont. on $\mathbb{CP}^1 \setminus \Lambda$

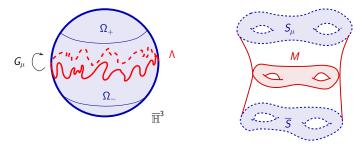
 $\overline{\mathbb{H}}^3 = \mathbb{H}^3 \cup \mathbb{CP}^1_\infty$ and G_μ acts freely and discontinuously on $\overline{\mathbb{H}}^3 \setminus \Lambda$

 $\overline{\mathbb{H}}^{3} = \mathbb{H}^{3} \cup \mathbb{CP}^{1}_{\infty}$ and G_{μ} acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \setminus \Lambda$ Get a hyperbolic 3-manifold $M = \mathbb{H}^{3}/G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $(\mathbb{CP}^{1}_{\infty} \setminus \Lambda)/G_{\mu} = (S, J_{\mu}) \sqcup (S, -J)$



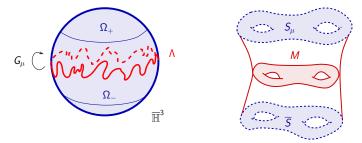


 $\overline{\mathbb{H}}^{3} = \mathbb{H}^{3} \cup \mathbb{CP}^{1}_{\infty}$ and G_{μ} acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \setminus \Lambda$ Get a hyperbolic 3-manifold $M = \mathbb{H}^{3}/G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $(\mathbb{CP}^{1}_{\infty} \setminus \Lambda)/G_{\mu} = (S, J_{\mu}) \sqcup (S, -J)$



 $(S, J_{\mu}) \cong \Omega_{+}/G_{\mu}$ and $(S, -J) \cong \Omega_{-}/G_{\mu}$ acquire a \mathbb{CP}^{1} -structure

 $\overline{\mathbb{H}}^{3} = \mathbb{H}^{3} \cup \mathbb{CP}^{1}_{\infty}$ and G_{μ} acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \setminus \Lambda$ Get a hyperbolic 3-manifold $M = \mathbb{H}^{3}/G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $(\mathbb{CP}^{1}_{\infty} \setminus \Lambda)/G_{\mu} = (S, J_{\mu}) \sqcup (S, -J)$



 $(S, J_{\mu}) \cong \Omega_{+}/G_{\mu}$ and $(S, -J) \cong \Omega_{-}/G_{\mu}$ acquire a \mathbb{CP}^{1} -structure

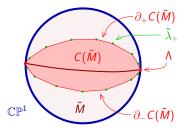
Theorem (Bers, 1960)

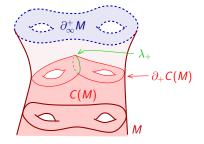
 $\mathcal{QF} = \{$ quasi-Fuchsian manifolds $M\} \leftrightarrow \mathcal{T} \times \overline{\mathcal{T}}$ is biholomorphic.

M quasi-Fuchsian manifold, $\tilde{M} \rightarrow M$ universal cover

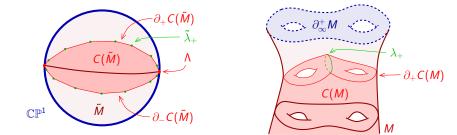
M quasi-Fuchsian manifold, $\tilde{M} \to M$ universal cover Convex core $C(\tilde{M}) =$ convex envelope of Λ

M quasi-Fuchsian manifold, $\tilde{M} \to M$ universal cover Convex core $C(\tilde{M}) =$ convex envelope of Λ



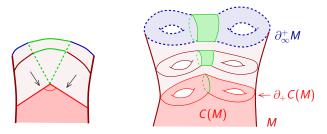


M quasi-Fuchsian manifold, $\tilde{M} \to M$ universal cover Convex core $C(\tilde{M}) =$ convex envelope of Λ

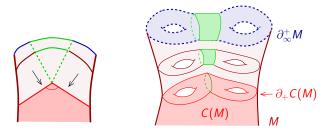


 $\partial_+ C(M)$ is a **bent surface**, i.e. I = h hyperbolic metric and $III = \lambda_+$

Closest point projection $\partial_{\infty}^+(M) \rightarrow \partial_+ C(M)$

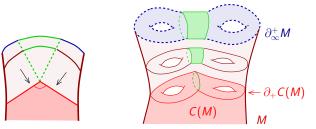


Closest point projection $\partial_{\infty}^+(M) \rightarrow \partial_+ C(M)$



 $\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$

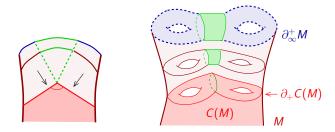


 $\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Theorem (Thurston)

 $Gr: \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{P} = \{\mathbb{CP}^1 \text{-structures on } S \text{ up to isotopy}\}$ is a homeomorphism.

