# A cyclic extension of the earthquake flow (joint work with Francesco Bonsante and Jean-Marc Schlenker) 

Gabriele Mondello

Università di Roma "La Sapienza"

PCMI Summer Program 2011

## Motivation

$S$ compact oriented surface of genus $g \geq 2$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$
$\mathrm{SL}_{2}(\mathbb{R})$ action on the space $T^{*} \mathcal{T}(S)$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$
$\mathrm{SL}_{2}(\mathbb{R})$ action on the space $T^{*} \mathcal{T}(S)$

$$
A_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)
$$

geodesic flow

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$
$\mathrm{SL}_{2}(\mathbb{R})$ action on the space $T^{*} \mathcal{T}(S)$

$$
\begin{array}{cl}
A_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) & U_{t}=\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right) \\
\text { geodesic flow } & \text { horocyclic flow }
\end{array}
$$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$
$\mathrm{SL}_{2}(\mathbb{R})$ action on the space $T^{*} \mathcal{T}(S)$

$$
\begin{array}{cc}
A_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) & U_{t}=\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right)
\end{array} R_{t}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

## Motivation

$S$ compact oriented surface of genus $g \geq 2$
$\mathcal{T}(S)$ Teichmüller space of $S$
$\mathcal{Q} \cong T^{*} \mathcal{T}(S)$ of holomorphic quadratic differentials on $S$
$\mathrm{SL}_{2}(\mathbb{R})$ action on the space $T^{*} \mathcal{T}(S)$

$$
\begin{array}{cc}
A_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) & U_{t}=\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right)
\end{array} \quad R_{t}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

Use conformal/flat structure - No hyperbolic geometry involved

## Motivation

Flows of "hyperbolic" origin: make use of uniformization theorem

## Motivation

Flows of "hyperbolic" origin: make use of uniformization theorem $\mathcal{M L}(S)$ space of measured laminations on $S$


## Motivation

Flows of "hyperbolic" origin: make use of uniformization theorem $\mathcal{M L}(S)$ space of measured laminations on $S$


## Motivation

Flows of "hyperbolic" origin: make use of uniformization theorem $\mathcal{M L}(S)$ space of measured laminations on $S$


$$
E: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S)
$$

## Motivation

Flows of "hyperbolic" origin: make use of uniformization theorem $\mathcal{M L}(S)$ space of measured laminations on $S$


$$
E: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S)
$$

Grafting


$$
g r: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S)
$$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow

 "Spread" along a quadr. diff. $\varphi$
## Grafting

Concentrated on a lamination $\lambda$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

Teichmüller geodesic flow
"Spread" along a quadr. diff. $\varphi$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow <br> "Spread" along a quadr. diff. $\varphi$

Teichmüller geodesic flow
"Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow

"Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow

"Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.
Hyperbolic length $\ell: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathbb{R}$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow

"Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.
Hyperbolic length $\ell: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathbb{R} \rightsquigarrow d \ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow

"Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.
Hyperbolic length $\ell: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathbb{R} \rightsquigarrow d \ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$
$\rightsquigarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow T^{*} \mathcal{T}(S)$ defined as $\left.(X, \lambda) \mapsto d \ell_{\lambda}\right|_{X}$
is a homeomorphism

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow <br> "Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.
Hyperbolic length $\ell: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathbb{R} \rightsquigarrow d \ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$
$\rightsquigarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow T^{*} \mathcal{T}(S)$ defined as $\left.(X, \lambda) \mapsto d \ell_{\lambda}\right|_{X}$
is a homeomorphism $\rightsquigarrow E_{t}$ is a flow on $T^{*} \mathcal{T}(S)$

## Motivation

## Earthquake

Concentrated on a lamination $\lambda$

## Grafting

Concentrated on a lamination $\lambda$

## Teichmüller horocyclic flow "Spread" along a quadr. diff. $\varphi$

## Teichmüller geodesic flow <br> "Spread" along a quadr. diff. $\varphi$

## Theorem (Mirzakhani, 2007)

Earthquake and Teichmüller horocyclic flow are measurably conjugate.

The earthquake $E_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ defined as $E_{t}(X, \lambda):=\left(E_{t \lambda}(X), \lambda\right)$ is an $\mathbb{R}$-flow.
Hyperbolic length $\ell: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathbb{R} \rightsquigarrow d \ell_{\lambda}$ is a 1-form on $\mathcal{T}(S)$
$\rightsquigarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow T^{*} \mathcal{T}(S)$ defined as $\left.(X, \lambda) \mapsto d \ell_{\lambda}\right|_{X}$
is a homeomorphism $\rightsquigarrow E_{t}$ is a flow on $T^{*} \mathcal{T}(S)$
Grafting map $g r_{t}: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$ is not a flow!