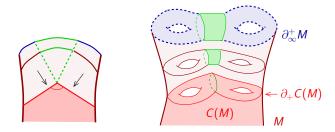
Closest point projection $\partial_{\infty}^+(M) \to \partial_+ C(M)$



 $\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ

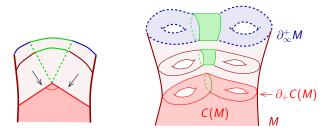
Closest point projection $\partial_{\infty}^+(M) \to \partial_+ C(M)$



$\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$

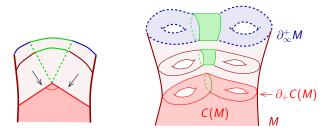


$\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

 λ small \rightsquigarrow get **M** QF manifold, otherwise **M** hyperbolic end

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$

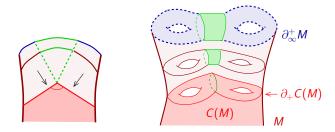


$\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

From the $\sigma(S) \subset M$, look at the concave direction: see $Gr_{\lambda}(h)$

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$

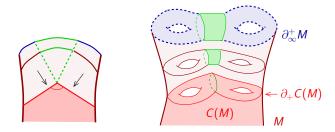


 $\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

 $B = -\nabla \nu$ shape operator

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$

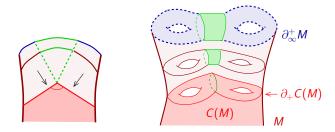


$\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

$$B = -\nabla \nu$$
 shape operator, normal flow away from $\sigma(S) \rightsquigarrow h_t = h(\cosh(t) + \sinh(t)B, \cosh(t) + \sinh(t)B)$

Closest point projection $\partial^+_{\infty}(M) \rightarrow \partial_+ C(M)$



$\partial^+_{\infty}(M) \cong Gr_{\lambda_+}(\partial_+ C(M))$

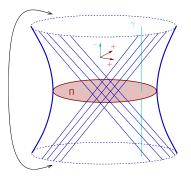
Recipe for grafting: hyperbolic surface (S, h) and measured lamination λ Embed $\tilde{\sigma} : (\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^3$ with $I = \tilde{h}$ and $III = \tilde{\lambda}$

 $B = -\nabla \nu$ shape operator, normal flow away from $\sigma(S) \rightsquigarrow h_t = h(\cosh(t) + \sinh(t)B, \cosh(t) + \sinh(t)B)$ $Gr_{\lambda}(h)$ is conformally equivalent to $[h_{\infty}] = [h(id + B, id + B)]$

G. Mondello (Roma "Sapienza")

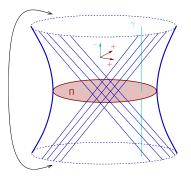
Similar description for the earthquake?

Similar description for the earthquake?



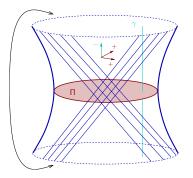
Anti de Sitter space $\mathbb{A}d\mathbb{S}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$

Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

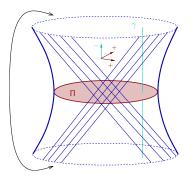
Similar description for the earthquake?



Anti de Sitter space $\mathbb{A}d\mathbb{S}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

• Lorentzian, complete, K = -1

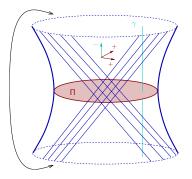
Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

• Lorentzian, complete, K = -1, $\operatorname{Isom}_{id}(\operatorname{Ad}\mathbb{S}^3) \cong \operatorname{PSL}_2(\mathbb{R}) \times \operatorname{PSL}_2(\mathbb{R})$

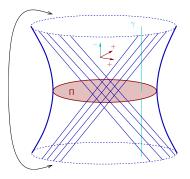
Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

Lorentzian, complete, K = −1, Isom_{id}(AdS³) ≅ PSL₂(ℝ) × PSL₂(ℝ)
AdS³ as interior of a quadric Q = {det = 0} ⊂ Pgl₂(ℝ) ≅ ℝP³

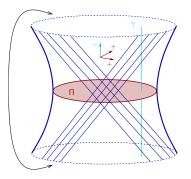
Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

- Lorentzian, complete, K = −1, Isom_{id}(AdS³) ≅ PSL₂(ℝ) × PSL₂(ℝ)
 AdS³ as interior of a quadric Q = {det = 0} ⊂ Pgl₂(ℝ) ≅ ℝP³
 - $\rightsquigarrow \partial \mathbb{A}\mathrm{d}\mathbb{S}^3 \cong \mathbb{P} \mathcal{Q} \cong \mathbb{R}\mathbb{P}^1 \times \mathbb{R}\mathbb{P}^1$

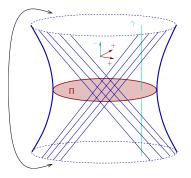
Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

- Lorentzian, complete, K = -1, $\operatorname{Isom}_{id}(\operatorname{Ad}\mathbb{S}^3) \cong \operatorname{PSL}_2(\mathbb{R}) \times \operatorname{PSL}_2(\mathbb{R})$
- AdS^3 as interior of a quadric $Q = \{\det = 0\} \subset \mathbb{P}\mathfrak{gl}_2(\mathbb{R}) \cong \mathbb{RP}^3$ $\rightsquigarrow \partial \operatorname{AdS}^3 \cong \mathbb{P}Q \cong \mathbb{RP}^1 \times \mathbb{RP}^1$
- Space-like totally geodesic planes $\Pi \cong \mathbb{H}^2$

Similar description for the earthquake?



Anti de Sitter space $\mathbb{AdS}^3 = \{x \in \mathbb{R}^{2,2} | \langle x, x \rangle = -1\}$ $\cong (PSL_2(\mathbb{R}), \mathcal{K})$

- Lorentzian, complete, K = -1, $\operatorname{Isom}_{id}(\operatorname{Ad}\mathbb{S}^3) \cong \operatorname{PSL}_2(\mathbb{R}) \times \operatorname{PSL}_2(\mathbb{R})$
- AdS^3 as interior of a quadric $Q = \{\det = 0\} \subset \mathbb{P}\mathfrak{gl}_2(\mathbb{R}) \cong \mathbb{RP}^3$ $\rightsquigarrow \partial \operatorname{AdS}^3 \cong \mathbb{P}Q \cong \mathbb{RP}^1 \times \mathbb{RP}^1$
- Space-like totally geodesic planes $\Pi \cong \mathbb{H}^2$
- $\bullet\,$ Time-like geodesics γ are closed of length 2π

G. Mondello (Roma "Sapienza")

Definition

An $\mathbb{A}d\mathbb{S}^3$ -manifold *N* is **Maximal Global Hyperbolic** if

Definition

An $\mathbb{A}d\mathbb{S}^3$ -manifold *N* is **Maximal Global Hyperbolic** if

• it contains a closed, oriented, space-like surface S of $g \ge 2$ (Cauchy surface)

Definition

An AdS^3 -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of $g \ge 2$ (Cauchy surface)
- every inextendible time-like curve intersects S exactly once

Definition

An AdS^3 -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of $g \ge 2$ (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

Definition

An $\mathbb{A}d\mathbb{S}^3$ -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of $g \ge 2$ (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

N MGH $\mathbb{A}d\mathbb{S}^3$ -manifold \implies **N** \cong **S** \times $(-\pi/2, \pi/2)$

Definition

An $\mathbb{A}d\mathbb{S}^3$ -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of $g \ge 2$ (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

 N MGH $\mathbb{A}d\mathbb{S}^3$ -manifold $\implies \mathsf{N} \cong \mathsf{S} \times (-\pi/2, \pi/2)$

 $\exists \Omega \subset \mathbb{A} \mathrm{d} \mathbb{S}^3$ open convex

Definition

An AdS^3 -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of g ≥ 2 (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