## Deformations of complex structures

## $(S, J)$ compact Riemann surface

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \mathrm{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \mathrm{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant
$\rightsquigarrow$ new complex structure $\tilde{J}_{\mu}$ on $\mathbb{C P}^{1}$ : agrees with $\tilde{J}$ on $-\mathbb{H}^{2}$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant
$\rightsquigarrow$ new complex structure $\tilde{J}_{\mu}$ on $\mathbb{C P}^{1}$ : agrees with $\tilde{J}$ on $-\mathbb{H}^{2}$
$\left(\mathbb{C P}^{1}, \tilde{J}_{\mu}\right) \rightarrow\left(\mathbb{C P}^{1}, \tilde{J}\right)$ sends $\mathbb{R}^{1}$ to a Hölder Jordan curve $\wedge$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant $\rightsquigarrow$ new complex structure $\tilde{J}_{\mu}$ on $\mathbb{C P}^{1}$ : agrees with $\tilde{J}$ on $-\mathbb{H}^{2}$ $\left(\mathbb{C P}^{1}, \tilde{J}_{\mu}\right) \rightarrow\left(\mathbb{C P}^{1}, \tilde{J}\right)$ sends $\mathbb{R P}^{1}$ to a Hölder Jordan curve $\wedge$ $\pi_{1}(S)$ acts on $\left(\mathbb{C P}^{1}, J\right)$ holomorphically, so $\pi_{1}(S) \rightarrow G_{\mu} \subset \operatorname{PSL}_{2}(\mathbb{C})$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant $\rightsquigarrow$ new complex structure $\tilde{J}_{\mu}$ on $\mathbb{C P}^{1}$ : agrees with $\tilde{J}$ on $-\mathbb{H}^{2}$ $\left(\mathbb{C P}^{1}, \tilde{J}_{\mu}\right) \rightarrow\left(\mathbb{C P}^{1}, \tilde{J}\right)$ sends $\mathbb{R P}^{1}$ to a Hölder Jordan curve $\wedge$ $\pi_{1}(S)$ acts on $\left(\mathbb{C P}^{1}, J\right)$ holomorphically, so $\pi_{1}(S) \rightarrow G_{\mu} \subset \operatorname{PSL}_{2}(\mathbb{C})$ $\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts on $\overline{\mathbb{H}}^{3} \backslash \Lambda$

## Deformations of complex structures

$(S, J)$ compact Riemann surface, $\left(\mathbb{H}^{2}, \tilde{\jmath}\right) \rightarrow(S, J)$ universal cover $\pi_{1}(S) \rightarrow G \subset \operatorname{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{H}^{2}$ so that $\mathbb{H}^{2} / G \cong S$
$G$ acts also on $-\mathbb{H}^{2}$ and $\left(-\mathbb{H}^{2}\right) / G \cong \bar{S}$
Deformation of cpx structure on $S \leftrightarrow \mu=\mu(z) \frac{d \bar{z}}{d z}$ Beltrami differential $\tilde{\mu}$ on $\mathbb{H}^{2}$ is extended by zero on $-\mathbb{H}^{2}$ : it is $G$-invariant $\rightsquigarrow$ new complex structure $\tilde{J}_{\mu}$ on $\mathbb{C P}^{1}$ : agrees with $\tilde{J}$ on $-\mathbb{H}^{2}$ $\left(\mathbb{C P}^{1}, \tilde{J}_{\mu}\right) \rightarrow\left(\mathbb{C P}^{1}, \tilde{J}\right)$ sends $\mathbb{R}^{1}$ to a Hölder Jordan curve $\wedge$ $\pi_{1}(S)$ acts on $\left(\mathbb{C P}^{1}, \tilde{J}\right)$ holomorphically, so $\pi_{1}(S) \rightarrow G_{\mu} \subset \operatorname{PSL}_{2}(\mathbb{C})$ $\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts on $\overline{\mathbb{H}}^{3} \backslash \Lambda$
$G_{\mu} \subset \operatorname{PSL}_{2}(\mathbb{C})$ is quasi-Fuchsian, i.e. acts prop. discont. on $\mathbb{C P}^{1} \backslash \Lambda$

## Deformations of complex structures

$\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \backslash \Lambda$

## Deformations of complex structures

$\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \backslash \Lambda$ Get a hyperbolic 3-manifold $M=\mathbb{H}^{3} / G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $\left(\mathbb{C P}_{\infty}^{1} \backslash \Lambda\right) / G_{\mu}=\left(S, J_{\mu}\right) \sqcup(S,-J)$


## Deformations of complex structures

$\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \backslash \wedge$ Get a hyperbolic 3-manifold $M=\mathbb{H}^{3} / G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $\left(\mathbb{C P}_{\infty}^{1} \backslash \Lambda\right) / G_{\mu}=\left(S, J_{\mu}\right) \sqcup(S,-J)$

$\left(S, J_{\mu}\right) \cong \Omega_{+} / G_{\mu}$ and $(S,-J) \cong \Omega_{-} / G_{\mu}$ acquire a $\mathbb{C P}^{1}$-structure

## Deformations of complex structures

$\overline{\mathbb{H}}^{3}=\mathbb{H}^{3} \cup \mathbb{C P}_{\infty}^{1}$ and $G_{\mu}$ acts freely and discontinuously on $\overline{\mathbb{H}}^{3} \backslash \Lambda$ Get a hyperbolic 3-manifold $M=\mathbb{H}^{3} / G_{\mu}$ diffeomorphic to $S \times \mathbb{R}$ with boundary components at infinity $\left(\mathbb{C P}_{\infty}^{1} \backslash \Lambda\right) / G_{\mu}=\left(S, J_{\mu}\right) \sqcup(S,-J)$

$\left(S, J_{\mu}\right) \cong \Omega_{+} / G_{\mu}$ and $(S,-J) \cong \Omega_{-} / G_{\mu}$ acquire a $\mathbb{C P}^{1}$-structure
Theorem (Bers, 1960)
$\mathcal{Q \mathcal { F }}=\{$ quasi-Fuchsian manifolds $M\} \leftrightarrow \mathcal{T} \times \overline{\mathcal{T}}$ is biholomorphic.

## Quasi-Fuchsian manifolds

$M$ quasi-Fuchsian manifold, $\tilde{M} \rightarrow M$ universal cover

## Quasi-Fuchsian manifolds

$M$ quasi-Fuchsian manifold, $\tilde{M} \rightarrow M$ universal cover Convex core $C(\tilde{M})=$ convex envelope of $\Lambda$

## Quasi-Fuchsian manifolds

$M$ quasi-Fuchsian manifold, $\tilde{M} \rightarrow M$ universal cover
Convex core $C(\tilde{M})=$ convex envelope of $\Lambda$


## Quasi-Fuchsian manifolds

$M$ quasi-Fuchsian manifold, $\tilde{M} \rightarrow M$ universal cover
Convex core $C(\tilde{M})=$ convex envelope of $\Lambda$

$\partial_{+} C(M)$ is a bent surface, i.e. $I=h$ hyperbolic metric and $I I I=\lambda_{+}$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$


## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$


$$
\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)
$$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$

## Theorem (Thurston)

Gr: $\mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{P}=\left\{\mathbb{C P}^{1}\right.$-structures on $S$ up to isotopy $\}$ is a homeomorphism.

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$


$$
\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)
$$

Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$
$\lambda$ small $\rightsquigarrow$ get $M$ QF manifold, otherwise $M$ hyperbolic end

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$
From the $\sigma(S) \subset M$, look at the concave direction: see $G r_{\lambda}(h)$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$
$B=-\nabla \nu$ shape operator

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$
$B=-\nabla \nu$ shape operator, normal flow away from $\sigma(S) \rightsquigarrow$ $h_{t}=h(\cosh (t)+\sinh (t) B, \cosh (t)+\sinh (t) B)$

## Quasi-Fuchsian manifolds

Closest point projection $\partial_{\infty}^{+}(M) \rightarrow \partial_{+} C(M)$

$\partial_{\infty}^{+}(M) \cong G r_{\lambda_{+}}\left(\partial_{+} C(M)\right)$
Recipe for grafting: hyperbolic surface $(S, h)$ and measured lamination $\lambda$ Embed $\tilde{\sigma}:(\tilde{S}, \tilde{h}) \hookrightarrow \mathbb{H}^{3}$ with $I=\tilde{h}$ and $I I I=\tilde{\lambda}$
$B=-\nabla \nu$ shape operator, normal flow away from $\sigma(S) \rightsquigarrow$ $h_{t}=h(\cosh (t)+\sinh (t) B, \cosh (t)+\sinh (t) B)$
$G r_{\lambda}(h)$ is conformally equivalent to $\left[h_{\infty}\right]=[h(i d+B, i d+B)]$

## Anti de Sitter 3-space

Similar description for the earthquake?

## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\mathbb{A d S}^{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\}
$$

## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$


## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$, $\operatorname{Isom}_{i d}\left(\mathbb{A d} \mathbb{S}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$


## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$, $\operatorname{Isom}_{i d}\left(\mathbb{A d} \mathbb{S}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
- $\mathbb{A d S}^{3}$ as interior of a quadric $Q=\{\operatorname{det}=0\} \subset \mathbb{P g l}_{2}(\mathbb{R}) \cong \mathbb{R} \mathbb{P}^{3}$


## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$, $\operatorname{Isom}_{i d}\left(\mathbb{A d} \mathbb{S}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
- $\mathbb{A d S}^{3}$ as interior of a quadric $Q=\{\operatorname{det}=0\} \subset \mathbb{P g l}_{2}(\mathbb{R}) \cong \mathbb{R} \mathbb{P}^{3}$ $\rightsquigarrow \partial \mathbb{A} d \mathbb{S}^{3} \cong \mathbb{P} Q \cong \mathbb{R} \mathbb{P}^{1} \times \mathbb{R}^{1}{ }^{1}$


## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$, $\operatorname{Isom}_{i d}\left(\mathbb{A d} \mathbb{S}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
- $\mathbb{A d S}^{3}$ as interior of a quadric $Q=\{$ det $=0\} \subset \mathbb{P g l}_{2}(\mathbb{R}) \cong \mathbb{R} \mathbb{P}^{3}$ $\rightsquigarrow \partial \mathbb{A d} \mathbb{S}^{3} \cong \mathbb{P} Q \cong \mathbb{R} \mathbb{P}^{1} \times \mathbb{R}^{1}{ }^{1}$
- Space-like totally geodesic planes $\Pi \cong \mathbb{H}^{2}$


## Anti de Sitter 3-space

Similar description for the earthquake?


## Anti de Sitter space

$$
\begin{aligned}
\mathbb{A d S}^{3} & =\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} \\
& \cong\left(\operatorname{PSL}_{2}(\mathbb{R}), \mathcal{K}\right)
\end{aligned}
$$

- Lorentzian, complete, $K=-1$, $\operatorname{Isom}_{i d}\left(\mathbb{A d S} \mathbb{S}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
- $\mathbb{A d S}^{3}$ as interior of a quadric $Q=\{$ det $=0\} \subset \mathbb{P g l}_{2}(\mathbb{R}) \cong \mathbb{R} \mathbb{P}^{3}$ $\rightsquigarrow \partial \mathbb{A d S}^{3} \cong \mathbb{P} Q \cong \mathbb{R}^{1} \times \mathbb{R P}^{1}$
- Space-like totally geodesic planes $\Pi \cong \mathbb{H}^{2}$
- Time-like geodesics $\gamma$ are closed of length $2 \pi$


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$
(Cauchy surface)


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.
$N$ MGH $\mathbb{A} d \mathbb{S}^{3}$-manifold $\Longrightarrow N \cong S \times(-\pi / 2, \pi / 2)$


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.
$N$ MGH $\mathbb{A} d \mathbb{S}^{3}$-manifold $\Longrightarrow N \cong S \times(-\pi / 2, \pi / 2)$
$\exists \Omega \subset \mathbb{A} \mathbb{S}^{3}$ open convex


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.
$N$ MGH $\mathbb{A d} \mathbb{S}^{3}$-manifold $\Longrightarrow N \cong S \times(-\pi / 2, \pi / 2)$
$\exists \Omega \subset \mathbb{A d S}^{3}$ open convex, $\exists \rho=\left(\rho_{l}, \rho_{r}\right): \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
with $\rho_{l}, \rho_{r} \in \mathcal{T}(S)$


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A d} \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.
$N$ MGH $\mathbb{A d} \mathbb{S}^{3}$-manifold $\Longrightarrow N \cong S \times(-\pi / 2, \pi / 2)$
$\exists \Omega \subset \mathbb{A d S}^{3}$ open convex, $\exists \rho=\left(\rho_{l}, \rho_{r}\right): \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
with $\rho_{l}, \rho_{r} \in \mathcal{T}(S)$ such that $N \cong \Omega / \rho\left(\pi_{1}(S)\right)$


## MGH AdS 3-manifolds

## Definition

An $\mathbb{A} d \mathbb{S}^{3}$-manifold $N$ is Maximal Global Hyperbolic if

- it contains a closed, oriented, space-like surface $S$ of $g \geq 2$ (Cauchy surface)
- every inextendible time-like curve intersects $S$ exactly once
- $N$ is maximal under inclusion.
$N$ MGH $\mathbb{A d} \mathbb{S}^{3}$-manifold $\Longrightarrow N \cong S \times(-\pi / 2, \pi / 2)$
$\exists \Omega \subset \mathbb{A d S}^{3}$ open convex, $\exists \rho=\left(\rho_{l}, \rho_{r}\right): \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
with $\rho_{l}, \rho_{r} \in \mathcal{T}(S)$ such that $N \cong \Omega / \rho\left(\pi_{1}(S)\right)$


## Theorem (Mess, 1990)

$\mathcal{M G H}(S) \longrightarrow \mathcal{T}(S) \times \mathcal{T}(S)$ is a diffeomorphism.