N MGH AdS^3 -manifold \implies *N* \cong *S* \times ($-\pi/2, \pi/2$)

 $\exists \Omega \subset \mathbb{A}d\mathbb{S}^3$ open convex , $\exists \rho = (\rho_l, \rho_r) : \pi_1(S) \to \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R})$ with $\rho_l, \rho_r \in \mathcal{T}(S)$

Definition

An AdS^3 -manifold *N* is **Maximal Global Hyperbolic** if

- it contains a closed, oriented, space-like surface S of g ≥ 2 (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

N MGH AdS^3 -manifold \implies *N* \cong *S* \times ($-\pi/2, \pi/2$)

 $\exists \Omega \subset \mathbb{A}d\mathbb{S}^3$ open convex , $\exists \rho = (\rho_l, \rho_r) : \pi_1(S) \to \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R})$ with $\rho_l, \rho_r \in \mathcal{T}(S)$ such that $N \cong \Omega / \rho(\pi_1(S))$

Definition

An $\mathbb{A}d\mathbb{S}^3$ -manifold *N* is **Maximal Global Hyperbolic** if

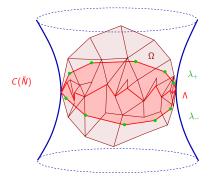
- it contains a closed, oriented, space-like surface S of g ≥ 2 (Cauchy surface)
- every inextendible time-like curve intersects S exactly once
- N is maximal under inclusion.

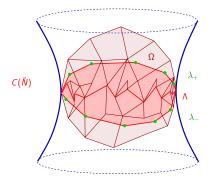
N MGH AdS^3 -manifold \implies *N* \cong *S* \times ($-\pi/2, \pi/2$)

 $\exists \Omega \subset \mathbb{A}d\mathbb{S}^3$ open convex , $\exists \rho = (\rho_I, \rho_r) : \pi_1(S) \to \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R})$ with $\rho_I, \rho_r \in \mathcal{T}(S)$ such that $N \cong \Omega / \rho(\pi_1(S))$

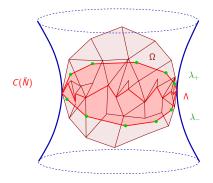
Theorem (Mess, 1990)

 $\mathcal{MGH}(S) \longrightarrow \mathcal{T}(S) \times \mathcal{T}(S)$ is a diffeomorphism.

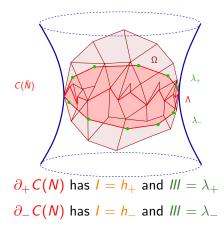




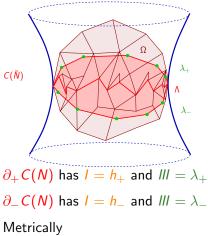
Λ limit set for $\rho(\pi_1(S))$ acting on Ω Hölder Jordan curve on $\partial \Omega$



Λ limit set for $\rho(\pi_1(S))$ acting on Ω Hölder Jordan curve on $\partial \Omega$

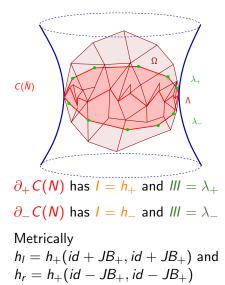


Λ limit set for $\rho(\pi_1(S))$ acting on Ω Hölder Jordan curve on $\partial \Omega$

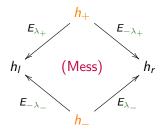


 $h_l = h_+(id + JB_+, id + JB_+)$ and $h_r = h_+(id - JB_+, id - JB_+)$

Λ limit set for $\rho(\pi_1(S))$ acting on Ω Hölder Jordan curve on $\partial \Omega$



Λ limit set for $\rho(\pi_1(S))$ acting on Ω Hölder Jordan curve on $\partial \Omega$



Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

•
$$L_{-1}(h, h^*) = (h^*, h)$$

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

•
$$L_{-1}(h, h^*) = (h^*, h)$$

•
$$L^1_{e^{i\theta_n}}(h,h_n^*)$$
 limits to $E_{\lambda}(h)$ as $(\theta_n/2)^2 h_n^* \to \lambda$