## MGH AdS 3-manifolds



## MGH AdS 3-manifolds


$\Lambda$ limit set for $\rho\left(\pi_{1}(S)\right)$ acting on $\Omega$ Hölder Jordan curve on $\partial \Omega$

## MGH AdS 3-manifolds


$\Lambda$ limit set for $\rho\left(\pi_{1}(S)\right)$ acting on $\Omega$ Hölder Jordan curve on $\partial \Omega$

Convex core $C(\tilde{N})=$ smallest convex subset of $\Omega$ containing a space-like complete surface and whose closure contains $\wedge$

## MGH AdS 3-manifolds


$\Lambda$ limit set for $\rho\left(\pi_{1}(S)\right)$ acting on $\Omega$ Hölder Jordan curve on $\partial \Omega$

Convex core $C(\tilde{N})=$ smallest convex subset of $\Omega$ containing a space-like complete surface and whose closure contains $\wedge$
$\partial_{+} C(N)$ has $I=h_{+}$and $I I I=\lambda_{+}$
$\partial_{-} C(N)$ has $I=h_{-}$and $I I I=\lambda_{-}$

## MGH AdS 3-manifolds


$\Lambda$ limit set for $\rho\left(\pi_{1}(S)\right)$ acting on $\Omega$ Hölder Jordan curve on $\partial \Omega$

Convex core $C(\tilde{N})=$ smallest convex subset of $\Omega$ containing a space-like complete surface and whose closure contains $\wedge$
$\partial_{+} C(N)$ has $I=h_{+}$and $I I I=\lambda_{+}$
$\partial_{-} C(N)$ has $I=h_{-}$and $I I I=\lambda_{-}$
Metrically
$h_{l}=h_{+}\left(i d+J B_{+}, i d+J B_{+}\right)$and
$h_{r}=h_{+}\left(i d-J B_{+}, i d-J B_{+}\right)$

## MGH AdS 3-manifolds


$\Lambda$ limit set for $\rho\left(\pi_{1}(S)\right)$ acting on $\Omega$ Hölder Jordan curve on $\partial \Omega$

Convex core $C(\tilde{N})=$ smallest convex subset of $\Omega$ containing a space-like complete surface and whose closure contains $\wedge$
$\partial_{+} C(N)$ has $I=h_{+}$and $I I I=\lambda_{+}$
$\partial_{-} C(N)$ has $I=h_{-}$and $I I I=\lambda_{-}$
Metrically
$h_{l}=h_{+}\left(i d+J B_{+}, i d+J B_{+}\right)$and
$h_{r}=h_{+}\left(i d-J B_{+}, i d-J B_{+}\right)$


## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$

## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $/ \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $I \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)
There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $I \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

Theorem L (Bonsante-M-Schlenker, 2011)
There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$


## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $I \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$
- $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right)$ limits to $E_{\lambda}(h)$ as $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$


## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $/ \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$
- $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right)$ limits to $E_{\lambda}(h)$ as $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$
- $\forall e^{i \theta} \neq 1$ and $h, h^{\prime} \in \mathcal{T}$, $\exists!h^{*} \in \mathcal{T}$ s.t. $L_{e^{i \theta}}^{1}\left(h, h^{*}\right)=h^{\prime}$ (analogous to Thurston's earthquake theorem)


## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$ Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $/ \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$
- $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right)$ limits to $E_{\lambda}(h)$ as $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$
- $\forall e^{i \theta} \neq 1$ and $h, h^{\prime} \in \mathcal{T}$, $\exists!h^{*} \in \mathcal{T}$ s.t. $L_{e^{i \theta}}^{1}\left(h, h^{*}\right)=h^{\prime}$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).


## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$
Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $/ \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$
- $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right)$ limits to $E_{\lambda}(h)$ as $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$
- $\forall e^{i \theta} \neq 1$ and $h, h^{\prime} \in \mathcal{T}$, $\exists$ ! $h^{*} \in \mathcal{T}$ s.t. $L_{e^{i \theta}}^{1}\left(h, h^{*}\right)=h^{\prime}$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).

Warning! Metrics in $\mathcal{T}$ are up to isotopy

## Landslide

Earthquake is a flow $E_{t}: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T} \times \mathcal{M L}$
Idea: embed $S$ in $\mathbb{A d} \mathbb{S}^{3}$ using $I \propto h$ and $I I I \propto h^{*}$ with $h, h^{*} \in \mathcal{T}(S)$

## Theorem L (Bonsante-M-Schlenker, 2011)

There exists a real-analytic $S^{1}$-landslide flow $L_{e^{i \theta}}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T} \times \mathcal{T}$ s.t.

- $L_{-1}\left(h, h^{*}\right)=\left(h^{*}, h\right)$
- $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right)$ limits to $E_{\lambda}(h)$ as $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$
- $\forall e^{i \theta} \neq 1$ and $h, h^{\prime} \in \mathcal{T}$, $\exists$ ! $h^{*} \in \mathcal{T}$ s.t. $L_{e^{i \theta}}^{1}\left(h, h^{*}\right)=h^{\prime}$ (analogous to Thurston's earthquake theorem)
- there is a complexification that limits to grafting (more later).

Warning! Metrics in $\mathcal{T}$ are up to isotopy
We need to "fix the gauge" between $h$ and $h^{*}$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint,

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1$,

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$ $\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian
Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A d} \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$ $\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"
$\rho_{I}^{\theta} \quad \leftrightarrow \quad h_{\theta}=h(\cos (\theta / 2)+\sin (\theta / 2) J b, \cos (\theta / 2)+\sin (\theta / 2) J b)$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian
Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A d} \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$ $\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"
$\rho_{I}^{\theta} \quad \leftrightarrow \quad h_{\theta}=h(\cos (\theta / 2)+\sin (\theta / 2) J b, \cos (\theta / 2)+\sin (\theta / 2) J b)$
Define $L_{e^{i \theta}}\left(h, h^{*}\right):=\left(h_{\theta}, h_{\pi+\theta}\right)$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian
Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$ $\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"
$\rho_{I}^{\theta} \quad \leftrightarrow \quad h_{\theta}=h(\cos (\theta / 2)+\sin (\theta / 2) J b, \cos (\theta / 2)+\sin (\theta / 2) J b)$
Define $L_{e^{i \theta}}\left(h, h^{*}\right):=\left(h_{\theta}, h_{\pi+\theta}\right)$
Fix $h$ and $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian
Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$ $\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$ $\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"
$\rho_{I}^{\theta} \quad \leftrightarrow \quad h_{\theta}=h(\cos (\theta / 2)+\sin (\theta / 2) J b, \cos (\theta / 2)+\sin (\theta / 2) J b)$

$$
\text { Define } L_{e^{i \theta}}\left(h, h^{*}\right):=\left(h_{\theta}, h_{\pi+\theta}\right)
$$

Fix $h$ and $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda \rightsquigarrow\left(I_{\theta_{n}}, I I I_{\theta_{n}}\right) \rightarrow(h, \lambda)$

## Landslide flow

## Definition

$m:(S, h) \rightarrow\left(S, h^{*}\right)$ is minimal Lagrangian if $m^{*}\left(h^{*}\right)=h(b, b)$ with $b$ self-adjoint, $\operatorname{det}(b)=1, d^{\nabla} b=0$.

Normalize $\left(h, h^{*}\right)$ so that the identity is minimal Lagrangian
Embed $\tilde{\phi}_{\theta}: \tilde{S} \hookrightarrow \mathbb{A} d \mathbb{S}^{3}$ with $\tilde{I}_{\theta}=\cos ^{2}(\theta / 2) \tilde{h}$ and $\tilde{I I}_{\theta}=\sin ^{2}(\theta / 2) \tilde{h}^{*}$
$\tilde{\phi}_{\theta}$ is $\rho^{\theta}\left(\pi_{1}(S)\right)$-equivariant with $\rho^{\theta}: \pi_{1}(S) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$
Find $\tilde{\phi}_{\theta}(\tilde{S}) \subset \Omega_{\theta} \subset \mathbb{A} d \mathbb{S}^{3}$ domain of discontinuity for $\rho^{\theta}\left(\pi_{1}(S)\right)$
$\rightsquigarrow$ Get $\phi_{\theta}: S \hookrightarrow N_{\theta}$ "unique"
$\rho_{I}^{\theta} \quad \leftrightarrow \quad h_{\theta}=h(\cos (\theta / 2)+\sin (\theta / 2) J b, \cos (\theta / 2)+\sin (\theta / 2) J b)$
Define $L_{e^{i \theta}}\left(h, h^{*}\right):=\left(h_{\theta}, h_{\pi+\theta}\right)$
Fix $h$ and $\left(\theta_{n} / 2\right)^{2} h_{n}^{*} \rightarrow \lambda \rightsquigarrow\left(I_{\theta_{n}}, I I I_{\theta_{n}}\right) \rightarrow(h, \lambda)$ and $L_{e^{i \theta_{n}}}^{1}\left(h, h_{n}^{*}\right) \rightarrow E_{\lambda}(h)$

## Centers

$h, h^{*}$ hyperbolic

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b)$

## Centers

$$
h, h^{*} \text { hyperbolic } \rightsquigarrow h^{*}=h(b, b) \rightsquigarrow \text { center } c=h(i d+b, i d+b)
$$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

$$
C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q} \text { defined as }\left(h, h^{*}\right) \mapsto(c, \Phi)
$$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

$$
C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q} \text { defined as }\left(h, h^{*}\right) \mapsto(c, \Phi)
$$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

$$
C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q} \text { defined as }\left(h, h^{*}\right) \mapsto(c, \Phi)
$$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_{2}(\mathbb{R})$ action on $\mathcal{Q}$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

$$
C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q} \text { defined as }\left(h, h^{*}\right) \mapsto(c, \Phi)
$$

Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_{2}(\mathbb{R})$ action on $\mathcal{Q}$
Theorem $\mathrm{L} \leftrightarrow$ horocyclic flow on $\mathcal{Q}$ limits to earthquake as $h^{*} \rightarrow \lambda$

## Centers

$h, h^{*}$ hyperbolic $\rightsquigarrow h^{*}=h(b, b) \rightsquigarrow$ center $c=h(i d+b, i d+b)$
id : $(S, c) \rightarrow(S, h)$ harmonic with Hopf differential $\Phi$
id : $(S, c) \rightarrow\left(S, h^{*}\right)$ harmonic with Hopf differential $\Phi^{*}$ and $\Phi+\Phi^{*}=0$

$$
C: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{Q} \text { defined as }\left(h, h^{*}\right) \mapsto(c, \Phi)
$$

## Landslide on $\mathcal{T} \times \mathcal{T} \leftrightarrow \mathrm{PSO}_{2}(\mathbb{R})$ action on $\mathcal{Q}$

Theorem $\mathrm{L} \leftrightarrow$ horocyclic flow on $\mathcal{Q}$ limits to earthquake as $h^{*} \rightarrow \lambda$

## Remark

If $h$ fixed and $h_{n}^{*} \rightarrow[\lambda]$, then $\lim _{n} c_{n}$ does not depend only on $h$ and $[\lambda]$

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.
Embed $\tilde{\sigma}_{s}: \tilde{S} \hookrightarrow \mathbb{H}^{3}$ with $\tilde{I}_{s}=\cosh ^{2}(s / 2) h$ and $\tilde{I I I}_{s}=\sinh ^{2}(s / 2) h^{*}$

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.
Embed $\tilde{\sigma}_{s}: \tilde{S} \hookrightarrow \mathbb{H}^{3}$ with $\tilde{I}_{s}=\cosh ^{2}(s / 2) h$ and $\tilde{I I I}_{s}=\sinh ^{2}(s / 2) h^{*}$ $\tilde{\Sigma}_{s} \subset \mathbb{C P}^{1}$ surface at infinity facing $\tilde{\sigma}_{s}(\tilde{S})$

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.
Embed $\tilde{\sigma}_{s}: \tilde{S} \hookrightarrow \mathbb{H}^{3}$ with $\tilde{I}_{s}=\cosh ^{2}(s / 2) h$ and $\tilde{I I} I_{s}=\sinh ^{2}(s / 2) h^{*}$ $\tilde{\Sigma}_{s} \subset \mathbb{C P}^{1}$ surface at infinity facing $\tilde{\sigma}_{s}(\tilde{S})$

Define smooth grafting $S G r_{s}^{\prime}\left(h, h^{*}\right):=\Sigma_{s}$

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.
Embed $\tilde{\sigma}_{s}: \tilde{S} \hookrightarrow \mathbb{H}^{3}$ with $\tilde{I}_{s}=\cosh ^{2}(s / 2) h$ and $\tilde{I I} I_{s}=\sinh ^{2}(s / 2) h^{*}$
$\tilde{\Sigma}_{s} \subset \mathbb{C P}^{1}$ surface at infinity facing $\tilde{\sigma}_{s}(\tilde{S})$
Define smooth grafting $S G r_{s}^{\prime}\left(h, h^{*}\right):=\Sigma_{s}$

Theorem (Labourie, 1991)
For all $s>0, S G r_{s}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ is a diffeomorphism.

## Smooth grafting

Fix $h, h^{*}$ and $s \geq 0$.
Embed $\tilde{\sigma}_{s}: \tilde{S} \hookrightarrow \mathbb{H}^{3}$ with $\tilde{I}_{s}=\cosh ^{2}(s / 2) h$ and $\tilde{I I}_{s}=\sinh ^{2}(s / 2) h^{*}$ $\tilde{\Sigma}_{s} \subset \mathbb{C P}^{1}$ surface at infinity facing $\tilde{\sigma}_{s}(\tilde{S})$

Define smooth grafting $S G r_{s}^{\prime}\left(h, h^{*}\right):=\Sigma_{s}$

Theorem (Labourie, 1991)
For all $s>0, S G r_{s}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ is a diffeomorphism.

Barbot-Béguin-Zeghib (2007) $\Longrightarrow$ smooth earthquake theorem

## Complex landslide

Theorem (McMullen, 1994)
Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M L}$.

## Complex landslide

## Theorem (McMullen, 1994)

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M} \mathcal{L}$. Then $G: \overline{\mathbb{H}^{2}} \rightarrow \mathcal{P}$ defined as $G(z):=\operatorname{Gr}_{y \lambda}\left(E_{-x \lambda}(h)\right)$ is holomorphic.

## Complex landslide

## Theorem (McMullen, 1994)

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M} \mathcal{L}$. Then $G: \overline{\mathbb{H}^{2}} \rightarrow \mathcal{P}$ defined as
$G(z):=\operatorname{Gr}_{y \lambda}\left(E_{-x \lambda}(h)\right)$ is holomorphic.