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

•
$$L_{-1}(h, h^*) = (h^*, h)$$

•
$$L^1_{e^{i\theta_n}}(h, h_n^*)$$
 limits to $E_{\lambda}(h)$ as $(\theta_n/2)^2 h_n^* \to \lambda$

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \rightarrow \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

•
$$L_{-1}(h, h^*) = (h^*, h)$$

- $L^1_{e^{i\theta_n}}(h, h_n^*)$ limits to $E_{\lambda}(h)$ as $(\theta_n/2)^2 h_n^* \to \lambda$
- $\forall e^{i\theta} \neq 1$ and $h, h' \in \mathcal{T}$, $\exists ! h^* \in \mathcal{T}$ s.t. $L^1_{e^{i\theta}}(h, h^*) = h'$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \to \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic S¹-landslide flow $L_{e^{i\theta}} : \mathcal{T} \times \mathcal{T} \to \mathcal{T} \times \mathcal{T}$ s.t.

•
$$L_{-1}(h, h^*) = (h^*, h)$$

- $L^1_{e^{i\theta_n}}(h, h_n^*)$ limits to $E_{\lambda}(h)$ as $(\theta_n/2)^2 h_n^* \to \lambda$
- $\forall e^{i\theta} \neq 1$ and $h, h' \in \mathcal{T}$, $\exists ! h^* \in \mathcal{T}$ s.t. $L^1_{e^{i\theta}}(h, h^*) = h'$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).

Warning! Metrics in \mathcal{T} are up to isotopy

Earthquake is a flow $E_t : \mathcal{T} \times \mathcal{ML} \to \mathcal{T} \times \mathcal{ML}$

<u>Idea</u>: embed S in AdS^3 using $I \propto h$ and $III \propto h^*$ with $h, h^* \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic S¹-landslide flow $L_{e^{i\theta}} : \mathcal{T} \times \mathcal{T} \to \mathcal{T} \times \mathcal{T}$ s.t.

•
$$L_{-1}(h, h^*) = (h^*, h)$$

- $L^1_{e^{i\theta_n}}(h,h_n^*)$ limits to $E_{\lambda}(h)$ as $(\theta_n/2)^2 h_n^* \to \lambda$
- $\forall e^{i\theta} \neq 1$ and $h, h' \in \mathcal{T}, \exists ! h^* \in \mathcal{T}$ s.t. $L^1_{e^{i\theta}}(h, h^*) = h'$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).

Warning! Metrics in \mathcal{T} are <u>up to isotopy</u> We need to "fix the gauge" between h and h^*

Definition

 $m: (S, h) \rightarrow (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with

Definition

 $m:(S,h) \rightarrow (S,h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b,b)$ with b self-adjoint,

Definition

 $m: (S, h) \rightarrow (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1,

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A}d\mathbb{S}^3$ with $\tilde{l}_{\theta} = \cos^2(\theta/2)\tilde{h}$ and $\tilde{III}_{\theta} = \sin^2(\theta/2)\tilde{h}^*$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \mathbb{A}d\mathbb{S}^3$ with $\tilde{I}_{\theta} = \cos^2(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^2(\theta/2)\tilde{h}^*$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_1(S))$ -equivariant with $\rho^{\theta} : \pi_1(S) \to \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R})$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \mathbb{A}d\mathbb{S}^3$ with $\tilde{I}_{\theta} = \cos^2(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^2(\theta/2)\tilde{h}^*$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_1(S))$ -equivariant with $\rho^{\theta} : \pi_1(S) \to \mathrm{PSL}_2(\mathbb{R}) \times \mathrm{PSL}_2(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A}d\mathbb{S}^3$ domain of discontinuity for $\rho^{\theta}(\pi_1(S))$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \operatorname{AdS}^{3}$ with $\tilde{I}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta}: \pi_{1}(S) \to \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \operatorname{AdS}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ \rightsquigarrow Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \operatorname{AdS}^{3}$ with $\tilde{I}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta} : \pi_{1}(S) \to \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \operatorname{AdS}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ \sim Get $\phi_{\theta} : S \hookrightarrow N_{\theta}$ "unique" $\rho_{1}^{\theta} \leftrightarrow h_{\theta} = h(\cos(\theta/2) + \sin(\theta/2)Jb, \cos(\theta/2) + \sin(\theta/2)Jb)$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \mathbb{A}d\mathbb{S}^{3}$ with $\tilde{I}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta} : \pi_{1}(S) \to \mathrm{PSL}_{2}(\mathbb{R}) \times \mathrm{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A}d\mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ $\rightsquigarrow \mathrm{Get} \ \phi_{\theta} : S \hookrightarrow N_{\theta}$ "unique" $\rho_{I}^{\theta} \iff h_{\theta} = h(\cos(\theta/2) + \sin(\theta/2)Jb, \cos(\theta/2) + \sin(\theta/2)Jb)$ Define $\boxed{L_{e^{i\theta}}(h, h^{*}) := (h_{\theta}, h_{\pi+\theta})}$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \operatorname{AdS}^{3}$ with $\tilde{I}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{I}I_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta} : \pi_{1}(S) \to \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \operatorname{AdS}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ \rightsquigarrow Get $\phi_{\theta} : S \hookrightarrow N_{\theta}$ "unique" $\rho_{I}^{\theta} \leftrightarrow h_{\theta} = h(\cos(\theta/2) + \sin(\theta/2)Jb, \cos(\theta/2) + \sin(\theta/2)Jb)$

Define
$$L_{e^{i\theta}}(h, h^*) := (h_{\theta}, h_{\pi+\theta})$$

Fix h and $(\theta_n/2)^2 h_n^* \to \lambda$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \operatorname{AdS}^{3}$ with $\tilde{I}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{III}_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta} : \pi_{1}(S) \to \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \operatorname{AdS}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ \rightsquigarrow Get $\phi_{\theta} : S \hookrightarrow N_{\theta}$ "unique" $\rho_{I}^{\theta} \leftrightarrow h_{\theta} = h(\cos(\theta/2) + \sin(\theta/2)Jb, \cos(\theta/2) + \sin(\theta/2)Jb)$ Define $\overline{L_{e^{i\theta}}(h, h^{*}) := (h_{\theta}, h_{\pi+\theta})}$

Fix h and $(\theta_n/2)^2 h_n^* \to \lambda \rightsquigarrow (I_{\theta_n}, III_{\theta_n}) \to (h, \lambda)$

Definition

 $m: (S, h) \to (S, h^*)$ is minimal Lagrangian if $m^*(h^*) = h(b, b)$ with b self-adjoint, det(b) = 1, $d^{\nabla}b = 0$.

Normalize (h, h^*) so that the identity is minimal Lagrangian

Embed $\tilde{\phi}_{\theta} : \tilde{S} \hookrightarrow \mathbb{A}d\mathbb{S}^{3}$ with $\tilde{l}_{\theta} = \cos^{2}(\theta/2)\tilde{h}$ and $\tilde{l}l_{\theta} = \sin^{2}(\theta/2)\tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}(\pi_{1}(S))$ -equivariant with $\rho^{\theta} : \pi_{1}(S) \to \mathrm{PSL}_{2}(\mathbb{R}) \times \mathrm{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A}d\mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}(\pi_{1}(S))$ \rightsquigarrow Get $\phi_{\theta} : S \hookrightarrow N_{\theta}$ "unique" $\rho_{l}^{\theta} \leftrightarrow h_{\theta} = h(\cos(\theta/2) + \sin(\theta/2)Jb, \cos(\theta/2) + \sin(\theta/2)Jb)$ Define $\boxed{L_{e^{i\theta}}(h, h^{*}) := (h_{\theta}, h_{\pi+\theta})}$

Fix h and $(\theta_n/2)^2 h_n^* \to \lambda \rightsquigarrow (I_{\theta_n}, III_{\theta_n}) \to (h, \lambda)$ and $\left| L^1_{e^{i\theta_n}}(h, h_n^*) \to E_{\lambda}(h) \right|$

h, h* hyperbolic

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b)$

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b)

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b)

 $id: (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id: (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^*

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b)

 $id: (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id: (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b) $id : (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id : (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 $\mathcal{C}:\mathcal{T} imes\mathcal{T} o\mathcal{Q}$ defined as $(h,h^*)\mapsto(c,\Phi)$

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b) $id : (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id : (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 $C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q}$ defined as $(h, h^*) \mapsto (c, \Phi)$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow$

Centers

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b) $id : (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id : (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 $\mathcal{C}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q}$ defined as $(h, h^*) \mapsto (c, \Phi)$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_2(\mathbb{R})$ action on \mathcal{Q}