Define complex landslide $P_{z}^{\prime}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ as $P_{z}^{\prime}=S G r_{y}^{\prime} \circ L_{-x}^{\prime}$

## Complex landslide

## Theorem (McMullen, 1994)

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M} \mathcal{L}$. Then $G: \overline{\mathbb{H}^{2}} \rightarrow \mathcal{P}$ defined as $G(z):=\operatorname{Gr}_{y \lambda}\left(E_{-x \lambda}(h)\right)$ is holomorphic.

Define complex landslide $P_{z}^{\prime}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ as $P_{z}^{\prime}=S G r_{y}^{\prime} \circ L_{-x}^{\prime}$

## Theorem (Bonsante-M-Schlenker, 2011)

(1) For all $h, h^{*}$ the map $z \mapsto P_{z}^{\prime}\left(h, h^{*}\right)$ is holomorphic as $z \in \overline{\mathbb{H}}^{2}$

## Complex landslide

## Theorem (McMullen, 1994)

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M} \mathcal{L}$. Then $G: \overline{\mathbb{H}^{2}} \rightarrow \mathcal{P}$ defined as $G(z):=\operatorname{Gr}_{y \lambda}\left(E_{-x \lambda}(h)\right)$ is holomorphic.

Define complex landslide $P_{z}^{\prime}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ as $P_{z}^{\prime}=S G r_{y}^{\prime} \circ L_{-x}^{\prime}$

## Theorem (Bonsante-M-Schlenker, 2011)

(1) For all $h, h^{*}$ the map $z \mapsto P_{z}^{\prime}\left(h, h^{*}\right)$ is holomorphic as $z \in \overline{\mathbb{H}}^{2}$ so $L\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{P}$ extends over $\bar{\Delta}^{*}$

## Complex landslide

## Theorem (McMullen, 1994)

Fix $h \in \mathcal{T}$ and $\lambda \in \mathcal{M} \mathcal{L}$. Then $G: \overline{\mathbb{H}^{2}} \rightarrow \mathcal{P}$ defined as $G(z):=\operatorname{Gr}_{y \lambda}\left(E_{-x \lambda}(h)\right)$ is holomorphic.

Define complex landslide $P_{z}^{\prime}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{P}$ as $P_{z}^{\prime}=S G r_{y}^{\prime} \circ L_{-x}^{\prime}$

## Theorem (Bonsante-M-Schlenker, 2011)

(1) For all $h, h^{*}$ the map $z \mapsto P_{z}^{\prime}\left(h, h^{*}\right)$ is holomorphic as $z \in \overline{\mathbb{H}}^{2}$ so $L\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{P}$ extends over $\bar{\Delta}^{*}$
(2) As a map $L_{\bullet}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$, it extends over $z=0$ as $L_{0}\left(h, h^{*}\right):=c$.

## Questions

## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.


## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.
Given $h^{*}$ and $s \in(0,1)$, is $\operatorname{Sgr}_{s}\left(\cdot, h^{*}\right): \mathcal{T} \rightarrow \mathcal{T}$ a diffeomorphism?


## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.

Given $h^{*}$ and $s \in(0,1)$, is $\operatorname{Sgr}_{s}\left(\cdot, h^{*}\right): \mathcal{T} \rightarrow \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$ ?


## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.

Given $h^{*}$ and $s \in(0,1)$, is $\operatorname{Sgr}_{s}\left(\cdot, h^{*}\right): \mathcal{T} \rightarrow \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$ ?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.


## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.

Given $h^{*}$ and $s \in(0,1)$, is $\operatorname{Sgr}_{s}\left(\cdot, h^{*}\right): \mathcal{T} \rightarrow \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$ ?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.

Are all the points fixed by $L$ on the diagonal of $\mathcal{T}(\Delta) \times \mathcal{T}(\Delta)$ ?

## Questions

- Scannell-Wolf (1997): for $\lambda \neq 0$ fixed, $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is a diffeomorphism.

Given $h^{*}$ and $s \in(0,1)$, is $\operatorname{Sgr}_{s}\left(\cdot, h^{*}\right): \mathcal{T} \rightarrow \mathcal{T}$ a diffeomorphism?

- Is the landslide flow Hamiltonian on $\mathcal{T} \times \mathcal{T}$ ?
- Landslide flow can be defined on the universal $\mathcal{T}(\Delta)$.

Are all the points fixed by $L$ on the diagonal of $\mathcal{T}(\Delta) \times \mathcal{T}(\Delta)$ ?

- Description of other $\mathrm{SL}_{2}(\mathbb{R})$-flows in terms of surfaces in $\mathbb{A d S} \mathbb{S}^{3}$-manifolds?