Centers

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b) $id : (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id : (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 $\mathcal{C}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q}$ defined as $(h, h^*) \mapsto (c, \Phi)$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_2(\mathbb{R})$ action on \mathcal{Q}

Theorem L \leftrightarrow horocyclic flow on Q limits to earthquake as $h^* \rightarrow \lambda$

Centers

 h, h^* hyperbolic $\rightsquigarrow h^* = h(b, b) \rightsquigarrow$ center c = h(id + b, id + b) $id : (S, c) \rightarrow (S, h)$ harmonic with Hopf differential Φ $id : (S, c) \rightarrow (S, h^*)$ harmonic with Hopf differential Φ^* and $\Phi + \Phi^* = 0$

 $C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q}$ defined as $(h, h^*) \mapsto (c, \Phi)$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_2(\mathbb{R})$ action on \mathcal{Q}

Theorem L \leftrightarrow horocyclic flow on \mathcal{Q} limits to earthquake as $h^* \rightarrow \lambda$

Remark

If h fixed and $h_n^* \to [\lambda]$, then $\lim_n c_n$ does not depend only on h and $[\lambda]$

Smooth grafting

Fix h, h^* and $s \ge 0$.

Fix h, h^* and $s \ge 0$.

Embed $\tilde{\sigma}_s: \tilde{S} \hookrightarrow \mathbb{H}^3$ with $\tilde{l}_s = \cosh^2(s/2)h$ and $\tilde{II}_s = \sinh^2(s/2)h^*$

Fix h, h^* and $s \ge 0$.

Embed $\tilde{\sigma}_s : \tilde{S} \hookrightarrow \mathbb{H}^3$ with $\tilde{I}_s = \cosh^2(s/2)h$ and $\tilde{II}_s = \sinh^2(s/2)h^*$ $\tilde{\Sigma}_s \subset \mathbb{CP}^1$ surface at infinity facing $\tilde{\sigma}_s(\tilde{S})$ Fix h, h^* and $s \ge 0$. Embed $\tilde{\sigma}_s : \tilde{S} \hookrightarrow \mathbb{H}^3$ with $\tilde{I}_s = \cosh^2(s/2)h$ and $\tilde{II}_s = \sinh^2(s/2)h^*$ $\tilde{\Sigma}_s \subset \mathbb{CP}^1$ surface at infinity facing $\tilde{\sigma}_s(\tilde{S})$

Define smooth grafting $SGr'_{s}(h, h^{*}) := \Sigma_{s}$

Fix h, h^* and $s \ge 0$. Embed $\tilde{\sigma}_s : \tilde{S} \hookrightarrow \mathbb{H}^3$ with $\tilde{I}_s = \cosh^2(s/2)h$ and $\tilde{I}I_s = \sinh^2(s/2)h^*$ $\tilde{\Sigma}_s \subset \mathbb{CP}^1$ surface at infinity facing $\tilde{\sigma}_s(\tilde{S})$

Define smooth grafting $SGr'_{s}(h, h^{*}) := \Sigma_{s}$

Theorem (Labourie, 1991)

For all s > 0, $SGr_s : T \times T \rightarrow P$ is a diffeomorphism.

Fix h, h^* and $s \ge 0$. Embed $\tilde{\sigma}_s : \tilde{S} \hookrightarrow \mathbb{H}^3$ with $\tilde{I}_s = \cosh^2(s/2)h$ and $\tilde{I}I_s = \sinh^2(s/2)h^*$ $\tilde{\Sigma}_s \subset \mathbb{CP}^1$ surface at infinity facing $\tilde{\sigma}_s(\tilde{S})$

Define smooth grafting $SGr'_{s}(h, h^{*}) := \Sigma_{s}$

Theorem (Labourie, 1991)

For all s > 0, $SGr_s : T \times T \rightarrow P$ is a diffeomorphism.

Barbot-Béguin-Zeghib (2007) \implies smooth earthquake theorem

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$.

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$. Then $G : \overline{\mathbb{H}^2} \to \mathcal{P}$ defined as $G(z) := Gr_{y\lambda}(E_{-x\lambda}(h))$ is holomorphic.

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$. Then $G : \overline{\mathbb{H}^2} \to \mathcal{P}$ defined as $G(z) := Gr_{y\lambda}(E_{-x\lambda}(h))$ is holomorphic.

Define complex landslide $P'_z : \mathcal{T} \times \mathcal{T} \to \mathcal{P}$ as $P'_z = SGr'_y \circ L'_{-x}$

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$. Then $G : \overline{\mathbb{H}^2} \to \mathcal{P}$ defined as $G(z) := Gr_{y\lambda}(E_{-x\lambda}(h))$ is holomorphic.

Define complex landslide $P'_z : \mathcal{T} \times \mathcal{T} \to \mathcal{P}$ as $P'_z = SGr'_v \circ L'_{-x}$

Theorem (Bonsante-M-Schlenker, 2011)

(1) For all h, h^* the map $z \mapsto P_z'(h, h^*)$ is holomorphic as $z \in \overline{\mathbb{H}}^2$

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$. Then $G : \overline{\mathbb{H}^2} \to \mathcal{P}$ defined as $G(z) := Gr_{y\lambda}(E_{-x\lambda}(h))$ is holomorphic.

Define complex landslide $P'_z : \mathcal{T} \times \mathcal{T} \to \mathcal{P}$ as $P'_z = SGr'_v \circ L'_{-x}$

Theorem (Bonsante-M-Schlenker, 2011)

(1) For all h, h^* the map $z \mapsto P'_z(h, h^*)$ is holomorphic as $z \in \overline{\mathbb{H}}^2$ so $L(h, h^*) : S^1 \to \mathcal{P}$ extends over $\overline{\Delta}^*$

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{ML}$. Then $G : \overline{\mathbb{H}^2} \to \mathcal{P}$ defined as $G(z) := Gr_{y\lambda}(E_{-x\lambda}(h))$ is holomorphic.

Define complex landslide $P'_z : \mathcal{T} \times \mathcal{T} \to \mathcal{P}$ as $P'_z = SGr'_v \circ L'_{-x}$

Theorem (Bonsante-M-Schlenker, 2011)

(1) For all h, h^* the map $z \mapsto P'_z(h, h^*)$ is holomorphic as $z \in \overline{\mathbb{H}}^2$ so $L(h, h^*) : S^1 \to \mathcal{P}$ extends over $\overline{\Delta}^*$

(2) As a map $L_{\bullet}(h, h^*) : S^1 \to \mathcal{T}$, it extends over z = 0 as $L_0(h, h^*) := c$.

Questions

• Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $gr_{\lambda} : T \to T$ is a diffeomorphism.

Scannell-Wolf (1997): for λ ≠ 0 fixed, gr_λ : T → T is a diffeomorphism.

Given h^* and $s \in (0,1)$, is $Sgr_s(\cdot, h^*) : \mathcal{T} \to \mathcal{T}$ a diffeomorphism?

Scannell-Wolf (1997): for λ ≠ 0 fixed, gr_λ : T → T is a diffeomorphism.

Given h^* and $s \in (0,1)$, is $Sgr_s(\cdot, h^*) : \mathcal{T} \to \mathcal{T}$ a diffeomorphism?

• Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$?

• Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $gr_{\lambda} : T \to T$ is a diffeomorphism.

Given h^* and $s \in (0, 1)$, is $Sgr_s(\cdot, h^*) : \mathcal{T} \to \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.

Scannell-Wolf (1997): for λ ≠ 0 fixed, gr_λ : T → T is a diffeomorphism.

Given h^* and $s \in (0, 1)$, is $Sgr_s(\cdot, h^*) : \mathcal{T} \to \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.

Are all the points fixed by *L* on the diagonal of $\mathcal{T}(\Delta) \times \mathcal{T}(\Delta)$?

Scannell-Wolf (1997): for λ ≠ 0 fixed, gr_λ : T → T is a diffeomorphism.

Given h^* and $s \in (0, 1)$, is $Sgr_s(\cdot, h^*) : \mathcal{T} \to \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.

Are all the points fixed by L on the diagonal of $\mathcal{T}(\Delta) \times \mathcal{T}(\Delta)$?

• Description of other ${\rm SL}_2(\mathbb{R})\text{-flows}$ in terms of surfaces in $\mathbb{A}d\mathbb{S}^3\text{-manifolds}?$